
Relief Load Calculation Note

1.PSV-1013/1014

Process description:

For fired heaters, one of the primary fuels is NG since it is more reliable and available. For a specific fired heater, 16000 kg/hr. of NG with operating pressure of 50 barg and temperature of 40C is let-down to operating pressure of 4barg via PV-1011 and later to 1 barg via another control valve to make it suitable for firing.

First Step: Let's check if we need a PSV

Since the difference between design pressure of high-pressure side, which is 55 barg and that of low-pressure side, which is 7 barg is high. So, we need a PSV in case of control valve failure and the possibility of high flow passage from high-pressure side to low-pressure side.

Second Step: Safety Analysis Environment

1.Go to safety analysis environment and add PSV on the outlet of control valve. 2.Double-click on PSV icon to see the following tab.

Flowsheet Cas	e (Main) (P	rsv) × 10	0 PSV 00	1 ×	: +		
Equipment	Scenarios	PRD Data	Rating	Lir	ne Sizing		
Unit Op Protec	ted	PV-1011					
Operating Tem	perature		19.51 °	C	Referenc	e -]
Design Temper	rature		85.00 °	C	Manual	•]
Operating Pres	sure		4.500 bar	G	Referenc	e -]
Design Pressure	e	7	.000 bar	G	Manual	•]

🕒 I 🔚 🤊 🎨 🖃 🖉 👻 🔻 I	Flowsheet		Datasheets	
File Home View Resources	Flowsheet/Modify	Format	Safety Datasheets	
Units SI	*			
Design Code ASME VIII Preferences Manager	Add Add Rupture PSV Disk	Storage Tan Protection	k	
Preferences				
Safety Analysis < Flows	neet Case (Main) (PSV) ×			
 Unit Operations PV-1011 Unattached Streams Storage Tank Protection 	→ 1	P۱	► /-1011	2

💽 🔚 🤊 🌿 📰 🖉 - 후	Flowsheet	Datasheets	NoName.hsc - Aspen HYSYS V12 - aspenONE
File Home View Resources	Flowsheet/Modify Format	Safety Datasheets	
Units SI Preferences Preferences	Add Add Rupture PSV Disk Protectio		
Safety Analysis < Flows	sheet Case (Main) (PSV) $ imes$ +		
▲ Unit Operations ▲ PV-1011 100 PSV 001 Unattached Streams Storage Tank Protection	1 PV-10	11 2	100 PSV 001

Manual means you are supposed to specify the matter while reference means the information is taken from the line, which just provides operating conditions.

3.Go to scenario tab, create a scenario and select control valve failure.

	izin g		Scenario		Stream	m	Phase -	Method	Flow I [kg/		Orifice [cm		Capacity Used [%]	Pressur [% of		Notes
Case		Name	Type	Na		MW		2 : 111	Required	Rated	Calculated	Selected		Inlet	Outlet	
		Scenario100	General	<empty< td=""><td></td><td><empty> Valve Related</empty></td><td></td><td>Direct Integra</td><td><empty></empty></td><td><empty></empty></td><td><empty></empty></td><td><empty></empty></td><td><empty></empty></td><td><empty></empty></td><td><empty></empty></td><td><empty></empty></td></empty<>		<empty> Valve Related</empty>		Direct Integra	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>
			Fire		Blocked			Exch. Tube Rup								
		Thermal Expansion						Cold Side of Exe	de of Exchanger Blocked-In							
			Overfilling		Failure of Automatic Controls Reaction/Mixing Chemical Reaction		Blocked-In Fired	ocked-In Fired Heater								
			User Defined				Fan Failure									
			Flare					Distillation Colu	umn/Tower							
			General Power Failure				Reflux Failure									
			Local Power Failure				Reflux Failure (S	Reflux Failure (Side Stream)								
			Cooling Water Failure			tent Loss of Se		Abnormal Heat								
			Coolant Failure (Other the	an CW)	Pressure	Surge or Inte	ernal Explosion			ables						
			Loss of Heat					Loss of Absorbe	nt							

4.Now open scenario.

	Properties Relief Co	inposition		_						
nario Name Scen	ario100			Si Si	Sizing Case			Scenario Descrip	tion Notes	
nario Type Cont	rol Valve Failure	•			PSV Results	Value				
enario Reference St	tream			`	Calculated Orifice [cm ²]	52.49	Select			
eam	1 @Main	Select			Selected Orifice [cm ²]	71.290 (Q) 🔻				
					Fraction of Full Lift	1.000				
lieving Temperatur					Rated Capacity [kg/h]	3.773E+004				
lieving Pressure	7.700	barG Edit			Capacity Used [%]	73.62				
tal Backpressure	0.7000	barG Edit			Orifice Designation In/Out Flanges	6 Q 8 150 x 150				
	thod Vapor	Pirect Integration (HEM	n -		Discharge Coefficient (Kd)	0.9750				
lieving Phase - Mei cosity Correction quired Relieving Fl	(Kv) 1	.000			Discharge Coefficient (Ko)	0.5130				
quired Relieving Fl lieving Flow Metho pocess Data	(Kv) 1 ow 2.778E+004 od O Manual O	.000 kg/h Reference @ C	alculated		Discharge Coenicient (KO)	0.3730				
quired Relieving Fl	(Kv) 1 ow 2.778E+004 od © Manual ©	.000 kg/h Reference @ C			Discharge Coenicient (KG)	03130				
quired Relieving Fl lieving Flow Metho pocess Data	(Ku) 1 ow 2.778E+004 od Manual C	.000 kg/h) Reference @ C			Discharge Coenicient (KG)					
quired Relieving Fl lieving Flow Metho coss Data	(Ku) 1 ow 2.778E+004 od Manual C	.000 kg/h) Reference @ C			Discharge Coenicient (KG)					
quired Relieving Fl lieving Flow Metho coss Data	(Kv) 1 ow 2.778E+004 Manual 0 occess 0.0000 k 2.778E+004	.000 kg/h) Reference @ C kg/h Upstream Method	alculated		Discharge Coenicient (KG)					
quired Relieving Fl ieving Flow Metho ocess Data ——— adit for Flow to Pro Iculated Mass Flow	(Kv) 1 ow 2.778E+004 od Manual occess 0.0000 I occess 0.0000 I	.000 kg/h) Reference @ C kg/h Upstream Method	alculated Downstream @ Relief		Discharge Coenicient (KG)					

Req	uired Relieving F	low 2.778E+004	kg/h	
Reli	eving Flow Metho	od 🔘 Manual 🤇	Reference O	Calculated
Pro	ess Data ———			
Cre	dit for Flow to Pro	ocess 0.0000	kg/h	
Cale	ulated Mass Flow	v 2.778E+004	kg/h	
		Upstream	Upstream Method	Downstream @ Relief
Þ	Pressure	50.00 barG	Reference *	7.700 barG
>	Temperature	40.00 °C	Reference *	21.13 °C
▶.	Phase	Vapor		Vapor
Calo	ulation Method	PSV Plus	·	
- Valv	e Parameters —			
Vap	or Flow Model	N/A		
Valv	е Туре	N/A 👻		
	FI		0.9000	
Þ	Cv [USGPM(60F	,1psi)]	44.00	
V I	Handle multi-pha	ise flows rigorously		

Under scenario reference stream select stream 1:

E Select Reference Stream		- 🗆 X
Flowsheet	Object	i
Case (Main)	1 2	Object Filter All Streams UnitOps Logicals ColumnOps Custom Custom

You can also change total backpressure like below:

Backpressure (BP) Parame	ters	×
Atmospheric Pressure	1.013 barA	i
Constant Superimposed BP	1.013 barA	
Variable Superimposed BP	0.0000 bar	
Built-up Backpressure	0.7000 bar	
Total Backpressure	0.7000 barG	
Maximum Allowable BP %	10.00	
Maximum Allowable BP	0.7000 barG	
Backpressure (BP) Factor (Kb))	
Calculated		
Specified	1.000	
ОК	Cancel	

Select relieving method to be calculated and also choose PSV plus as the calculation method. Specify the CV to be 44.

