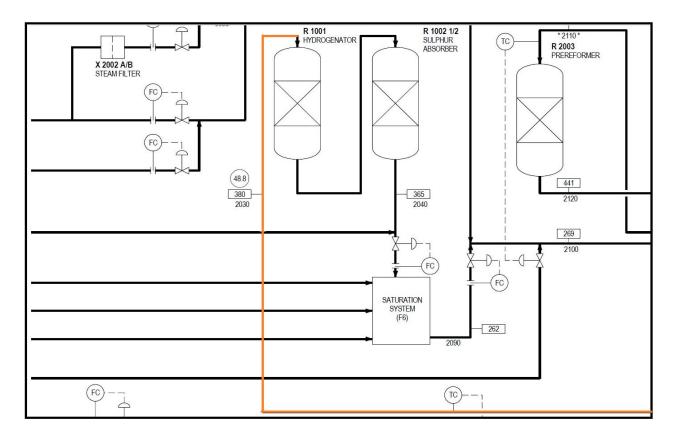
Process Plant Design Session 2

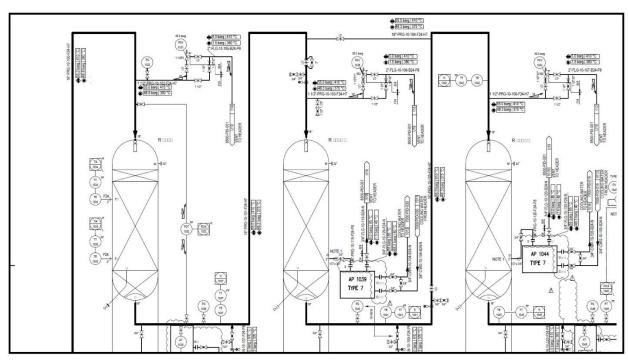

Imagine you are working in an international project in Saudi Arabia and the project is the design and construction of Ammonia plant. You work as a junior process engineer and your supervisor has asked you to perform the line sizing for two parts of the plant and validate licensor basic design.

Practice 1:

Determine the size of the pipe connected to hydrodesulfurization reactors.

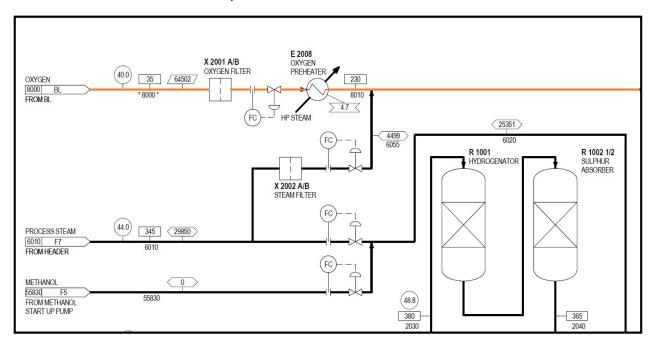
Note: In most petrochemical plants, ammonia included, the first process unit is desulfurization unit in which sulfur is removed by means of desulfurization reactors. Simply the sulfur is absorbed by catalysts inside the reactors. If we don't remove sulfur, it poisons the downstream catalysts.

Here is the PFD of the part:



And here is the stream table from which you can extract the info required for the line sizing excel sheet.

		5	Stream no	o. 2030				
			Total Str	eam			····	
Temperature		380 °C		Pressure		47,6	bar g	
Mass flow	12	23295	kg/h	Molar flow		7467	kmol/h	
Vapor fraction (mass basis)		100	%	Phase type		Vapor		
Molecular weight	1	6,51	kg/kmol	Enthalpy		-99,88	Gcal/h	
Lower heating value	3	3876	kJ/Nm³	Higher heating value		37588	kJ/Nm³	
			Vapor Pl	nase				
Mass flow	12	23295	kg/h	Molar flow		7467	kmol/h	
Normal volume flow	16	37362	Nm³/h	Molecular weight		16,51	kg/kmol	
Density		14,7	kg/m³	Viscosity		0,021	сР	
Specific Enthalpy		-810	kcal/kg	Specific gravity air		0,5700	1/1 (Dimless	
Thermal conductivity	0	,083	kcal/m/h/°C	Specific heat capacity		0,785	kcal/kg/°C	
Heat capacity ratio	1,	1827	1/1 (Dimless)	Compressibility		1,0077	1/1 (Dimless	
		To	otal Stream Co	omposition				
Component Name and HTAS No.			wt %	kg/h	Mole %		kmol/h	
Argon	7		0,01	13	43 ppm		0	
Byproducts	-1	17	7 ppmw	2	5.4 ppm		0	
C2+	-1	1,38		1700	0,65		49	
Carbon Dioxide	6	1,15		1413	0,43		32	
Carbon Monoxide	5	0,13		158	0,08	,	· 6	
Higher Alcohols	-1	0.1 ppmw		0	0.033 ppm		0	
Hydrogen	1	0,25		304	2,02		151	
Methane	8	90,02		110994	92,66		6919	
Methanol	65	0,03		41	0,02	0,02		
Nitrogen	3		7,03	8664	4,14	11	309	
Water	2	45	ppmw	6	42 ppm		0	

