

PSV Orifice Sizing Calculation Note

PSV-1038/1043

1.Calculate the orifice area, using API-520 Part1

Use the following formula to calculate orifice area:

$$A = \frac{F' \times A}{\sqrt[2]{P1 \times 100}}$$

Here is the calculation from relief load calculation note:

Parameters	Value	Parameters	Value
Aw	53.84 m2	KD	0.975
C9	0.2772	F'	131
C10	0.0395	Relief Load	2165 kg/hr
С	0.0254		

By setting F', Aw, p1 to 182, 53.84 and 67500 Kpa, we obtain 0.12 inch^2.

$$A = \frac{182 \times 53.84}{\sqrt{67500}} = 0.86 \ cm$$

PSV-2121/2122

Parameter	Value	Unit
Relief Load (W)	27180	Kg/hr.
Relieving Pressure	11.46	bara
KN	1	
Kb	1	
Кс	1	
Kd	0.975	
KSH	1	

$$A = \frac{190.5 \times W}{P1 \times Kd \times Kb \times Kc \times KN \times KSH}$$

$$A = \frac{190.5 \times 27180}{1146.32 \times 0.975 \times 1 \times 1 \times 1 \times 1} = 4632.7 \text{ mm}^2$$

Notes about K_N calculation (API-520-Part-1, Page 91) :

$$K_{\rm N} = 1.0$$
 (27)

where

 $P_1 \leq 1500 \text{ psia} (10,339 \text{ kPa}).$

In USC units:

$$K_{\rm N} = \frac{0.1906 \times P_{\rm I} - 1000}{0.2292 \times P_{\rm I} - 1061} \tag{28}$$

where

 $P_1 > 1500 \text{ psia} (10,339 \text{ kPa}) \text{ and } \le 3200 \text{ psia} (22,057 \text{ kPa}).$

In SI units:

$$K_{\rm N} = \frac{0.02764 \times P_{\rm I} - 1000}{0.03324 \times P_{\rm I} - 1061} \tag{29}$$

where

- $P_1 > 1500 \text{ psia} (10,339 \text{ kPa}) \text{ and } \le 3200 \text{ psia} (22,057 \text{ kPa});$
- K_{SH} is the superheat correction factor; this can be obtained from Table 12 or Table 13. For saturated steam at any pressure, $K_{SH} = 1.0$. For temperatures above 1200 °F, use the critical vapor sizing Equation (6) through Equation (11).

K_N Calculation

 $P_1 = 11.46$ bar $\times 14.7 = 168.4$ psia < 1500 psia

So $K_N = 1$

Based on the table and calculated orifice area in inches, which is 7.18 inch², Q is selected.

Designation	Effective Orifice Area (in. ²)
D	0.110
E	0.196
F	0.307
G	0.503
Н	0.785
J	1.287
к	1.838
L	2.853
Μ	3.60
N	4.34
Р	6.38
Q	11.05
R	16.00
Т	26.00

Based on the following table, 6Q8 is selected.