Required Relieving	Flow 2.778E+004	kg/h	
Relieving Flow Meth	hod 🔘 Manual 🤇	Reference O	Calculated
Process Data ——			
Credit for Flow to P	rocess 0.0000 I	kg/h	
Calculated Mass Flo	2.778E+004	kg/h	
	Upstream	Upstream Method	Downstream @ Relief
Pressure	50.00 barG	Reference *	7.700 barG
Temperature	40.00 °C	Reference *	21.13 °C
Phase	Vapor		Vapor
Calculation Method - Valve Parameters — Vapor Flow Model	N/A	-	
Valve Type	N/A 👻		
> FI		0.9000	
Cv [USGPM(60	(F,1psi)]	44.00	
Handle multi-ph	nase flows rigorously		

	PSV Results	Value
$\left\ \cdot\right\ $	Calculated Orifice [cm ²]	52.49
►	Selected Orifice [cm ²]	71.290 (Q) 🍷
$\left\ \cdot\right\ _{t}$	Fraction of Full Lift	1.000
$\left\ \cdot\right\ _{t}$	Rated Capacity [kg/h]	3.773E+004
$\left\ \cdot\right\ $	Capacity Used [%]	73.62
$\left\ \cdot\right\ $	Orifice Designation	6 Q 8
$\left\ \cdot\right\ _{\mathcal{T}}$	In/Out Flanges	150 x 150
$\left\ \cdot\right\ _{t}$	Discharge Coefficient (Kd)	0.9750

Select a bigger orifice area than calculated orifice which is 52.49 cm².

Based on the calculation, the orifice designation should be 6Q8.

5.Now go to line sizing tab

w Rate Method Required	ine Sizing Using Aspen Hy	draulice		Run Line Sizing	For All Scenarios	Configure	
				Line Sizing Results	In Line	Out Line	
Line Sizing Inputs	In Line	Out Line		Calculated DP [bar]	0.7471	1.226	
PSV Flange Size [in]	6.000	8.000		Maximum DP [bar]	0.2100	0.7000	
Schedule		40 -		Average Rho*v2 [kg/m/s ²]	3.202E+004	7.764E+004	
N.D. [in]	6.000 -	8.000 -		Outlet Velocity [m/s]	<empty></empty>	324.7	
I.D. [in]	6.065	7.981		Critical Velocity [m/s]	<empty></empty>	424.4	
Material	Mild Steel 🔹	Mild Steel 🔹		Critical Pressure [barA]	<empty></empty>	0.7755	
Roughness [mm]	4.572E-002	4.572E-002		Reaction Forces [N]	<empty></empty>	3214	
Specified Equivalent Length [m] 50.00	50.00					
Elevation [m]	0.0000	0.0000					
Flow Rate [kg/h]	2.778E+004	2.778E+004					
ILET Line Pressure Drop check	ERROR: Maximum Pressur	e Drop exceeded					
utlet Line: Pressure Drop check .							
		sure drop (1.226 bar) is I	nigher	han specified built-up backpress	sure (0.7 bar). Modify y	our specifications.	
JTLET Line Velocity @ Exit chec	k OK						

Based on calculation, the pressure drop for both inlet and outlet has exceeded the criteria. In order to resolve the issue, let's select a line with bigger size for inlet and outlet.

	*	ġ,	Run Line Sizing	or All Scenarios	Configure	
ng Method Rigorous Line	Sizing Using Aspen Hy	draulics		In Line	Out Line	
Line Sizing Inputs	In Line	Out Line	Line Sizing Results Calculated DP [bar]	0.2062	0.3087	
PSV Flange Size [in]	6.000		Maximum DP [bar]	0.2002	0.7000	
-		STD 🔻	Average Rho*v2 [kg/m/s ²]	3.036E+004	6.152E+004	
N.D. [in]	8.000 -		Outlet Velocity [m/s]	<empty></empty>	216.5	
I.D. [in]	7.981	10.02	Critical Velocity [m/s]		434.3	
Material		Mild Steel	Critical Pressure [barA]	<empty></empty>	0.5052	
Roughness [mm]	4.572E-002		Reaction Forces [N]		3211	
Specified Equivalent Length [m]	50.00		Reaction Forces [N]	<empty></empty>	3211	
Elevation [m]	0.0000					
Flow Rate [kg/h]	2.778E+004					
.ET Line Pressure Drop check OK ITLET Line Velocity @ Exit check	ок					
itlet Line: Pressure Drop check Of						

The problem solved!

Here is the summary of what we have obtained.

Relief load	27780 kg/hr.
Scenario	Control Valve Failure
Calculation Method	PSV Plus
Selected Orifice	71.29-Q
Orifice Designation	6Q8
Inlet Line Size	8 inch
Outlet Line Size	10 inch

2.PSV-1031

1.Determine the scenario, using API-521

Since it is R-1001 and exposed to fire then a fire scenario is defined.

Parameters	Value	Parameters	Value
Diameter	4.45 m	Μ	16.54
Height	3.1 m	Set Pressure	55 barg
Fluid	Natural Gas	Relieving Pressure	67.55 bara
Z	1.01	Accumulation	0.21
Cp/Cv	1.18	Material	CS

2.Calculate the relief load, using API-520 Part1

$$A = \frac{F^* \times A^*}{\sqrt{p_1}}$$
(9)
where

$$A \quad \text{is the effective discharge area of the valve, expressed in mm2 (in.2);}
$$A^* \quad \text{is the exposed surface area of the vessel, expressed in mm2 (ft2);}
$$p_1 \quad \text{is the upstream relieving absolute pressure, expressed in kPa (psi);}$$
NOTE p_1 is the set pressure plus the allowable overpressure plus the atmospheric pressure.

$$F^* \quad \text{can be determined using Equation (10). If calculated using Equation (10) and the result is less than 182 in SI units (-0.01 in USC units), then use a recommended minimum value of $F^* = 182$ in SI units ($F^* = 0.01$ in USC units). If insufficient information is available to use Equation (10), then use $F^* = 821$ in SI units ($F^* = 0.045$ in USC units).

$$F' = \frac{C_9}{C \times K_D} \left[\frac{(T_w - T_1)^{1.25}}{T_1^{0.6566}} \right]$$
(10)
where

$$C_9 \quad \text{is a constant } [= 0.2772 \text{ in SI units } (0.1406 \text{ in USC units})];$$

$$K_D \quad \text{is the coefficient of discharge (obtainable from the valve manufacturer);}$$
NOTE A_{K_D} value of 0.975 is typically used for preliminary sizing of PRVs (see API 520, Part 1).

$$T_w \quad \text{is the maximum wall temperature of vessel material, expressed in K (°R);}$$

$$T_1 \quad \text{is the gas absolute temperature, at the upstream relieving pressure, determined from Equation (12), expressed in K (°R).$$$$$$$$

The coefficient, C, is given by Equation (11):

$$C = C_{10} \sqrt{k \left(\frac{2}{k+1}\right)^{\frac{k}{k}}}$$

where

 C_{10} is a constant {= 0.0395 (kg-mole-K)^{0.5}/(mm²-kPa-h) in SI units [520 (lb-mole-°R)^{0.5}/(lbf-h) in USC units]};

(11)

k is the ideal gas specific heat ratio (C_p/C_v) of gas or vapor at relieving temperature.

$$T_1 = \frac{p_1}{p_n} \times T_n \tag{12}$$

where

- pn is the normal operating gas absolute pressure, expressed in kPa (psia);
- T_n is the normal operating gas absolute temperature, expressed in K (°R).

The recommended maximum vessel wall temperature, $T_{\rm W}$, for the usual carbon steel plate materials is 593 °C (1100 °F). If vessels are fabricated from alloy materials, the value for $T_{\rm W}$ should be based on the stress rupture data for that material. See 4.4.13.2.3, 4.4.13.2.6, 4.6.1, and Annex A for guidance on the potential for vessel failure from overtemperature due to fire exposure.

If $F' \ge 182$ in SI units ($F' \ge 0.01$ in USC units), the relief load, $q_{m,relief}$, expressed in kg/h (lb/h), can be calculated directly by rearranging the critical vapor equation and substituting Equation (9) and Equation (10), which results in Equation (13):

$$q_{\rm m,relief} = C_{12} \sqrt{M \times p_1} \left[\frac{A' (T_{\rm W} - T_1)^{1.25}}{T_1^{1.1506}} \right]$$
(13)

where

M is the relative molecular mass of the gas;

C12 is a constant [= 0.2772 in SI units (0.1406 in USC units)].

