
EIEPD Process Sizing Criteria Examples

Example 1: Data Entry in Flaresim for Flare Package Design

Wind velocity: 16 m/s

Humidity: 74%

Example 2: Maximum Noise

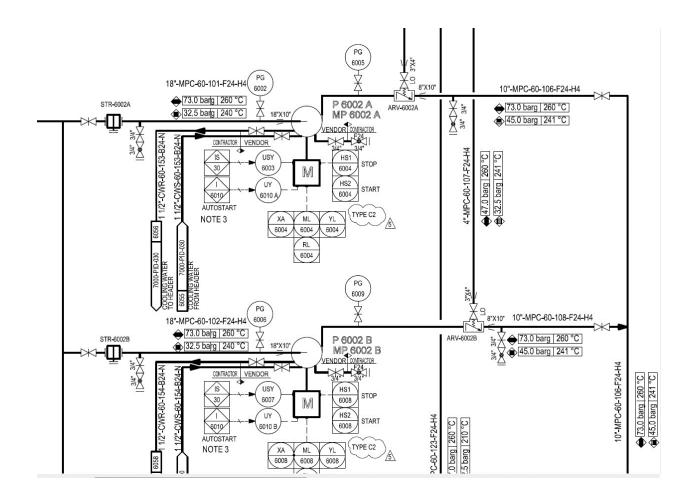
For a control valve

Flow Coefficient (Cv)			239.826	596.202	667.925
Volumetric Flow Rate Gas	Nm3/h	~	71749.68068	178368.36506	199826.21349
Pressure differential	bar	~	1.90000	1.90000	1.90000
Valve dP/P1 pressure ratio			0.036	0.036	0.036
Pipe and fitting flow correction factor			1.00	1.00	1.00
Combined recovery factor			0.90	0.90	0.90
Adjusted pressure drop ratio factor			0.72	0.72	0.72
Inlet Density	kg/m3	~	36.49	36.49	36.49
Kinematic viscosity	cSt	~	0.35624	0.35624	0.35624
Expansion factor			0.98	0.98	0.98
Reynolds Number			171092030.96	270636125.66	286732997.99
Choked flow pressure drop	bar	~	34.82331	34.82331	34.82331
Upstream Inside Diameter	in	~	12.000	12.000	12.000
Downstream Inside Diameter	in	~	12.000	12.000	12.000
IEC NOISE OUTPUTS					
Whisper III Trim Level					
Trim LpA at 1m	dB(A)		70	71	71
Outlet LpA at 1m	dB(A)		< 50	< 50	< 50
Valve LpA at 1m	dB(A)		70	71	71
Valve LpA at Rn	dB(A)		70	71	71
VELOCITY OUTPUTS					
Mach Number Upstream	Mach		0.012	0.031	0.035
Mach Number Valve Outlet	Mach		0.013	0.032	0.036
Mach Number Downstream	Mach		0.013	0.032	0.036
Fluid Velocity Upstream	m/s	~	5.5812	13.8749	15.5440

Example 3: Datasheet for a Reflux Pump

Rated Flow = $619.9 \times 1.2 = 743.9 \text{ m}^3/\text{h}$

MP Column Reflux Po	ump	Page 2	e 2 of 3	item No	P 5006 A/I	3
Data	sheet for (Centrifugal Pu	ımp			
Data for one pump		9		2014210A1104	1000000	Çerilî, e.A.
Item No Pump type Item no of driver	Driver type	Normal status				
P 5006 A Centrifugal MP 5006 A	Running					
P 5006 B Centrifugal MP 5006 B	Stand by			V 100 N 1 T T T T T T T T T T T T T T T T T T		
	General Equip	ment Information			40.00	
Design case SOR - F	Rich Gas	21.255.232 24.255.25				
Location Outdoo	r	900	11.000			
	Opera	ting Data				
Performance point	N	ormal	Rated	ection of the state at		
Capacity	6	19,9	743,9			m³/h
Temperature	1)	101	101			°C
Density	2)	711	711			(g/m ³
Viscosity	C	,229	0,229			сР
Vapour pressure		3,4	3,4			oar a
Suction vessel pressure		3,4			7.22300231	oar a
Discharge vessel pressure		3,8	. Ottobala de la			oar a
	Suct	ion Side			35538694	576
Suction vessel head	namenaya. A as e an east	49,0	2000			n liq
Height above pump center	3)	4,0				
Pressure loss: piping		0,1				n liq.
equipment	······································	0,0				n liq.
flow orifice	g 	0,0	3000000			n liq.
Total min. suction head		52,9				n liq.
Vapour pressure		48,9				n liq.
NPSHA		3,9			1	n liq.