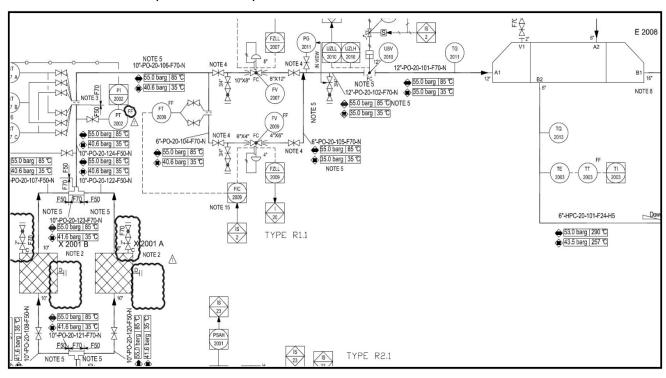

Here is the final solution: 16"

Practice 2

In methanol plants, oxygen is a valuable feedstock, which reacts with methane in an Auto Thermal Reactor or simply ATR to produce syngas which contains hydrogen, CO, CO₂.

The oxygen before entering the reactor, should be filtered and preheated to be suitable for the reaction. Here is the PFD for that part:

Here is the stream table for the stream:

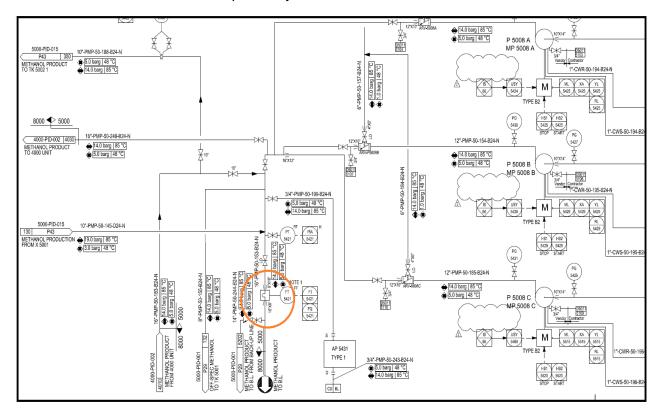

		,	Stream no	o. 8000				
		*****	Total Str	eam				
Temperature		35	°C	Pressure		40	bar g	
Mass flow	8	2734	kg/h	Molar flow		2584	kmol/h	
Vapor fraction (mass basis)		100	00 % Phase type			Vapor		
Molecular weight	3	32,01	kg/kmol	Enthalpy		0,18	Gcal/h	
Lower heating value		0	kJ/Nm³	Higher heating value	0	kJ/Nm³		
			Vapor Pi	nase				
Mass flow	8	82734 kg/h		Molar flow		2584	kmol/h	
Normal volume flow	5	7925	Nm³/h	Molecular weight		32,01	kg/kmol	
Density		52,5	kg/m³	Viscosity		0,022	сР	
Specific Enthalpy		2	kcal/kg	Specific gravity air		1,1052	1/1 (Dimless)	
Thermal conductivity	(0,024	kcal/m/h/°C	Specific heat capacity		0,216	kcal/kg/°C	
Heat capacity ratio	1	,3888	1/1 (Dimless)	Compressibility		0,9764	1/1 (Dimless)	
		Ť	otal Stream Co	omposition				
Component Name and HTAS No.		wt %		kg/h	Mole %		kmol/h	
Argon	7	0,24		201	0,19		5	
Nitrogen	.3	44 ppmw		4	50 ppm		0	
Oxygen	0	99,75		82529	99,80		2579	

Practice 3:

For oxygen application, determine the design temperature and pressure.

Here is the answer to practice 2 and practice 3:

The size of the line is 10" and design temperature and pressure are 85C and 55 barg, respectively.


Do you know why just before the shell and tube heat exchanger the pipe expanded to 12 inches? Think about that.