The minimum relief load recommended for sizing where F' < 182 in SI units (F' < 0.01 in USC units) is calculated by setting F' = 182 in SI units (F' = 0.01 in USC units), which results in Equation (14):

$$q_{\rm m,relief} = C_{13}CA' \sqrt{\frac{Mp_1}{T_1}}$$
(14)

where

C13 is a constant [= 182 in SI units (0.01 in USC units)].

NOTE To derive Equation (13) and Equation (14), Z, $K_{\rm b}$, and $K_{\rm c}$ in API 520, Part 1, Equation (3) have each been assumed to have a value of 1. For Equation (14), $K_{\rm D}$ is conservatively assumed to have a value of 1.

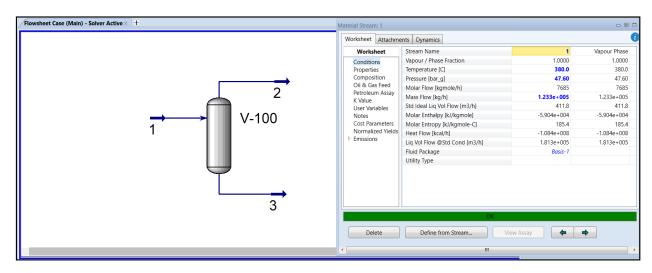
Calculation

Parameters	Value	Parameters	Value
Aw	65 m2	KD	0.975
C9	0.2772	F'	116
C10	0.0395	Relief Load	3874 kg/hr
С	0.0254		

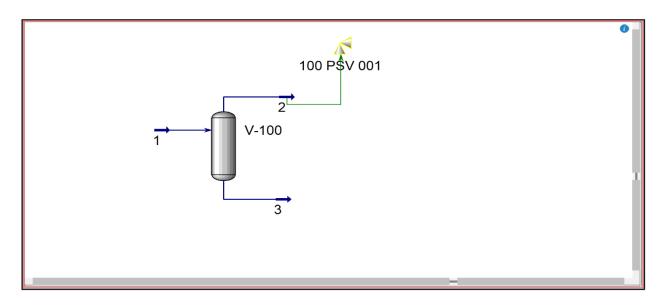
Ws = 182 × C × Aw ×
$$\sqrt{(\frac{M \times P \times 100}{T + 273})}$$

Ws =
$$182 \times 0.0254 \times 65 \times \sqrt{\frac{16.54 \times 67.5 \times 100}{400 + 273}} = 3874 \frac{\text{kg}}{\text{hr}}$$

Note that since F' is less than 182 the corresponding equation has been used in which F' is set to 182. Remember that in F' calculation T1 is set to max 400 C.


Note : Relieving Temperature Calculation

Relieving Temperature(K) = $\frac{\text{Relieving Pressure (bara)}}{\text{Operating Pressure (bara)}} \times \text{Operating Temperature (K)}$ Relieving Temperature (K) = $\frac{67.55}{49.8} \times (380 + 273) = 885.74 \text{ K} = 612.74 \text{ C}$


since the ratio between operating pressure and PSV relieving pressure is very high, the relieving temperature calculated is not consistent (it would exceed the maximum vessel wall temperature for carbon steel, &₀). The relieving temperature for PSV design has been assumed equal to 400°C (considered the max allowable value for carbon steel). The actual relieving mass flow has been calculated keeping the discharge capacity of the valve (volumetric flow rate) constant and scaling the temperature down to 400°C.

Simulation

Step 1:

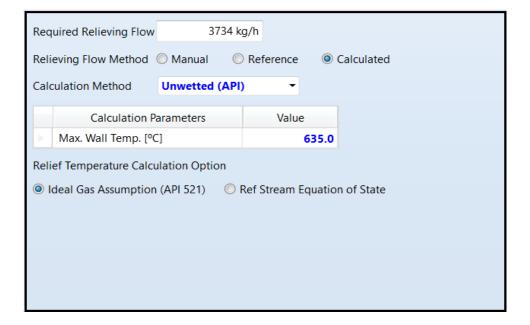
Step 2:

Equipment Scenarios	PRD Data Rating L	ine Sizing
Unit Op Protected	V-100	
Operating Temperature	380.0 °C	Reference -
Design Temperature	410.0 °C	Manual
Operating Pressure	47.60 barG	Reference -
Design Pressure	55.00 barG	Manual 🔻

Step 3:

Sizin		Scenario		Stream		Phase -	Method	Flow F [kg/		Orifice [cm		Capacity	Pressure [% of		Notes
Case	Name	Туре	Ni	ame	MW	11000		Required	Rated	Calculated	Selected	Used [%]	Inlet	Outlet	
	Scenario100	Fire	▪ 1@Ma	ain	16.04	Vapor	Direct Integra	3734	<empty></empty>	1.700	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>
		General	-	Control Val	ve Relateo	ł	Heaters and Co	olers							
		Fire		Blocked Ou	ıtlet		Exch. Tube Rup	ture							
		Thermal Expansion		Control Va	lve Failure	e	Cold Side of Exchanger Blocked-In Blocked-In Fired Heater		d-In						
		Overfilling		Abnormal F	low throu	igh Valve									
		User Defined		Failure of A	utomatic	Controls	Fan Failure								
		Flare		Reaction/N	lixing		Distillation Colu	mn/Tower							
		General Power Failure	e	Chemical R	eaction		Reflux Failure								
				Accidental	Mixing		Reflux Failure (S	ide Stream)							
		Local Power Failure													
		Cooling Water Failure	9	Inadvertent	Loss of S	egregation	Abnormal Heat	or Vapor Input							
						egregation ernal Explosion	Abnormal Heat		ables						
			;				Reflux Failure (S		_						

Educational Institute for Equipment and Process Design


Step 4:

	Scenario Setup	Fluid Prop	erties Relief	ef Composition
	Scenario Name	Scenario1	00	
	Scenario Type	Fire		•
ſ	- Scenario Refere	nce Stream		
	Stream		2 @Main	Select
	Relieving Temp	erature	634.6 °C	℃ Unwetted (API) ▼
	Relieving Pressu	ıre	66.	6.55 barG Edit
	Total Backpress	ure	10.	0.00 barG Edit
	Relieving Phase	- Method	Vapor	Direct Integration (HEM) -
	Viscosity Correc	tion (Kv)		1.000

Step 5:

Nun	Number of Vessels 1					
	Vessel Parameters	Vessel 1				
	Specify Equipment Dimensions?	Yes -				
	Exposed Area [m ²]	74.52				
\mathbb{P}^{+}	Vessel Type	Vertical (incl. bot 🔹				
$\left \cdot \right $	Head Type	2:1 Ellipsoidal 🔹 👻				
$\left \cdot \right $	Diameter [m]	4.450				
\mathbb{P}^{+}	Vessel Tan/Tan [m]	3.100				
	Liquid Level [m]	<empty></empty>				
${\mathbb P}_{\mathbb P}$	Elevation [m]	0.0000				
	Maximum Flame Height [m]	7.620				
$\mathbb{P}_{\mathbb{P}}$	Additional Area %	15.00				
\mathbb{A}	Relieving Flow [kg/h]	3734				

Step 6:

	PSV Results	Value
$\left \cdot\right $	Calculated Orifice [cm ²]	1.700
Þ	Selected Orifice [cm ²]	1.980 (F) 🍷
Þ	Fraction of Full Lift	1.000
Þ	Rated Capacity [kg/h]	4350
$\left\ \cdot\right\ $	Capacity Used [%]	85.84
$\left \cdot\right $	Orifice Designation	1.5 F 2
	In/Out Flanges	600 x 150
	Discharge Coefficient (Kd)	0.9750

Here is the gist of what we have obtained:

Parameters	Results	Unit
Relief Load-API	3874	kg/hr.
Relief Loaf-Hysys	3734	kg/hr.
Selected Orifice	1.98	Cm ²
Orifice Designation	1.5 F 2	

3.PSV-1038/1043

1.Determine the scenario, using API-521

Since it is R-1002 and exposed to fire then a fire scenario is defined.