Example 4: Datasheet for a Normal Pump

Rated Flow = $319.7 \times 1.1 = 351.6 \text{ m}^3/\text{h}$

	Steam Condens	ate Return Pu	mp		Page 2 of 2	Item no.	P 6002	2 A/B
			Opera	ting data	a			
Data for	one pump.							
Item No	Pump type Item no	of driver Drive	r type N	lormal status				
P 6002	A Centrifugal MP 6002	A Electr	ic motor F	tunning				
P 6002 I	B Centrifugal MP 6002	B Electr	Electric motor Stand by					
Design of	case	EOR - Lean G	Sas					
Fluid de	scription	Medium Press	sure Steam	Condensate				
		'	Norr	nal	Start-up	R	Rated	
Flow		319	,7	157	3	51,6	m³/h	
Tempera	ature	24	0	210		240	°C	
Density		81	4	853		814	kg/m³	
Viscosity	у		0,1	14	0,13	0),114	cP
Surface	tension		29)	36		29	dyn/cm
Vapor pi	ressure		33	5	18,9		33,5	bar a
Suction	vessel pressure		33	5	18,9			bar a
Discharç	ge vessel pressure		41	8	41,8			bar a
Suction	1		Norr	nal	Start-up	R	Rated	2.0
Suction	vessel head		419	,6	226,0			m liq.
Height a	above pump center	1)	4,)	4,0			m liq.
Pressure	e loss: piping		0,	1	0,1			m liq.
	equipment		0,)	0,0			m liq.
	flow measurement		0,)	0,0			m liq.
Total mi	in. suction head		423	,5	229,9			m liq.
Vapor pi	ressure		419	,6	226,0	4	19,6	m liq.
NPSHA			3,	9	3,9		3,9	m liq.

Example 5: Pump Automatic Start

Example 6 : Suction Calculation and NPSH Calculation

Steam Condensate	Return Pum	р	Page 2 of 2	Item no. P 600	02 A/B
		Operating dat	a		
Data for one pump.					
Item No Pump type Item no of d	river Driver ty	ype Normal statu	S		
P 6002 A Centrifugal MP 6002 A	Electric	motor Running			
P 6002 B Centrifugal MP 6002 B	Electric	motor Stand by			
Design case	EOR - Lean Gas	S			
Fluid description	Medium Pressur	re Steam Condensate	V.		
		Normal	Start-up	Rated	
Flow		319,7	157	351,6	m³/h
Temperature		240	210	240	°C
Density		814	853	814	kg/m³
Viscosity		0,114	0,13	0,114	сР
Surface tension		29	36	29	dyn/cm
Vapor pressure		33,5	18,9	33,5	bar a
Suction vessel pressure		33,5	18,9		bar a
Discharge vessel pressure	1	41,8	41,8		bar a
Suction		Normal	Start-up	Rated	
Suction vessel head		419,6	226,0		m liq.
Height above pump center	1)	4,0	4,0		m liq.
Pressure loss: piping		0,1	0,1		m liq.
equipment		0,0	0,0		m liq.
flow measurement		0,0	0,0		m liq.
Total min. suction head		423,5	229,9		m liq.
Vapor pressure		419,6	226,0	419,6	m liq.
NPSHA		3,9	3,9	3,9	m liq.

Total suction head =419.6 + 4 - 0.1 = 423.5 m liq

NPSHA = Total suction head - Vapor pressure = 423.5 - 419.6 = 3.9 m liq.