18	18 API Standard 526												
	Table ⁻	14—Spr	ing-load	ded Pres	sure-re	lief Valv	es "Q" (Orifice ^f	(Effectiv	/e Area	= 11.05 i	n.²)	
Materials ^b	Valve Size	ASME Cla	Flange ass	Ma	aximum In	let Flange (ps	(Set) Pre sig)	ssure Lim	it ^a	Outlet F Lin (ps	Pressure nit ^a sig)	Center- Dimer (ir	to-Face nsions 1.)
Body/ Bonnet	Inlet by Orifice by		O U T L	-450 °F	-75 °F	–20 °F			4000.05	Flange Rating Limit ^a	Bellows Rating Limit ^a	I N	O U T
	Outlet	Ť	E T	-76 °F	-21 °F	100 °F	400 °F	800 F	1000 -	100 °F	100 °F	E T	L E T
Temperature Range Inclusive –20 °F to 800 °F													
Carbon Steel	6Q8 6Q8¢ 6Q8 6Q8	150 300 300 600	150 150 150 150			(165) (165) (300) (600)	(165) (165) (300) (600)	80 (165) (300) (600)		(115) (115) (115) (115)	70 70 115 115	9 ⁷ /16 9 ⁷ /16 9 ⁷ /16 9 ⁷ /16	9 1/2 9 1/2 9 1/2 9 1/2 9 1/2
				Tempe	rature Ra	inge Inclu	sive 801	°F to 100	0 °F				
Chrome Molybdenu m Steel	6Q8 6Q8	300 600	150 150					(165) (600)	(165) 430	(115) (115)	115 115	9 ⁷ /16 9 ⁷ /16	9 ¹ /2 9 ¹ /2
				Temper	ature Ra	nge Inclus	sive –450) °F to 100	00 °F				
Austenitic Stainless Steel	6Q8 6Q8° 6Q8 6Q8 6Q8	150 300 300 600	150 150 150 150	(165) (165) (250) (300)	(165) (165) (300) (600)	(165) (165) (300) (600)	(165) (165) (300) (600)	80 (165) (300) (600)	20 (165) (300) (600)	(115) (115) (115) (115)	70 70 115 115	9 ⁷ /16 9 ⁷ /16 9 ⁷ /16 9 ⁷ /16	9 1/2 9 1/2 9 1/2 9 1/2 9 1/2
				Tempe	rature Ra	nge Inclu	sive –20	°F to 900	∘Fd				
Nickel/ Copper Alloy ^d	6Q8 6Q8° 6Q8 6Q8	150 300 300 600	150 150 150 150			(165) (165) (300) (600)	(165) (165) (300) (600)	80 (165) (300) (600)	50 (140) 275 550	(115) (115) (115) (115)	70 70 115 115	9 ⁷ /16 9 ⁷ /16 9 ⁷ /16 9 ⁷ /16	9 1/2 9 1/2 9 1/2 9 1/2 9 1/2
			1	Tempe	rature Ra	nge Inclu	sive –20	°F to 300	∘F ^e				
Alloy 20 ^e	6Q8 6Q8° 6Q8 6Q8	150 300 300 600	150 150 150 150			(165) (165) (300) (600)	(165) (165) (300) (600)			(115) (115) (115) (115)	70 70 115 115	9 7/16 9 7/16 9 7/16 9 7/16 9 7/16	9 1/2 9 1/2 9 1/2 9 1/2 9 1/2

PSV-2171/2172

Parameter	Value	Unit
Relief Load (W)	48000	Kg/hr.
Relieving Pressure	11.46	bara
KN	1	
Kb	1	
Кс	1	
Kd	0.975	
KSH	1	

$$A = \frac{190.5 \times W}{P1 \times Kd \times Kb \times Kc \times KN \times KSH}$$

$$A = \frac{190.5 \times 48000}{1146.32 \times 0.975 \times 1 \times 1 \times 1 \times 1} = 8642 \text{ mm}^2$$

Notes about K_N calculation (API-520-Part-1, Page 91) :

$$K_{\rm N} = 1.0$$
 (27)

where

 $P_1 \leq 1500 \text{ psia} (10,339 \text{ kPa}).$

In USC units:

$$K_{\rm N} = \frac{0.1906 \times P_{\rm I} - 1000}{0.2292 \times P_{\rm I} - 1061} \tag{28}$$

where

 $P_1 > 1500 \text{ psia} (10,339 \text{ kPa}) \text{ and } \le 3200 \text{ psia} (22,057 \text{ kPa}).$

In SI units:

$$K_{\rm N} = \frac{0.02764 \times P_{\rm I} - 1000}{0.03324 \times P_{\rm I} - 1061} \tag{29}$$

where

- $P_1 > 1500 \text{ psia} (10,339 \text{ kPa}) \text{ and } \le 3200 \text{ psia} (22,057 \text{ kPa});$
- K_{SH} is the superheat correction factor; this can be obtained from Table 12 or Table 13. For saturated steam at any pressure, $K_{SH} = 1.0$. For temperatures above 1200 °F, use the critical vapor sizing Equation (6) through Equation (11).