Parameters	Value	Parameters	Value
Diameter	4 m	М	16.54
Height-TT	2.9 m	Set Pressure	55 barg
Fluid	Natural Gas	Relieving Pressure	67.55 bara
Z	1.01	Accumulation	0.21
Cp/Cv	1.18	Material	CS

2.Calculate the relief load, using API-520 Part1

$$A = \frac{F' \times A'}{\sqrt{p_1}}$$
(9)
where
A is the effective discharge area of the valve, expressed in mm² (in.²);
A' is the exposed surface area of the vessel, expressed in m² (ft²);
*p*₁ is the upstream relieving absolute pressure, expressed in kPa (psi);
NOTE *p*₁ is the set pressure plus the allowable overpressure plus the atmospheric pressure.
F' can be determined using Equation (10). If calculated using Equation (10) and the result is less than 182
in SI units (<0.01 in USC units), then use a recommended minimum value of *F'* = 182 in SI units (*F'* = 0.01 in
USC units). If insufficient information is available to use Equation (10), then use *F'* = 821 in SI units
(*F'* = 0.045 in USC units).

$$F' = \frac{C_9}{C \times K_D} \left[\frac{(T_w - T_1)^{1.25}}{T_1^{0.6506}} \right]$$
(10)
where
*C*₉ is a constant [= 0.2772 in SI units (0.1406 in USC units)];
*K*_D is the coefficient of discharge (obtainable from the valve manufacturer);
NOTE A *K*_D value of 0.975 is typically used for preliminary sizing of PRVs (see API 520, Part 1).
T_w is the maximum wall temperature of vessel material, expressed in K (°R);
*T*₁ is the gas absolute temperature, at the upstream relieving pressure, determined from Equation (12),
expressed in K (°R).

The coefficient, C, is given by Equation (11):

$$C = C_{10} \sqrt{k \left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}}$$

where

 C_{10} is a constant {= 0.0395 (kg-mole-K)^{0.5}/(mm²-kPa-h) in SI units [520 (lb-mole-°R)^{0.5}/(lbf-h) in USC units]};

k is the ideal gas specific heat ratio $(C_{\rm p}/C_{\rm y})$ of gas or vapor at relieving temperature.

$$T_1 = \frac{p_1}{p_n} \times T_n \tag{12}$$

(11)

where

- p_{n} is the normal operating gas absolute pressure, expressed in kPa (psia);
- T_n is the normal operating gas absolute temperature, expressed in K (°R).

The recommended maximum vessel wall temperature, $T_{\rm W}$, for the usual carbon steel plate materials is 593 °C (1100 °F). If vessels are fabricated from alloy materials, the value for $T_{\rm W}$ should be based on the stress rupture data for that material. See 4.4.13.2.3, 4.4.13.2.6, 4.6.1, and Annex A for guidance on the potential for vessel failure from overtemperature due to fire exposure.

If $F' \ge 182$ in SI units ($F' \ge 0.01$ in USC units), the relief load, $q_{m,relief}$, expressed in kg/h (lb/h), can be calculated directly by rearranging the critical vapor equation and substituting Equation (9) and Equation (10), which results in Equation (13):

$$q_{\rm m,relief} = C_{12} \sqrt{M \times p_1} \left[\frac{A' (T_{\rm W} - T_1)^{1.25}}{T_1^{1.1506}} \right]$$
(13)

where

- M is the relative molecular mass of the gas;
- C_{12} is a constant [= 0.2772 in SI units (0.1406 in USC units)].

The minimum relief load recommended for sizing where F' < 182 in SI units (F' < 0.01 in USC units) is calculated by setting F' = 182 in SI units (F' = 0.01 in USC units), which results in Equation (14):

$$q_{\rm m,relief} = C_{13}CA' \sqrt{\frac{Mp_1}{T_1}}$$
(14)

where

C₁₃ is a constant [= 182 in SI units (0.01 in USC units)].

NOTE To derive Equation (13) and Equation (14), Z, $K_{\rm b}$, and $K_{\rm c}$ in API 520, Part 1, Equation (3) have each been assumed to have a value of 1. For Equation (14), $K_{\rm D}$ is conservatively assumed to have a value of 1.

Calculation

Parameters	Value	Parameters	Value
Aw	53.84 m2	KD	0.975
C9	0.2772	F'	116
C10	0.0395	Relief Load	3215 kg/hr
С	0.0254		

Ws = 182 × C × Aw ×
$$\sqrt{(\frac{M \times P \times 100}{T + 273})}$$

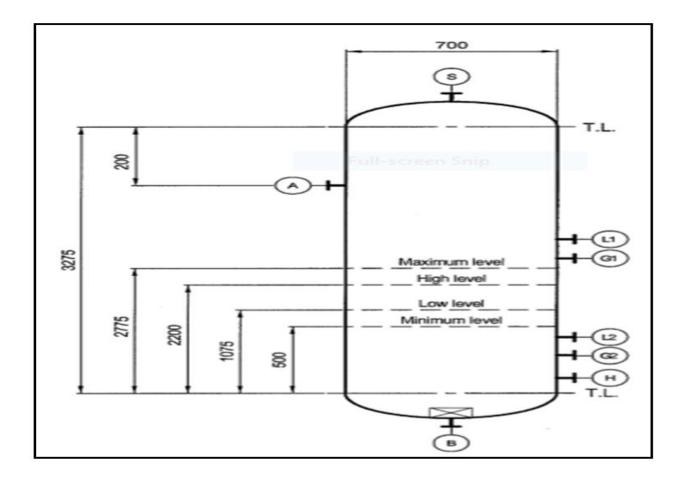
Ws =
$$182 \times 0.0254 \times 53.84 \times \sqrt{\frac{16.54 \times 67.5 \times 100}{400 + 273}} = 3215.1 \frac{\text{kg}}{\text{hr}}$$

Note that since F' is less than 182 the corresponding equation has been used in which F' is set to 182. Remember that in F' calculation T1 is set to max 400 C.

Note : Relieving Temperature Calculation

Relieving Temperature (K) = $\frac{\text{Relieving Pressure (bara)}}{\text{Operating Pressure (bara)}} \times \text{Operating Temperature (K)}$ Relieving Temperature (K) = $\frac{67.55}{49.3} \times (375 + 273) = 887 \text{ K} = 614 \text{ C}$

since the ratio between operating pressure and PSV relieving pressure is very high, the relieving temperature calculated is not consistent (it would exceed the maximum vessel wall temperature for carbon steel, &₀). The relieving temperature for PSV design has been assumed equal to 400°C (considered the max allowable value for carbon steel). The actual relieving mass flow has been calculated keeping the discharge capacity of the valve (volumetric flow rate) constant and scaling the temperature down to 400°C.



PSV-2019

1.Determine the scenario, using API-521

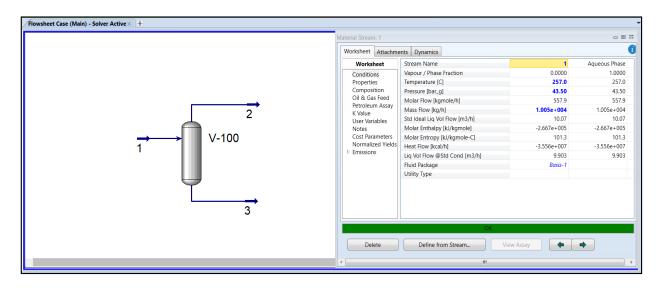
Since it is exposed to fire then a fire scenario is defined.

Parameters	Value	Parameters	Value
Diameter	0.7 m	М	18.02
Height	3.275 m	Set Pressure	52 barg
Fluid	Steam Condensate	Relieving Pressure	63.9 bara
Z	0.78	Accumulation	0.21
Cp/Cv	1.09	Material	CS

2.Calculate the relief load, using API-520 Part1

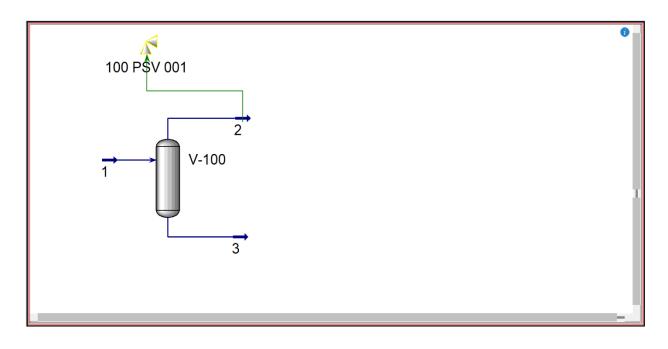
$$\begin{aligned} \mathcal{Q} &= C_1 \times F \times A_{ws}^{0.82} \end{aligned} \tag{7}$$
where
$$\begin{aligned} \mathcal{Q} & \text{ is the total heat absorption (input) to the wetted surface, expressed in W (Btu/h);} \\ C_1 & \text{ is a constant [= 43,200 in SI units (21,000 in USC units)];} \\ F & \text{ is an environment factor (see Table 5);} \\ A_{ws} & \text{ is the total wetted surface, expressed in m2 (ft2).} \end{aligned}$$
NOTE 1 See 4.4.13.2.2 and Table 4.
NOTE 2 The expression, $A_{ws}^{0.82}$, is the area exposure factor or ratio. This ratio recognizes that large vessels are less likely than small ones to be completely exposed to the flame of an open fire. \end{aligned}

Where adequate drainage and firefighting equipment do not exist, Equation (8) should be used


$$Q = C_2 \times F \times {A_{\rm WS}}^{0.82}$$

C₂ is a constant [= 70,900 in SI units (34,500 in USC units)].

