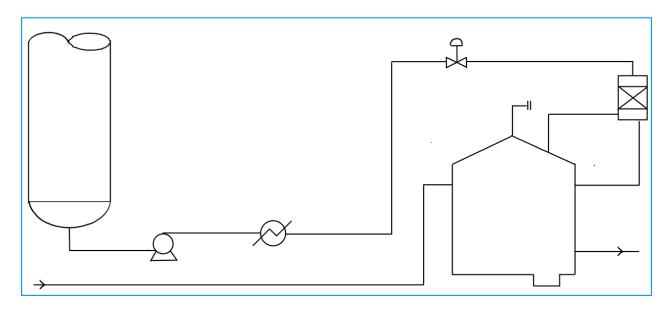

Process Plant Design Project

Process Description:


As stated before, water characteristic at the bottom of third tower is suitable to be re-used for wash column. Here is the exact info of the stream:

Temperature	148.9C
Pressure	3.6barg
Flowrate	8700 kg/hr.

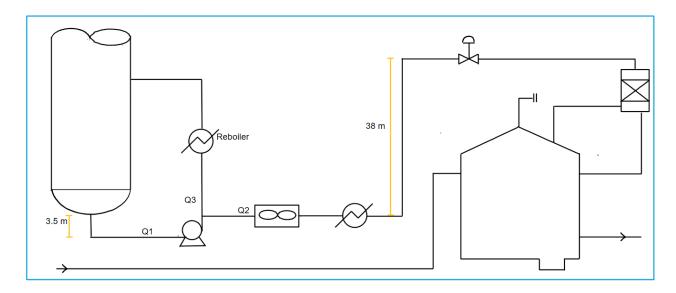
Please provide process engineering sketches which are possible for this application:

Advantages and disadvantages:

First one:

- The pump casing is in contact with high-temperature fluid, thereby increasing the cost of pump.
- The pump creates the pressure and velocity suitable for the heat transfer which happens in the air-cooled heat exchanger and water-cooled heat exchanger.

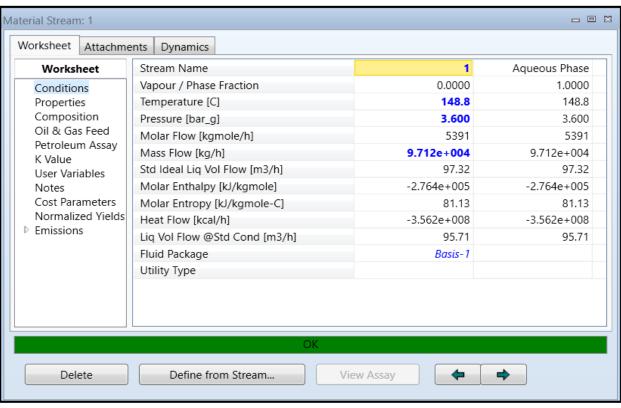
Second one:

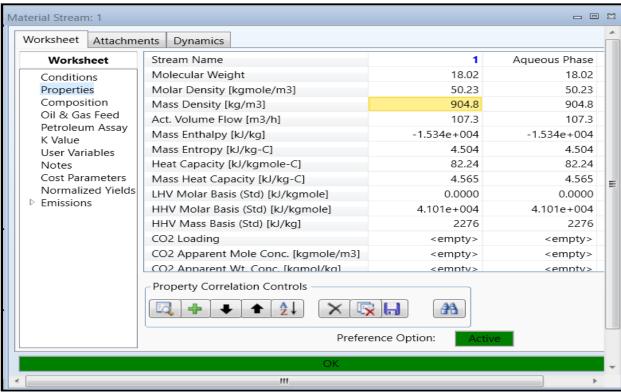

- The pump casing is in contact with low-temperature fluid, which helps the pump fabrication to be cost-effective.
- The pressure and velocity of the stream might not be suitable to get the maximum efficiency in the air-cooled heat exchanger and water-cooled heat exchanger.