K_N Calculation

 $P_1 = 11.46$ bar $\times 14.7 = 168.4$ psia < 1500 psia

So $K_N = 1$

Based on the table and calculated orifice area in inches, which is 13.4 inch², R is selected.

Designation	Effective Orifice Area (in. ²)
D	0.110
E	0.196
F	0.307
G	0.503
н	0.785
J	1.287
К	1.838
L	2.853
Μ	3.60
Ν	4.34
P	6.38
Q	11.05
R	16.00
Т	26.00

Based on the following table, 6R10 is selected.

	FLANGED STEEL PRESSURE-RELIEF VALVES 19												
	Table 15—Spring-loaded Pressure-relief Valves "R" Orifice ^f (Effective Area = 16.00 in. ²)												
Materials ^b	Valve Size	ASME Cla	Flange ass	Ma	Maximum Inlet Flange (Set) Pressure Limit ^a (psig) Limit ^a Outlet Pressure Limit ^a Dim					Center- Dimer (ir	ter-to-Face mensions (in.)		
Body/ Bonnet	Inlet by Orifice by	I N L	O U T L	-450 °F	-75 °F	-21 °F	450 °E	800 °E	1000 °E	Flange Rating Limit ^a	Bellows Rating Limit ^a	I N	O U T
	Outlet	Ŧ	E T	-76°F	-21°F	100°F	400 1	000 1	1000 1	100 °F	100 °F	Ē	L E T
Temperature Range Inclusive –20 °F to 800 °F													
Carbon Steel	6R8 6R8¢ 6R10 6R10	150 300 300 600	150 150 150 150			(100) (100) (230) (300)	(100) (100) (230) (300)	80 (100) (230) (300)		(60) (60) (100) (100)	60 60 100 100	9 ⁷ /16 9 ⁷ /16 9 ⁷ /16 9 ⁷ /16	9 ¹ /2 9 ¹ /2 10 ¹ /2 10 ¹ /2
	Temperature Range Inclusive 801 °F to 1000 °F												
Chrome Molybdenum Steel	6R8 6R10	300 600	150 150					(100) (300)	(100) (300)	(100) (100)	100 100	9 ⁷ /16 9 ⁷ /16	9 ¹ /2 10 ¹ /2
				Temper	ature Rai	nge Inclus	sive –450	°F to 100)0 °F				
Austenitic Stainless Steel	6R8 6R8¢ 6R10 6R10	150 300 300 600	150 150 150 150	(55) (55) (150) (200)	(100) (100) (230) (300)	(100) (100) (230) (300)	(100) (100) (230) (300)	80 (100) (230) (300)	20 (100) (230) (300)	(60) (60) (100) (100)	60 60 100 100	9 7/16 9 7/16 9 7/16 9 7/16 9 7/16	9 ¹ /2 9 ¹ /2 10 ¹ /2 10 ¹ /2
	Temperature Range Inclusive –20 °F to 900 °F ^d												
Nickel/ Copper Alloy ^d	6R8 6R8¢ 6R10 6R10	150 300 300 600	150 150 150 150			(100) (100) (230) (300)	(100) (100) (230) (300)	80 (100) (230) (300)		(60) (60) (100) (100)	60 60 100 100	9 7/16 9 7/16 9 7/16 9 7/16 9 7/16	9 ¹ /2 9 ¹ /2 10 ¹ /2 10 ¹ /2
				Tempe	rature Ra	nge Inclu	sive –20	°F to 300	∘Fe				
Alloy 20 ^e	6R8 6R8¢ 6R10 6R10	150 300 300 600	150 150 150 150			(100) (100) (230) (300)	(100) (100) (230) (300)			(60) (60) (100) (100)	60 60 100 100	9 ⁷ /16 9 ⁷ /16 9 ⁷ /16 9 ⁷ /16	9 ¹ /2 9 ¹ /2 10 ¹ /2 10 ¹ /2