Calculation


	Parameters	Value	
	Aw	7.73 m2	
	C2	70900	
	F	1	
	λ	2880	
	Relief load	474 kg/h	
Ws =	$\frac{C2 \times F \times (Aw^{0.82})}{\lambda} = \frac{70900}{3}$	$\frac{0 \times 1 \times (7.73^{0.82}) \times 3.6}{2880} = 4$	$74\frac{kg}{hr}$

Simulation in Aspen Hysys

Step 1:

Step 2:

Flowsheet Case (Main) (PS	Flowsheet Case (Main) (PSV) × 100 PSV 001 × 100 PSV 001-Scenario100 × +								
Equipment Scenarios	PRD Data Rating Line Sizing								
Unit Op Protected	V-100								
Operating Temperature	257.0 °C	Reference -							
Design Temperature	290.0 °C	Manual							
Operating Pressure	43.50 barG	Reference							
Design Pressure	52.00 barG	Manual							

Step 3:

Sizin		Scenario		nario Stream Dhoc		Flow Rate Method [kg/h]			Orifice Area [cm ²]		Capacity	Pressure Drop [% of Set]		Notes
Case	Name	Туре	Name	MW			Required	Rated	Calculated	Selected	Used [%]	Inlet	Outlet	
	Scenario100	Fire • 2 (Main	18.02	Vapor	Direct Integra	511.7	<empty></empty>	0.1639	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>
		General	Control	Valve Relate	d	Heaters and Co	olers							
		Fire	Blocked	i Outlet		Exch. Tube Rup	ture							
		Thermal Expansion	Contro	l Valve Failu	e	Cold Side of Exc	changer Blocke	d-In	1					
		Overfilling	Abnorn	nal Flow thro	ugh Valve	Blocked-In Firec	i Heater							
		User Defined	Failure	of Automatic	Controls	Fan Failure	Fan Failure							
		Flare	Reactio	n/Mixing		Distillation Colu	imn/Tower							
		General Power Failure	Chemic	al Reaction		Reflux Failure								
		Local Power Failure	Accide	ntal Mixing		Reflux Failure (S	ide Stream)							
		Cooling Water Failure	Inadver	tent Loss of S	Segregation	Abnormal Heat	or Vapor Input							
		Coolant Failure (Other than C	W) Pressur	e Surge or Int	ernal Explosion	Accumulation o	f Non-Conden	n-Condensables						
		Loss of Heat				Loss of Absorbe	ent							

Educational Institute for Equipment and Process Design

Step 4:

Scenario Setup Fluid Prop	Fluid Properties Relief Composition						
Scenario Name Scenario	Scenario100						
Scenario Type Fire	Fire 👻						
Scenario Reference Strean	CScenario Reference Stream						
Stream	2 @Main Select						
Relieving Temperature	279.0 °C Wetted (API) -						
Relieving Pressure	62.92 barG Edit						
Total Backpressure	0.5000 barG Edit						
Relieving Phase - Method	Vapor Direct Integration (HEM) -						
Viscosity Correction (Kv)	1.000						

Select Reference Stream		– 🗆 ×
Flowsheet	Object	0
Case (Main)	1 2 3	Object Filter All Streams UnitOps Logicals ColumnOps Custom Custom

Educational Institute for Equipment and Process Design

Scenario Setup F	Fluid Properties Relief Composition							
Scenario Name	Scenario100							
Scenario Type F	ire	•						
Scenario Reference	Scenario Reference Stream							
Stream	2 @M	ain	Select					
Relieving Temper	ature 2	279.0 °C Wette	ed (API)					
Relieving Pressure	e	62.92 barG	Edit					
Total Backpressur	e	0.5000 barG	Edit					
Relieving Phase -	Method Vapor	Direct	Integration (HEM) -					
Viscosity Correction	on (Kv)	1.000						

Step 5:

Required Relieving Flow 511.7 kg/h		
Relieving Flow Method 🔘 Manual 🛛 🔘 Re	ference	Cale
Calculation Method Wetted (API)	•	
Calculation Parameters	Value	Э
Wetted Area Exponent	(0.8200
Drainage & Firefighting	Absent	-
Calculate Latent Heat	Yes	-
Latent Heat [kJ/kg]		1600
Initial % Vaporized [mol%]		0.0000
Final % Vaporized [mol%]		10.00
Sensible Heat	Exclude	*
Calculate Vapor/Liquid Disengagement	No	*
Vessel Flow Model	<empty></empty>	~
Disengagement Regime	<empty></empty>	~
► C0	<e< td=""><td>mpty></td></e<>	mpty>

Step 6:

Nun	nber of Vessels 1 🔹	
	Vessel Parameters	Vessel 1
$\left\ \cdot\right\ $	Specify Equipment Dimensions?	Yes •
$\left \cdot \right $	Exposed Area [m ²]	4.138
	Vessel Type	Vertical (incl. bot 🔹
	Head Type	2:1 Ellipsoidal
$\left\ \cdot\right\ $	Diameter [m]	0.7000
$\left\ \cdot\right\ $	Vessel Tan/Tan [m]	3.275
$\left\ \cdot\right\ $	Liquid Level [m]	1.640
$\left\ \cdot\right\ $	Elevation [m]	0.0000
$\left\ \cdot\right\ _{t}$	Maximum Flame Height [m]	7.620
\mathbb{P}^{-}	Additional Area %	0.0000
$\left\ \cdot\right\ _{t}$		
$\left\ \cdot\right\ $	Calculate F Factor?	No -
$\left\ \cdot\right\ _{t}$	Environment Factor F	1.000
$\left\ \cdot\right\ $	Insulation k [W/m/°C]	<empty></empty>
$\left\ \cdot\right\ _{\mathcal{T}}$	Insulation Thickness [mm]	<empty></empty>
$\left\ \cdot\right\ _{\mathcal{T}}$		
\mathbb{P}^{-}	Heat Input [kJ/h]	8.186E+005
$\left \cdot\right $	Relieving Flow [kg/h]	511.7

4.PSV-2121/2122

The rated capacity of FT-2002 is 27180 kg/h, so the relief load is 27180 kg/h.

5.PSV-2171/2172

The rated capacity of FT-2001 is 48000 kg/h, so the relief load is 48000 kg/h.

6.PSV-2354/2360

Heat Exchanger E-2020 tube rupture

Please check Appendix A.

7.PSV-2485

1. Heat Exchanger Data Input

High pressure side	Reformed Gas
Low pressure side	DMW
Design Pressure of high-pressure side	29 barg
Design Pressure of low-pressure side	14 barg
Operating Pressure	24.5 barg
М	12.06
Cp/Cv	1.36
Z	1
Relieving Temperature	138
Tube OD	25.4
Tube Thk.	1.65

2. Check if a PSV is needed

In order to perform this step, do the calculation below:

multiply design pressure of high-pressure side by 10/13: 29 * 10/13 = 22.3 barg So, design pressure of low-pressure side should be at least 22.3 brag in order not to need a PSV. Here it is 7.5 bars, thereby requiring a PSV.