NPSHA ≥ NPSHR + 1 m

NPSHR MAX = 3.9 - 1 = 2.9 m

Vapor pressure			419	9,6	226,0		419,6	m liq.
NPSHA			3,	9	3,9		3,9	m liq.
Discharge			Nori	mal	Start-up		Rated	
Discharge vessel head			524	1,3	499,9			m liq.
Height above pump center		1)	25	,0	25,0			m liq.
Pressure loss: piping			2,	0	2,0			m liq
equipment			0,	0	0,0			m liq.
flow measurer	nent		1,	3	1,2			m liq
control valve			12	,5	11,9			m liq
Total max. discharge head	otal max. discharge head			5,1 540,0				m liq
Performance	Performance			mal	Start-up F		Rated	
Differential head	Differential head			1,6	6 310,1		155,7	m liq
Estimated efficiency						80 %		
Estimated shaft power							152	kW
Location		Outdoor	Mecha	nical da	ata			
		Outdoor	°C	Camatuus	tion code		A.D.	I 610
Design temperature (min.)		000	°C				AP	010
Design temperature (max.)		260		Stress re				20
Design pressure (min.)		70.0	bar g	Material in liquid contact CS			1	
Design pressure (max.)	4)	73,0	bar g		n allowance			mm
Max. suction pressure		45,7	bar g		eptable NPSHR	3)	2,9	m liq
Capacity control	2)	0 - 100	ttling	Max. allo	w. noise level @ 1 m		85	dBA
Controllable range (% of rated)	%	1			I			

Example 7: Equivalent Length-P6002

Based on the table:

Pipe Size: 18 inch > 8 inch, so we should specify 340 feet as the line length before the pump suction point.

$$Le = 340 \times 12 \times 2.54 = 10.3 \text{ m}$$

Based on formula:

T> 150:

Le = $12 \times (18*2.54/100) + 30 = 35.5 \text{ m}$

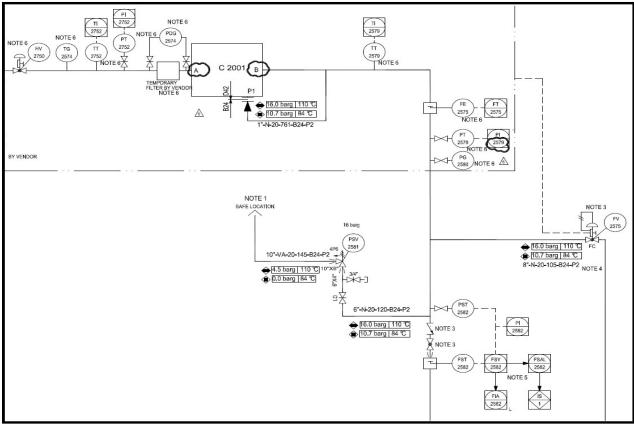
Example 8: Pump Efficiency

For P-2003 the efficiency is 70%

Design case	EOR - Lean Gas	Equipment Inform		
Location	Outdoor			
Location	Outdoor			
	O	perating Data	ì	
Performance point		Normal	Rated	a 0.70 nam 66 as
Capacity		69,1	83	m³/h
Temperature		48	48	°C
ensity		989	989	kg/m
Viscosity		0,566	0,566	cP
Vapour pressure		12,1	12,1	bar a
Suction vessel pressure		25,0		bar a
Discharge vessel pressure		42,1		bara
		Suction Side		27. G 28. G. 28. G.
Suction vessel head		257,8		m liq
Height above pump center	1)	2,0		m liq
Pressure loss: piping		2,1		m liq
equipment		0,0		m liq.
flow orifice		0,0		m liq
Total min. suction head		257,7		m liq.
Vapour pressure		124,9		m liq.
NPSHA		132,8		m liq.
		Discharge Side		- 10
Discharge vessel head		433,9		m liq
Height above pump center	2)	18,0		m liq
Pressure loss: piping		10,0		m lig
equipment		10,3		m liq
flow orifice		1,0		m liq.
control valve	3)	101,1		m liq
Total max. discharge head		574,3		m liq
		Pump Rating		
Differential head		316,6	348,2	m liq.
Estimated efficiency			70	%
Estimated shaft power			112	kW

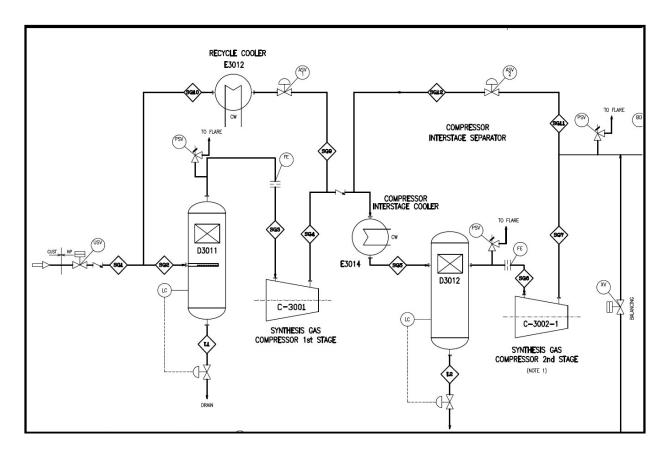
For P-6002, the efficiency is 80%.