PSV-2485

Parameter	Value	Unit
Relief Load (W)	6254.12	Kg/hr.
Relieving Temperature	411	К
Molecular Weight (MW)	10.07	
Compressibility Factor (Z)	1	
Relieving Pressure	16.41	bara
С	0.0268	
Kb	1	
Кс	1	
Kd	0.975	

$$A = \frac{W}{C \times Kd \times P1 \times Kb \times Kc} \sqrt{\frac{TZ}{M}}$$

$$A = \frac{6254.12}{0.0268 \times 0.975 \times 1641 \times 1 \times 1} \sqrt{\frac{411 \times 1}{10.07}} = 9.3 \text{ cm}^2$$

Based on the table and calculated orifice area in inches, which is 1.44 inch², J could be selected.

Designation	Effective Orifice Area (in. ²)
D	0.110
E	0.196
F	0.307
G	0.503
н	0.785
J	1.287
К	1.838
L	2.853
М	3.60
Ν	4.34
Р	6.38
Q	11.05
R	16.00
Т	26.00

Educational Institute for Equipment and Process Design

PSV-2494

Parameter	Value	Unit
Relief Load (W)	3387	Kg/hr.
Relieving Temperature	329	К
Molecular Weight (MW)	11.24	
Compressibility Factor (Z)	1	
Relieving Pressure	9.26	bara
С	0.0269	
Kb	1	
Кс	1	
Kd	0.975	

$$A = \frac{W}{C \times Kd \times P1 \times Kb \times Kc} \sqrt{\frac{TZ}{M}}$$

$A = \frac{3387}{0.02(0.00000000000000000000000000000000$	$\frac{329 \times 1}{11.24} = 7.52 \text{ cm}^2$
$0.0269 \times 0.975 \times 9260 \times 1 \times 1$	11.24

Based on the table and calculated orifice area in inches, which is 1.16 inch², J is selected.

Designation	Effective Orifice Area (in. ²)
D	0.110
E	0.196
F	0.307
G	0.503
н	0.785
J	1.287
К	1.838
L	2.853
Μ	3.60
Ν	4.34
Р	6.38
Q	11.05
R	16.00
Т	26.00

Based on the following table, the initial designation of 2J3 is selected.