3. Use the formula below to calculate Relief Load

•		ric), 385 (USC) ic), 2645 (USC)	Vapors	$W_{G} = K_{G} d^{2} P_{1} \sqrt{\frac{M}{zT}}$		
	(, 2010 (000)	Liquids	$W_L = K_L d^2 \sqrt{\rho_L (P_1 - P_2)}$		
W _G	:	gas flow through t	ube break, kg/l	nr or lb/hr		
WL	:	liquid flow through	n tube break, kg	g/hr or lb/hr		
d	:	tube inside diame	tube inside diameter, mm or inch			
P ₁ (*)	:	HP side normal p (alternatively the considered for P ₁ ,	HP side de	esign pressure may be		
P ₂ (*)	:	relieving pressure gauge set pressur		ssure side, usually 1.1 x		
Μ	:	molecular weight	200			
Z	:	compressibility fa	ctor			
T(*)	:	vapor temperature	e, °K or °R			
ρ _L (*)	:	liquid density, kg/	m3 or 1b/ft3			

4. Relief Load Result

$$W_s = KG \times (d^2) \times P1 \times ((M/ZT) ^0.5)$$

$$W_s = 2.93 \times (22.1^2) \times (24.5 + 1.013) \times \frac{12.06}{1 \times 411} = 6254.12 \text{ kg/hr}.$$

PSV 2376/2377/2378/2379/2380

The total capacity is 430000kg/h (Normal capacity is388329 considering 1.1 times) which is shared by PSV-2376, PSV-2377, PSV-2378, and PSV-2379; PSV-2380 is spare and its capacity is the same as PSV-2376~79.

PSV-2494

1. Heat Exchanger Data Input

High pressure side	Reformed Gas
Low pressure side	CW
Design Pressure of high-pressure side	29 barg
Design Pressure of low-pressure side	7.5 barg
Operating Pressure	24.2 barg
Μ	11.24
Cp/Cv	1.39
Z	1
Relieving Temperature	56.4
Tube OD	19.05
Tube Thk.	1.65

2. Check if a PSV is needed

In order to perform this step, do the calculation below:

multiply design pressure of high-pressure side by 10/13:

29 * 10/13 = 22.3 barg

So, design pressure of low-pressure side should be at least 22.3 barg in order not to need a PSV. Here it is 7.5 bars, thereby requiring a PSV.

3. Use the formula below to calculate Relief Load

0		ric), 385 (USC) ic), 2645 (USC)	Vapors	$W_{G} = K_{G} d^{2} P_{1} \sqrt{\frac{M}{zT}}$			
ις <u>.</u>	(INCO	10), 2040 (000)	Liquids	$W_L = K_L d^2 \sqrt{\rho_L (P_1 - P_2)}$			
W _G	:	gas flow through t	ube break, kg/hr	or lb/hr			
WL	: liquid flow through tube break, kg/hr or lb/hr						
d	:	tube inside diame	tube inside diameter, mm or inch				
P ₁ (*)	:	HP side normal p (alternatively the considered for P ₁ ,	HP side des	ign pressure may be			
P ₂ (*)	:	relieving pressure gauge set pressur		sure side, usually 1.1 x			
Μ	:	molecular weight					
Z	:	compressibility fa	ctor				
T(*)	:	vapor temperature	e, °K or °R				
$\rho_{\rm L}(*)$:	liquid density, kg/	m3 or 1b/ft3				

4.Relief Load Results

$$W_s = KG \times (d^2) \times P1 \times ((M/ZT) ^{0.5})$$

$$W_s = 2.93 \times (15.75^2) \times (24.2 + 1.013) \times \frac{11.24}{1 \times 329} = 3387.18 \text{ kg/hr}.$$

PSV-2494

1.Heat Exchanger Data Input

High pressure side	Syngas
Low pressure side	CW
Design Pressure of high-pressure side	99 barg
Design Pressure of low-pressure side	7.5 barg
Operating Pressure	83.7 barg
Μ	10.07
Cp/Cv	1.37
Z	1
Relieving Temperature	43.6
Tube OD	25.4
Tube Thk.	1.65

2. Check if a PSV is needed

In order to perform this step, do the calculation below:

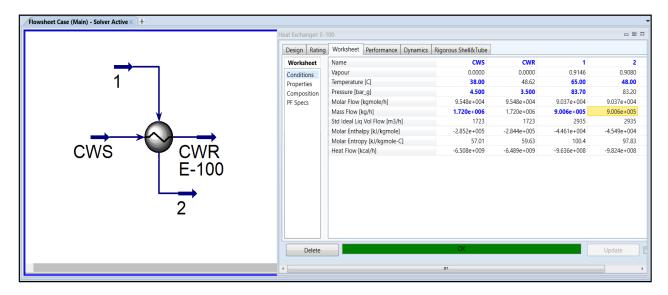
multiply design pressure of high-pressure side by 10/13:

99 * 10/13 = 76.15 barg

So, design pressure of low-pressure side should be at least 76.15 barg in order not to need a PSV. Here it is 7.5 bars, thereby requiring a PSV.

3. Use the formula below to calculate Relief Load

•		ric), 385 (USC) ic), 2645 (USC)	Vapors	$W_{G} = K_{G} d^{2} P_{1} \sqrt{\frac{M}{zT}}$
	(·•), ·- (,	Liquids	$W_L = K_L d^2 \sqrt{\rho_L (P_1 - P_2)}$
W _G	:	gas flow through t	ube break, kg/hr o	or lb/hr
WL	:	liquid flow through	n tube break, kg/h	r or lb/hr
d	:	tube inside diame	ter, mm or inch	
P ₁ (*)	:	HP side normal pro- (alternatively the considered for P ₁ ,	HP side desig	gn pressure may be
P ₂ (*)	*	relieving pressure gauge set pressure		ire side, usually 1.1 x
М	:	molecular weight		
Z	:	compressibility fa	ctor	
T(*)	:	vapor temperature	e, °K or °R	
$\rho_{L}(*)$:	liquid density, kg/1	m3 or 1b/ft3	


4. Relief Load Result

$$W_s = KG \times (d^2) \times P1 \times ((M/ZT) \ ^0.5)$$

$$W_s = 2.93 \times (22.1^2) \times (83.7 + 1.013) \times \frac{10.07}{1 \times 323} = 21620 \text{ kg/hr}.$$

Simulation

Step 1:

Equipment	Scenarios	PRD Data	Rating Li	ine Sizing		
Unit Op Prote	Unit Op Protected					
Operating Temperature			48.62 °C	Reference	e 🔹	
Design Temperature			100.0 °C	Manual	T	
Operating Pressure			3.500 barG	Referenc	e -	
Design Pressure		7	.500 barG	Manual	-	

Step 2:

С	reate Scen	ario	Open Scenario Duplica	te & Renam	ne De	elete Scenario									
	Sizin g		Scenario	Stream	m	Phase -	- Method [kg/h]					Capacity Used [%]	Pressure Drop [% of Set]		Notes
	Case	Name	Туре	Name	MW			Required	Rated	Calculated	Selected	Used [%]	Inlet	Outlet	
•		Scenario100	Exch. Tube Rupture 🔹 1 @	Main	9.966	Two phase	Direct Integra	2.153E+004	<empty></empty>	58.53	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>
			General	Control	Valve Relate	ł	Heaters and Co	olers							
			Fire	Blocked	Outlet		Exch. Tube Ruj	oture							
			Thermal Expansion	Control	Valve Failur	e	Cold Side of Ex	changer Blocke	d-In						
			Overfilling	Abnorm	al Flow throu	ıgh Valve	Blocked-In Fire	d Heater							
			User Defined	Failure o	of Automatic	Controls	Fan Failure								
			Flare	Reaction	n/Mixing	_	Distillation Col	umn/Tower							
			General Power Failure	Chemica	al Reaction		Reflux Failure								
			Local Power Failure	Acciden	tal Mixing		Reflux Failure (S	Side Stream)							
			Cooling Water Failure	Inadvert	ent Loss of S	egregation	Abnormal Heat	or Vapor Input							
			Coolant Failure (Other than CV	/) Pressure	Surge or Int	ernal Explosion	Accumulation of	of Non-Conden	ables						
			Loss of Heat				Loss of Absorb	ent							

Step 3:

Scenario Setup	Fluid Prop	erties	Reliet	f Comp	osition			
Scenario Name	Scenario1	00						
Scenario Type	Exch. Tube	Rupt	ure	-				
Scenario Refere	ence Stream							
Stream		1 @M	lain			Select		
Relieving Temp	erature	-	43.61 %	C Cal	culated	-		
Relieving Press	ure		8.2	250 bar	G Edit			
Total Backpress	sure		0.75	500 bar	G Edit			
Relieving Phase	e - Method	Two p	ohase	Dire	t Integr	ration (HEM)	•	
Viscosity Correc	ction (Kv)			1.00	0			