Practice 4: Based on Process Design Example we gave you in the zip, determine the best type of flowmeter for this application.

Since we want to control flow of the oxygen, we need orifice flowmeter.

Application	Flowmeter Type			
Gas station	Ultrasonic			
Fuel system	Ultrasonic-Turbine-Vortex			
Fluid with high amount of conductivity	Magnetic			
Fluids with conductivity less than 5 us/m	Vortex			
Low pressure gases	Venturi			
High pressure steam services	Flow nozzle			
High erosion present	Flow nozzle			
Battery limit-Product	Coriolis			
Process unit where controlling parameters is a high priority	Orifice			

Practice 5: Based on the P&ID explain why Coriolis flowmeter is selected?

Since the flowmeter is used for product, we then use Coriolis flowmeter.

Practice 6: Select a flowmeter for cooling water application and oily water and DMW.

Since the cooling water and oily water conductivity is more than 5, then we use magnetic flowmeter.

For Demineralized Water since the conductivity is less than 5, then we can use vortex flowmeter.

Practice 7: Specify a flowmeter type for a steam with operating temperature of 330 C and pressure of 100 barg.

Based on Process Design Example, for steams it is normal practice to use nozzle flowmeters.

Summarization

Application	Flowmeter
Cooling Water	Magnetic
DMW	Vortex
Oily Water	Magnetic
Steam	Nozzle Flowmeter
Oxygen	Orifice *Controlling
Distillation Column	Orifice
Methanol	Coriolis

Practice 8: Based on Process Design Example we gave you in the zip, determine the best type of control valve for this application. (Oxygen Service)

Criteria for Valve Selection:

1. When the pressure drop is very high or there is the risk of accumulation of solids, or the fluid velocity is extreme an angle valve is used.

Just remember using angle type poses some ramifications.

- 2. Characterized ball valve is used when the fluid tends to crystallize or where a high Cv is required. Should they be used for as tight shut-off valve, the maximum pipe sizing should be 4 inch.
- 3. Butterfly valves are used for services with large flow rate and low pressure drop (less than 5 bar). They can be used as tight shut-off valve when the pipe diameter is more than 4 inch. High duty butterfly or triple offset butterfly are commonly used types.

Notice that single seated, unbalanced, line sized and full-sized trim globe valve as shut-down valve can be used if desired.

4. Single-seated globe valves is the standard type in sizes bellow 8 inch in non-severe services where the shutoff pressure and pressure drop can be handled. Cage guided globe valve shall be used for more rough services, balanced trim can be used for bigger sizes.

Condition Valve Type	ΔP very high	Solid	V Very high	Cv high	Crystallization	Large flow with low ΔP	Tight shutoff Up to 4 inch	Tight shutoff Above 4 inch	Standrad
Globe									×
Angle	×	×	×						
Butterfly						×		×	
Ball				×	×		×		

Since ΔP is not high, there is no solid, Velocity is not very high, there is no crystallization, the flow is not that much high, it is not used for shut-off services, then we use globe valve.

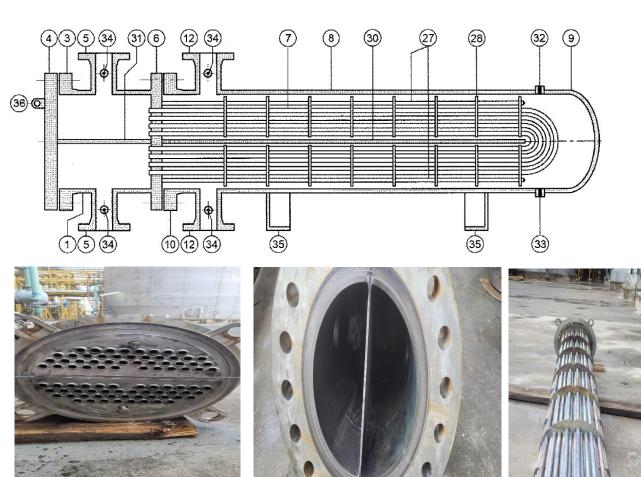
Practice 9: Select a proper valve type for a fluid with the inlet pressure of 42 barg and outlet pressure is of barg.

Since the pressure drop is high and we have flashing, then we select angle type.

Valve characteristics

A unique and simple procedure for valve characteristic determination for almost all Chemical Plants.

- 1. Use Equal Percentage if the valve functions as FV or TV
- 2. Use Linear if the valve functions as PV or LV
- 3. Use Linear if there is Split Range Control


Note: Due to process demands, above rules might not apply to some situations.

Pictures

Heat Exchanger

Control Valve