12					A	PI STANDA	ard 526						
	Table 8—Spring-loaded Pressure-relief Valves "J" Orifice ^f (Effective Area = 1.287 in. ²)												
Materials b Valve ASME Flange Size Class			Flange ass	Maximum Inlet Flange (Set) Pressure Limit ^a (psig)						Outlet Pressure Limit ª (psig)		Center-to-Face Dimensions (in.)	
Body/ Bonnet	Inlet by Orifice by Outlet	I N L ET	O U T L E	-450 °F	-75 °F	-20 °F	450 °F	800 °F	1000 °F	Flange Rating Limit ^a	Bellows Rating Limit ^a		O U T L
			т	-/6 F	-21 F	100 -				100 °F	100 °F	Ŧ	E T
				Tempe	erature Ra	ange Inclu	usive –20	°F to 800) °F				
Carbon Steel	2J3 2J3¢ 3J4 3J4 3J4 3J4	150 300 300 600 900 1500	150 150 150 150 150 300			285 (285) 740 1480 2220 (2700)	185 (285) 620 1235 1855 (2700)	80 (285) 410 825 1235 2055		285 285 285 285 285 285 (600)	230 230 230 230 230 230 230	5 ³ /8 5 ³ /8 7 ¹ /4 7 ¹ /4 7 ¹ /4 7 ¹ /4	4 ⁷ /8 4 ⁷ /8 7 ¹ /8 7 ¹ /8 7 ¹ /8 7 ¹ /8 7 ¹ /8
				Tempe	rature Ra	nge Inclu	sive 801	°F to 100	0°F				
Chrome Molybdenum Steel	3J4 3J4 3J4 3J4	300 600 900 1500	150 150 150 300					510 1015 1525 2540	215 430 650 1080	290 290 290 (600)	230 230 230 230	7 ¹ /4 7 ¹ /4 7 ¹ /4 7 ¹ /4	7 ¹ /8 7 ¹ /8 7 ¹ /8 7 ¹ /8
				Temper	ature Rar	nge Inclus	sive –450	°F to 100)0 °F				
Austenitic Stainless Steel	2J3 2J3° 3J4 3J4 3J4 3J4 3J4	150 300 300 600 900 1500	150 150 150 150 150 300	275 (275) (500) (625) (800) (800)	275 (275) 720 1440 2160 (2750)	275 (275) 720 1440 2160 (2750)	180 (275) 495 990 1485 2480	80 (275) 420 845 1265 2110	20 (275) 365 725 1090 1820	275 275 275 275 275 275 (600)	230 230 230 230 230 230 230	5 ³ /8 5 ³ /8 7 ¹ /4 7 ¹ /4 7 ¹ /4 7 ¹ /4	4 7/8 4 7/8 7 1/8 7 1/8 7 1/8 7 1/8 7 1/8 7 1/8
				Tempe	rature Ra	nge Inclu	sive –20	°F to 900	∘Fd				
Nickel/ Copper Alloy ^d	2J3 2J3° 3J4 3J4 3J4 3J4	150 300 300 600 900	150 150 150 150 150			230 (230) 600 1200 1800	175 (230) 475 945 1420	80 (230) 460 915 1375	50 (230) 275 550 825	230 230 230 230 230 230	230 230 230 230 230 230	5 ³ /8 5 ³ /8 7 ¹ /4 7 ¹ /4 7 ¹ /4	4 ⁷ /8 4 ⁷ /8 7 ¹ /8 7 ¹ /8 7 ¹ /8 7 ¹ /8
				Tempe	rature Ra	nge Inclu	sive –20	°F to 300	∘Fe				
Alloy 20 ^e	2J3 2J3° 3J4 3J4 3J4 3J4 3J4	150 300 300 600 900 1500	150 150 150 150 150 300			230 (230) 600 1200 1800 (2700)	180 (180) 465 930 1395 2330			230 230 230 230 230 230 600	230 230 230 230 230 230 230	5 ³ /8 5 ³ /8 7 ¹ /4 7 ¹ /4 7 ¹ /4 7 ¹ /4	4 7/8 4 7/8 7 1/8 7 1/8 7 1/8 7 1/8 7 1/8

PSV-3047/3048/3057

Parameter	Value	Unit	
Relief Load (W)	276000	Kg/hr.	
Relieving Temperature	535	К	
Molecular Weight (MW)	18.02		
Compressibility Factor (Z)	1		
Relieving Pressure	47.36	bara	
С	0.0269		
Kb	1		
Кс	1		
Kd	0.975		

$$A = \frac{190.5 \times W}{P1 \times Kd \times Kb \times Kc \times KN \times KSH}$$

$$A = \frac{190.5 \times 276000}{4736 \times 0.975 \times 1 \times 1 \times 1 \times 1} = 11833.65 \text{ mm}^2$$

Notes about K_N calculation (API-520-Part-1, Page 91) :

$$K_{\rm N} = 1.0$$
 (27)

where

 $P_1 \leq 1500 \text{ psia} (10,339 \text{ kPa}).$

In USC units:

$$K_{\rm N} = \frac{0.1906 \times P_1 - 1000}{0.2292 \times P_1 - 1061} \tag{28}$$

where

 $P_1 > 1500 \text{ psia} (10,339 \text{ kPa}) \text{ and } \le 3200 \text{ psia} (22,057 \text{ kPa}).$

In SI units:

$$K_{\rm N} = \frac{0.02764 \times P_1 - 1000}{0.03324 \times P_1 - 1061} \tag{29}$$

where

- $P_1 > 1500 \text{ psia} (10,339 \text{ kPa}) \text{ and } \le 3200 \text{ psia} (22,057 \text{ kPa});$
- K_{SH} is the superheat correction factor; this can be obtained from Table 12 or Table 13. For saturated steam at any pressure, $K_{SH} = 1.0$. For temperatures above 1200 °F, use the critical vapor sizing Equation (6) through Equation (11).