Step 4:

Req	uired Relieving Flow	2.153E+004 kg/h					
Reli	eving Flow Method	🔘 Manual 🛛 🔘 Refe	erence 💿 (Ca	lculated		
Direction of Flow O From Tube to Shell O From Shell to Tube							
		High Pressure Side	High Pressure Side Method		Choking Condition	Low Pressure Side @ Relief	- 1
Þ	Pressure	83.70 barG	Reference	Ŧ	43.97 barG	8.250 barG	
Þ	Temperature	65.00 °C	Reference	Ŧ	60.40 °C	43.61 °C	
	Phase	Two phase			Two phase	Two phase	
Tub	e I.D.	25.40 mm					
Flov	v Coefficient (C)	0.4000					
ΔР		39.73 bar	(choked flow)				
Vap	or Density <mark>(</mark> ρV)	24.13 kg/m ³					
Vap	or k	1.384					
Liqu	uid Density (ρL)	768.4 kg/m³					
Vap	or Ratio (R)	0.7641					

Step 5:

	PSV Results	Value
$\left\ \cdot\right\ $	Calculated Orifice [cm ²]	58.53
	Selected Orifice [cm ²]	71.290 (Q) 🍷
$\left\ \cdot\right\ $	Fraction of Full Lift	1.000
$\left\ \cdot\right\ $	Rated Capacity [kg/h]	2.622E+004
$\left\ \cdot\right\ $	Capacity Used [%]	82.10
\mathbb{P}^{-}	Orifice Designation	6 Q 8
$\left\ \cdot\right\ $	In/Out Flanges	150 x 150
$\left\ \cdot\right\ $	Discharge Coefficient (Kd)	0.8500

Here is all we have obtained:

Parameters	Values	Units
Relief Load-API	21620	kg/hr.
Relief Load-Hysys	21530	kg/hr.
Selected Orifice	71.29	Cm ²
Orifice Designation	6Q8	

PSV-3047/3048/3057

Steam Drum D-3003

The normal capacity of steam is about 251000 kg/h and the rated capacity is achieved by multiplying the normal capacity by 1.1 which equals to 276000 kg/h.

PSV-3163

1.Determine the scenario, using API-521

Since it is D-3001 and exposed to fire then a fire scenario is defined.

Parameters	Value	Parameters	Value
Diameter	4.9 m	М	9.37
Height	4.8 m	Set Pressure	99 barg
Fluid	Methanol + Syng	Relieving Pressure	120.79 bara
Z		Accumulation	0.21
Cp/Cv	1.37	Material	SS

2.Calculate the relief load, using API-520 Part1

$$A = \frac{F' \times A'}{\sqrt{p_1}}$$
(9)
where

$$A \quad \text{is the effective discharge area of the valve, expressed in mm2 (in.2);} \\A' \quad \text{is the exposed surface area of the vessel, expressed in m2 (ft2);} \\p_1 \quad \text{is the upstream relieving absolute pressure, expressed in kPa (psi);} \\NOTE \quad p_1 \text{ is the set pressure plus the allowable overpressure plus the atmospheric pressure.} \\F' \quad \text{can be determined using Equation (10). If calculated using Equation (10) and the result is less than 182 in SI units (<0.01 in USC units), then use a recommended minimum value of $F' = 182$ in SI units ($F' = 0.01$ in USC units). If insufficient information is available to use Equation (10), then use $F' = 821$ in SI units ($F' = 0.045$ in USC units).

$$F' = \frac{C_9}{C \times K_D} \left[\frac{(T_w - T_1)^{125}}{T_1^{0.6506}} \right]$$
(10)
where

$$C_9 \quad \text{is a constant [= 0.2772 in SI units (0.1406 in USC units)];}$$

$$K_D \quad \text{is the coefficient of discharge (obtainable from the valve manufacturer);}$$

$$NOTE \quad AK_D value of 0.975 \text{ is typically used for preliminary sizing of PRVs (see API 520, Part 1).}$$

$$T_w \quad \text{is the maximum wall temperature of vessel material, expressed in K (°R);}$$

$$T_1 \quad \text{is the gas absolute temperature, at the upstream relieving pressure, determined from Equation (12), expressed in K (°R).}$$$$

The coefficient, C, is given by Equation (11):

$$C = C_{10} \sqrt{k \left(\frac{2}{k+1}\right)^{\frac{k}{k}}}$$

where

 C_{10} is a constant {= 0.0395 (kg-mole-K)^{0.5}/(mm²-kPa-h) in SI units [520 (lb-mole-°R)^{0.5}/(lbf-h) in USC units]};

(11)

k is the ideal gas specific heat ratio (C_p/C_v) of gas or vapor at relieving temperature.

$$T_1 = \frac{p_1}{p_n} \times T_n \tag{12}$$

where

- pn is the normal operating gas absolute pressure, expressed in kPa (psia);
- T_n is the normal operating gas absolute temperature, expressed in K (°R).

The recommended maximum vessel wall temperature, $T_{\rm W}$, for the usual carbon steel plate materials is 593 °C (1100 °F). If vessels are fabricated from alloy materials, the value for $T_{\rm W}$ should be based on the stress rupture data for that material. See 4.4.13.2.3, 4.4.13.2.6, 4.6.1, and Annex A for guidance on the potential for vessel failure from overtemperature due to fire exposure.

If $F' \ge 182$ in SI units ($F' \ge 0.01$ in USC units), the relief load, $q_{m,relief}$, expressed in kg/h (lb/h), can be calculated directly by rearranging the critical vapor equation and substituting Equation (9) and Equation (10), which results in Equation (13):

$$q_{\rm m,relief} = C_{12} \sqrt{M \times p_1} \left[\frac{A' (T_{\rm W} - T_1)^{1.25}}{T_1^{1.1506}} \right]$$
(13)

where

M is the relative molecular mass of the gas;

 C_{12} is a constant [= 0.2772 in SI units (0.1406 in USC units)].

The minimum relief load recommended for sizing where F' < 182 in SI units (F' < 0.01 in USC units) is calculated by setting F' = 182 in SI units (F' = 0.01 in USC units), which results in Equation (14):

$$q_{\rm m,relief} = C_{13}CA' \sqrt{\frac{Mp_1}{T_1}}$$
(14)

where

C13 is a constant [= 182 in SI units (0.01 in USC units)].

NOTE To derive Equation (13) and Equation (14), Z, $K_{\rm b}$, and $K_{\rm c}$ in API 520, Part 1, Equation (3) have each been assumed to have a value of 1. For Equation (14), $K_{\rm D}$ is conservatively assumed to have a value of 1.

Calculation

Parameters	Value	Parameters	Value
Aw	100 m2	KD	0.975
C9	0.2772	F'	328
C10	0.0395	Tw	593C
С	0.026	Relief Load	13236 kg/hr

$$Ws = \frac{2.722 \times (TW - T)^{1.25} \times A \times \sqrt{MP}}{T^{1.1506}}$$

$$Ws = \frac{2.722 \times (866.5 - 478.6)^{1.25} \times 100 \times \sqrt{(120.7 \times 100 \times 9.37)}}{478.6^{1.1506}} = 13236 \frac{\text{kg}}{\text{hr}}$$

Note: Relieving temperature calculation:

$$T = \frac{\text{Relieving Pressure}}{\text{Operating Pressure}} \times \text{Operating Temperature}$$

$$T = \frac{120.79}{81} \times (48 + 321) = 478.7 \text{ C}$$

PSV-5370

Use the formula below to calculate Relief Load

$$q = \frac{\alpha_{\rm V} \cdot \phi}{1\ 000 d \cdot c}$$

$$q \quad \text{is the volume flow rate at the flowing temperature, expressed in cubic metres per second;}$$

$$\alpha_{\rm v} \quad \text{is the cubic expansion coefficient for the liquid at the expected temperature, expressed in 1/°C;}$$

$$\phi \quad \text{is the total heat transfer rate, expressed in watts;}$$

$$\text{NOTE} \quad \text{For heat exchangers, this can be taken as the maximum exchanger duty during operation.}$$

$$d \quad \text{is the relative density referred to water } (d = 1,00 \text{ at } 15,6 \ ^{\circ}\text{C}), \text{ dimensionless;}$$

$$\text{NOTE} \quad \text{Compressibility of the liquid is usually ignored.}$$

$$c \quad \text{is the specific heat capacity of the trapped fluid, expressed in J/kg·K.}$$