Performance	Normal	Start-up	Rated	
Differential head	141,6	310,1	155,7	m liq.
Estimated efficiency			80	%
Estimated shaft power			152	kW



Example 9 : Centrifugal Compressor Datasheet

5,000 MTPD Meth Bandar Assaluy				S-0 Job		Doc.		5 Rev.
Synthesis Gas Compress	sor / Re	circulator		Page 3	e B of 6	Item	no. C 3001	/C 3002
		Recycle Gas	s Inlet	1.50		0		70
Performance point		Normal	Rated	t	EOR Lean	Gas	SOR Rich Gas	
Flow		1660154	182615	57	164895	50	1294549	Nm³/h
Temperature	18)	48	48		48		48	°C
Pressure	200	83.7	83.1		84.1		76.1	bar g
Molecular weight	, i	11.40	11.40)	9.37		11.60	kg/kmol
Heat capacity ratio, Cp/Cv		1.3681	1.368	1	1.379	1	1.3664	
Compressibility factor		1.03	1.03		1.04		1.03	55 55
Composition								
Argon		0.20	0.20		0.20		0.25	mole %
Byproducts		0.02	0.02		0.02		0.02	mole %
Carbon Dioxide		9.09	9.09		6.38		8.91	mole %
Carbon Monoxide		5.83	5.83		3.98		3.00	mole %
Higher Alcohols		2	2		1		2	ppm
Hydrogen		67.49	67.49)	73.58	}	66.15	mole %
Methane		4.76	4.76		4.90		5.83	mole %
Methanol		0.71	0.71		0.67		0.76	mole %
Nitrogen		11.85	11.85	5	10.22	2	15.02	mole %
Water		0.05	0.05		0.05		0.05	mole %
Performance point		SOR Lean Gas	Start-u	ıp				
Flow	9)	1355825	10850	0				Nm³/h
Temperature		48	Ambie	nt				°C
Pressure		76.2	6.0					bar g
Molecular weight		9.23	28.01					kg/kmol
Heat capacity ratio, Cp/Cv		1.3793	1.409	0				
Compressibility factor		1.03	1.00)	1			
Composition		22.000						6
Argon		0.24						mole %
Byproducts		0.02			1			mole %
Carbon Dioxide		5.62	V .					mole %
Carbon Monoxide		2.02			1			mole %
Higher Alcohols		2	0		1			ppm
Hydrogen		73.27						mole %
Methane		5.77	-					mole %
Methanol		0.72						mole %
Nitrogen		12.29	100.0	0				mole %
Water		0.05						mole %

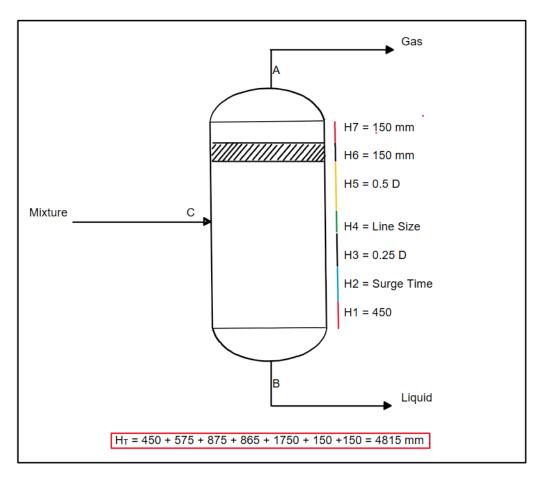


Example 10: Safety Consideration

Item NO.	PSV-2581	P&ID NO.	2000-PID-018						
Case	Out	lets valve abno	rmally clo	sed					
Equation		l incoming steam and vapor plus that erated therein at relieving conditions							
	Parameter	Unit	Value						
		0							
Ven	ting required	(Ws)	kg/h	39000.00					

Example 11: Separator Sizing of D-2005 and Hold-ups

Operating temperature	48	°C	Operating pressure	24,0	bar g
		Liquid (Outlet		
Liquid flow	68415	kg/h	Liquid density	989	kg/m³
		Vapor (Outlet		
Gas flow	282206	kg/h	Gas density	10,7	kg/m³
Gas molecular weight	11,44	kg/kmol			