K_N Calculation

 $P_1 = 11.46$ bar $\times 14.7 = 168.4$ psia < 1500 psia

So $K_N = 1$

The total orifice area needed for this case is about 18.34 in2, which means PSV with T designation could be used but unfortunately, they are not able to withstand such temperature and pressure rating. So, 2 PSVs with 6Q8 is selected.

Based on the following table, 6Q8 is selected.

18	18 API Standard 526												
	Table 14—Spring-loaded Pressure-relief Valves "Q" Orifice ^f (Effective Area = 11.05 in. ²)												
Materials ^b Valve ASME Flange Size Class		Maximum Inlet Flange (Set) Pressure Limit ^a (psig) Conventional and Balanced Bellows Valves						Outlet Pressure Limit ^a (psig)		Center-to-Face Dimensions (in.)			
Body/ Bonnet	Inlet by Orifice by Outlet	I N L		-450 °F	-75 °F to	-20 °F	450 °F	800 °F	1000 °F	Flange Rating Limit ^a	Bellows Rating Limit ^a	- N L	O U T L
		1	Т	-/6°F	–21 °F	100 °F				100 °F	100 °F	F	E T
				Tempe	erature Ra	ange Inclu	usive –20	°F to 800)°F				
Carbon Steel	6Q8 6Q8¢ 6Q8 6Q8	150 300 300 600	150 150 150 150			(165) (165) (300) (600)	(165) (165) (300) (600)	80 (165) (300) (600)		(115) (115) (115) (115)	70 70 115 115	9 ⁷ /16 9 ⁷ /16 9 ⁷ /16 9 ⁷ /16	9 1/2 9 1/2 9 1/2 9 1/2 9 1/2
	Temperature Range Inclusive 801 °F to 1000 °F												
Chrome Molybdenu m Steel	6Q8 6Q8	300 600	150 150					(165) (600)	(165) 430	(115) (115)	115 115	9 ⁷ /16 9 ⁷ /16	9 ¹ /2 9 ¹ /2
	Temperature Range Inclusive –450 °F to 1000 °F												
Austenitic Stainless Steel	6Q8 6Q8° 6Q8 6Q8	150 300 300 600	150 150 150 150	(165) (165) (250) (300)	(165) (165) (300) (600)	(165) (165) (300) (600)	(165) (165) (300) (600)	80 (165) (300) (600)	20 (165) (300) (600)	(115) (115) (115) (115)	70 70 115 115	9 ⁷ /16 9 ⁷ /16 9 ⁷ /16 9 ⁷ /16	9 1/2 9 1/2 9 1/2 9 1/2 9 1/2
Temperature Range Inclusive –20 °F to 900 °F ^d													
Nickel/ Copper Alloy ^d	6Q8 6Q8¢ 6Q8 6Q8	150 300 300 600	150 150 150 150			(165) (165) (300) (600)	(165) (165) (300) (600)	80 (165) (300) (600)	50 (140) 275 550	(115) (115) (115) (115) (115)	70 70 115 115	9 ⁷ /16 9 ⁷ /16 9 ⁷ /16 9 ⁷ /16	9 1/2 9 1/2 9 1/2 9 1/2 9 1/2
				Temper	rature Ra	nge Inclu	sive –20	°F to 300	∘F ^e				
Alloy 20 ^e	6Q8 6Q8° 6Q8 6Q8	150 300 300 600	150 150 150 150			(165) (165) (300) (600)	(165) (165) (300) (600)			(115) (115) (115) (115)	70 70 115 115	9 7/16 9 7/16 9 7/16 9 7/16 9 7/16	9 1/2 9 1/2 9 1/2 9 1/2 9 1/2

PSV-3163

1.Calculate the orifice area, using API-520 Part1

Use the following formula to calculate orifice area:

$$A = \frac{F' \times A}{\sqrt[2]{P1 \times 100}}$$

Here is the calculation from relief load calculation note:

Parameters	Value	Parameters	Value
Aw	100 m2	KD	0.975
C9	0.2772	F'	350
C10	0.0395	Relief Load	13236 kg/hr
С	0.026		

By setting F', Aw, p1 to 350, 100 and 12080 Kpa, we obtain 0.49 inch^2.

$$A = \frac{350 \times 100}{\sqrt{12080}} = 3.18 \ cm^2$$

PSV-5370

- 0.62, when a PRV is not installed and sizing is for a rupture disk in accordance with 5.11.1.2.1.