1.PSV-5370

Parameters	value
av (1/k)	0.000454
duty (watts)	160000
specific gravity	0.99
c (J/kg.C)	4176

Q (lit/m)	1.05
Q (kg/h)-API521	63

$$q = \frac{av \times \emptyset}{1000 \times d \times C}$$

$$q = \frac{0.000454 \times 160000 \times 60000}{1000 \times 0.99 \times 4176} = 1.05 \text{ lit/min}$$

2.PSV-5339

Use the formula below to calculate Relief Load

$$q = \frac{\alpha_{\rm V} \cdot \phi}{1\ 000\ d \cdot c}$$

$$q \quad \text{is the volume flow rate at the flowing temperature, expressed in cubic metres per second;}$$

$$\alpha_{\rm v} \quad \text{is the cubic expansion coefficient for the liquid at the expected temperature, expressed in 1/°C;}$$

$$\phi \quad \text{is the total heat transfer rate, expressed in watts;}$$

$$\text{NOTE} \quad \text{For heat exchangers, this can be taken as the maximum exchanger duty during operation.}$$

$$d \quad \text{is the relative density referred to water } (d = 1,00 \text{ at } 15,6 \ ^{\circ}\text{C}), \text{ dimensionless;}$$

$$\text{NOTE} \quad \text{Compressibility of the liquid is usually ignored.}$$

$$c \quad \text{is the specific heat capacity of the trapped fluid, expressed in J/kg-K.}$$

Parameters	value
av (1/k)	0.000454
duty (watts)	3600000
specific gravity	0.99
c (J/kg.K)	4176

Q (lit/m)	23.71
Q (kg/h)-API521	1422

$$q = \frac{av \times \emptyset}{1000 \times d \times C}$$

$$q = \frac{0.000454 \times 3600000 \times 60000}{1000 \times 0.99 \times 4176} = 23.71 \text{ lit/min}$$

PSV-5058

Heat Exchanger E-2024 Tube Rupture

Venting Required (Ws) = $2.463 \times (d^2) \times (\Delta P \times \rho V/10)^{0.5}$

Parameter	Unit	Value
Tube ID (d)	mm	28.5
ΔΡ	bar	9.5
Gas Density (ρV)	Kg/m ³	20.47

Ws = 2.463× (28.5 ^ 2) × (9.5 × 20.47/10) ^ 0.5 = 8822.15 kg/hr.

PSV-5058

Heat Exchanger E-5001 Tube Rupture

Venting Required (Ws) = 2.463× (d ^ 2) × (Δ P × ρ V/10) ^ 0.5

Parameter	Unit	Value
Tube ID (d)	mm	27.53
ΔΡ	bar	2.44
Gas Density (ρV)	Kg/m ³	3.37

Ws = $2.463 \times (27.53 \land 2) \times (2.44 \times 3.37/10) \land 0.5 = 1692.73$ kg/hr.

PSV-5179/5180

Heat Exchanger E-5002 Tube Rupture

Venting Required (Ws) = $2.463 \times (d^2) \times (\Delta P \times \rho V/10)^0.5$

Parameter	Unit	Value
Tube ID (d)	mm	21.18
ΔΡ	bar	1.71
Gas Density (ρV)	Kg/m ³	7.35

Ws = 2.463× (21.18 ^ 2) × (1.71 × 7.35/10) ^ 0.5 = 1239 kg/hr.

PSV-5250/5261

Heat Exchanger E-5023 Tube Rupture

Venting Required (Ws) = 2.463× (d ^ 2) × ($\Delta P \times \rho V/10$) ^ 0.5

Parameter	Unit	Value
Tube ID (d)	mm	22.1
ΔΡ	bar	18.84
Gas Density (ρV)	Kg/m³	9.74

Ws = 2.463× (22.1 ^ 2) × (18.84 × 9.74/10) ^ 0.5 = 5153 kg/hr.

PSV-5250/5261

Heat Exchanger E-5003 Tube Rupture

Venting Required (Ws) = 2.463× (d ^ 2) × ($\Delta P \times \rho V/10$) ^ 0.5

Parameter	Unit	Value
Tube ID (d)	mm	14.83
ΔΡ	bar	0.5
Gas Density (ρV)	Kg/m ³	3.99

Ws = 2.463× (14.83 ^ 2) × (0.5 × 3.99/10) ^ 0.5 = 242 kg/hr.

Governing Scenarios

PSV-5058/5059/5060/5061

- 1. The overall relieve amount of the T5001 overhead is equal to the amount into condenserAE5004 which is 112490kg/h.
- 2. Tube rupture scenario for both heat exchangers E-5001 and E-5024 would result in venting flowrate of 8822 + 1692 = 10514 kg/hr.
- 3. By comparison between the relief load of these scenarios, the governing scenario is reflux failure.

PSV-5179/5180

- 1. The overall relieve amount of the T5002 overhead is equal to the amount into condenser AE5005 which is 418559kg/h,
- 2. Tube rupture scenario for heat exchangers E-5002 would result in venting flowrate 1239 kg/hr.
- 3. By comparison between the relief load of these scenarios, the governing scenario is reflux failure.

PSV-5250/5251/5261

- 1. The overall relieve amount of the T5003 overhead is equal to the amount into condenser E5002 1/2/3/4 which is 440751kg/h.
- 2. Tube rupture scenario for both heat exchangers E-5023 and E-5003 would result in venting flowrate of 242 + 5153 = 5395 kg/hr.
- 3. By comparison between the relief load of these scenarios, the governing scenario is reflux failure.

PSV-2494

- 1. The relief load for tube rupture scenario is 3387.18 kg/hr.
- 2. Also, the hydraulic expansion is an applicable scenario. Here is the calculation for the hydraulic expansion scenario.

Parameters	value
av (1/k)	0.000454
duty (watts)	6500000
specific gravity	0.99
c (J/kg.K)	4176

Q (lit/m)	42.82
Q (kg/h)-API521	

3. By comparison between the relief load of these scenarios, the governing scenario is tube rupture.

PSV-3143/3146/3149

- 1. The relief load for tube rupture scenario is 24000 kg/hr.
- 2. Also, the hydraulic expansion is an applicable scenario. Here is the calculation for the hydraulic expansion scenario.

Parameters	value
av (1/k)	0.000454
duty (watts)	44300000
specific gravity	0.99
c (J/kg.K)	4176

Q (lit/m)	291.88
Q (kg/h)-API521	

3. By comparison between the relief load of these scenarios, the governing scenario is tube rupture.

Practice

In a HAZOP meeting tube rupture scenario was suggested for methanol reactors. Causes could be pressure drop differences, leak as a result of corrosion, or both. Investigate the matter and check if the existing PSVs could handle such relief load as a result of tube rupture.

Let's check if this scenario is applicable.

High-pressure operating pressure is 79.5 barg

Low-pressure operating pressure is 33.7 barg

Required Pressure = $79.5 \times 10/13 = 61.15$ barg , So the low-pressure side pressure should be minimum 61.15 barg so that tube rupture does not occur. So this scenario is applicable.

Parameter	Value	Unit
Tube Inner Diameter (ID)	57.5	
Differential pressure of high- pressure side and low side ($\triangle P$)	45.8	
Gas density (ρV)	17.9	Kg/m ³

Ws = $2.463 \times (d^2) \times (\Delta P \times \rho V/10)^0.5$

Ws = 2.463× (57.5 ^ 2) × (45.8 × 17.9/10) ^ 0.5 = 73732 kg/hr.

So the PSVs which are designed for blocked outlet with venting capacity of 281000 kg/hr. can handle such relief load and is in fact the governing scenario.

Appendix A

The equation for heat exchanger tube rupture for liquid is as follows:

$$Ws = 1.68 \times \rho \times d^2 \times \sqrt{\frac{\Delta P}{\rho}}$$

Parameter	Value	Unit
Heat Exchanger Inner tube Diameter (d)	48.26	mm
Liquid Density ($ ho$)	683	Kg/m ³
Differential pressure of high-pressure side and low-side ($\triangle P$)	74.7	bar

Ws = 1.68 ×
$$\rho$$
 × d² × $\sqrt{\frac{\Delta P}{\rho}}$ = 1.68 × 683 × 48.26² × $\sqrt{\frac{74.7}{683}}$ = 883601 $\frac{kg}{hr}$