 $K_{de-rated} = 0.11 \times 0.83 = 0.09$

 $V_g = 0.09 (989-10.7/10.7) ^0.5 = 0.84 \text{ m/s}$

 $Q_g = 282206/10.7/3600 = 7.32$

 $D = (4Q/3.14 \times Vg) = 3293 \text{ mm}$

Selected ID = 3293 + 150 = 3500 mm

				Operatin	g Dat	а			
Operating temperatu	ire	<u></u>	48	°C	Operat	ing pressure	24,0	bar	
		errensk reder		Liquid O			n de la companya da l		
Liquid flow			68415	kg/h	Liquid o	density	989	kg/m	
- X		27 9	a Thairman an an an an an	Vapor O	utlet	H100004	tettes de la rece		
Gas flow			282206	kg/h	Gas de	ensity	10,7	kg/n	
Gas molecular weigh	ht		11,44	kg/kmol					
\$0 786 ab				Vess	el				
<u>rannon malifilita di manamente de la saut</u> 11 _{- A} s			Med	hanical Desig	n Cond	litions			
Fluid description			Reformed Ga		,				
Design temperature	(max.)		100	°C	Design	pressure (max.)	29.0	bar	
	,,		<u> </u>	Vess					
Inner diameter		A. 45	3500	mm		nt to tangent distance	4825	mn	
Construction code	Construction code			VIII Div. 1 or 2			Accordin	g to code	
Construction materia	al	1)		SS	Corros	ion allowance	0	mn	
Insulation purpose			N	one	Insulat	ion thickness		mn	
Top head type			Ellipsoidal		Bottom	head type	Ellip	soidal	
		accessors and	Liquid	levels from lo	wer tan	gent line			
Maximum level			1000	mm	Low le	vel	625	mn	
High level	High level			mm	Minimu	ım level	500	mn	
				Demis	ster				
Туре	ere en la company de la co	-	York mesh ty	pe 709 or simi	iar				
Material	VA 10 10 10 10 10 10 10 10 10 10 10 10 10		SS	316				95.	
Effective Diameter			3500	mm	Thickn	ess	150	mn	
Mounting			Supp	ort ring	Demist	ter top to TL distance	525	mn	
Design of demister	support sha	il ensure	a negligible	flow restriction					
*			Nozz	les and C	onne	ections			
Ref.	No.		ize	Rating	Face	Description			
A 1	1	3	4"	1		Inlet			
A2 2)	1		3"			Pump return			
B1	1	2	:8"			Vapor outlet			
B2	1	- (6"			Liquid outlet			
G1-2	2	1	1/2"			Level gauge			
L1-6	6	1	1/2"			Level transmitter		200000000000000000000000000000000000000	
M	1	2	24"			Manhole			
				Nozzle D					
Туре			Half-o	pen pipe		nce nozzle		\1	
				Nozzie D					
Туре			Vortex	breaker	Refere	nce nozzle		32	

Example 12: Control Valve Type Selection

1. When the pressure drop is very high or there is the risk of accumulation of solids, or the fluid velocity is extreme an angle valve is used.

Just remember using angle type poses some ramifications.

- 2. Characterized ball valve is used when the fluid tends to crystallize or where a high Cv is required. Should they be used for as tight shut-off valve, the maximum pipe sizing should be 4 inch.
- 3. Butterfly valves are used for services with large flow rate and low pressure drop (less than 5 bar). They can be used as tight shut-off valve when the pipe diameter is more than 4 inch. High duty butterfly or triple offset butterfly are commonly used types.

Notice that single seated, unbalanced, line sized and full-sized trim globe valve as shut-down valve can be used if desired.

4. Globe Valve: For standard applications!

So, if you have High pressure condensate with 40 barg and its pressure should be reduced to 2barg and there are some flashing then angle type is used or if you have a a gas flow rate of 190000 Nm3/h which is a high amount, you can use a butterfly valve.

Condition Valve Type	ΔP very high	Solid	V Very high	Cv high	Crystallization	Large flow with low ΔP	Tight shutoff Up to 4 inch	Tight shutoff Above 4 inch	Standrad
Globe									×
Angle	×	×	×						
Butterfly						×		×	
Ball				×	×		×		