Parameter	Value	Unit
Q	1.05	
K _d	1	
K _w	1	
K _c	0.65	
Κ _v	1	
G1	0.99	
P ₁	8.25	
P ₂	0	

$$A = \frac{11.78 \times Q}{Kd \times Kw \times Kc \times Kv} \sqrt{\frac{G1}{P1 - P2}}$$

$$A = \frac{11.78 \times 1.05}{1 \times 1 \times 0.65 \times 1} \sqrt{\frac{0.99}{825 - 0}} = 0.66 \, mm2$$

Note: Kv calculation

- 1. Estimate Kv=1
- 2. Calculate Orifice area
- 3. Calculate Reynold's Number according to the following equation:

$$Re = \frac{Q(18,800 \times G_l)}{\mu \sqrt{A}}$$

4. Calculate new Kv

$$K_{v} = \left(0.9935 + \frac{2.878}{Re^{0.5}} + \frac{342.75}{Re^{1.5}}\right)^{-1.0}$$

5. Divide calculated orifice area in step 2 by new Kv

R _e	3697
K _v	0.95
A _{new}	0.00106

6. Check API-526 for nearest orifice area

Selected Orifice Area	0.11
PSV Designation	3/4D1

PSV-5339

In USC units: $A = \frac{Q}{38 \times K_d K_w K_c K_v} \sqrt{\frac{G_l}{P_1 - P_2}} \qquad A = \frac{11.78 \times Q}{K_d K_w K_c K_v} \sqrt{\frac{G_l}{P_1 - P_2}}$ $P_1 \text{ is the upstream relieving pressure, psig (kPag);}$ $P_2 \text{ is the total backpressure, psig (kPag).}$ $K_w \text{ is the correction factor due to backpressure; if the backpressure is atmospheric, use a value for <math>K_w$ of 1.0. Balanced bellows valves in backpressure service will require the correction factor determined from Figure 31. Conventional and pilot-operated valves require no special correction (see 5.3);} $K_d \text{ is the rated coefficient of discharge that should be obtained from the valve manufacturer; for preliminary sizing, an effective discharge coefficient can be used as follows:$ <math display="block">- 0.65, when a PRV is installed with or without a rupture disk in combination, - 0.62, when a PRV is not installed and sizing is for a rupture disk in accordance with 5.11.12.1.

Parameter	Value	Unit
Q	23.7	
K _d	1	
Kw	1	
Kc	0.65	
Κv	1	
G1	0.99	
P ₁	8.25	
P ₂	0	

$$A = \frac{11.78 \times Q}{Kd \times Kw \times Kc \times Kv} \sqrt{\frac{G1}{P1 - P2}}$$

$$A = \frac{11.78 \times 1.05}{1 \times 1 \times 0.65 \times 1} \sqrt{\frac{0.99}{825 - 0}} = 14.89 \, mm2$$

Note: Kv calculation

- 1. Estimate Kv=1
- 2. Calculate Orifice area
- 3. Calculate Reynold's Number according to the following equation:

$$Re = \frac{Q(18,800 \times G_l)}{\mu \sqrt{A}}$$

4. Calculate new Kv

$$K_{\nu} = \left(0.9935 + \frac{2.878}{Re^{0.5}} + \frac{342.75}{Re^{1.5}}\right)^{-1.0}$$

5. Divide calculated orifice area in step 2 by new Kv

R _e	83183
Κ _v	0.9965
A _{new}	0.023

6. Check API-526 for nearest orifice area

Selected Orifice Area	0.11
PSV Designation	3/4D1