Third one:

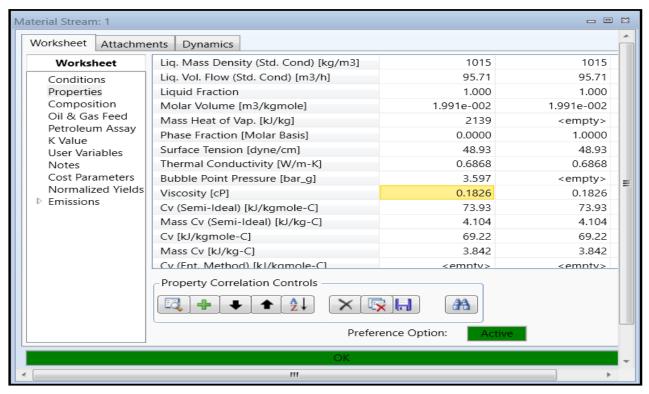
- The cost of construction and project is less due to elimination of air-cooled heat exchanger.
- The consumption of cooling water becomes dramatic.

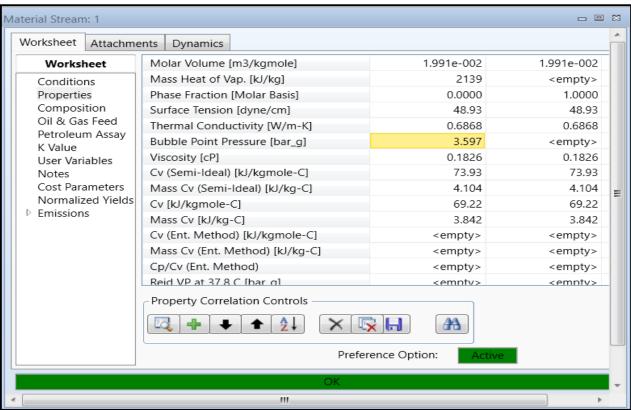
Develop the datasheet for the pump and control valve using Hysys and Fisher FSM. Here is more detailed sketch.




Operating Data

Capacity	105.8 m³/hr.
Rated Capacity	$105.8 \times 1.1 = 116.38 \text{ m}^3/\text{hr}.$
Density	904 kg/hr.
Viscosity	0.1826 cP
Vapor Pressure	3.597 barg
Suction Vessel Pressure	4.6 bara
Discharge Vessel Pressure	1 bara


To determine density, Aspen Hysys is used. The stream with above conditions is defined and under property, the density is indicated.



Suction Side

Suction Vessel Head	51.87 m
Height Above Pump Center	3.5 m
Pressure Loss	
Piping	0.033 m
Equipment	0
Flow Orifice	0
Total Minimum Suction Head	51.87 + 3.5 + 0.033 = 55.4 m
Vapor Pressure	51.83 m
NPSH	3.57 m

Suction Vessel Head = $(Ps \times 100000)/(9.81 \times 904) = (4.6 \times 100000)/(9.81 \times 904) = 51.87m$

Pressure Loss:

Piping:

Let's at first determine the inlet and outlet pipe size.

Line No. :	3	315	Service (From/To)			
Total Flow Rate	kg/hr	97000					
Fluid phase (Liquid/Vapor)		Liquid	Washin	g Water			
Temperature	С	48					
Density	kg/m3	904.000	Material				
Viscosity	Ср	0.1826	C	S			
Calculation Results		Trial 1	Trial 2	Trial 3			
Pipe Length (DEF.)	m	1000	1000	1000			
Nominal Pipe Size	inch	4	6	8			
Schedule No.		80	40	80			
Line Roughness (DEF.)	inch	0.0018	0.0018	0.0018			
Pipe Internal Diameter	mm	97.2	154.1	193.7			
Pipe Internal Area	mm ²	7,417	18,639	29,460			
Reynold 's No.		1933195	1219523	970020			
Friction Factor		0.0164	0.0153	0.0148			
Velocity	m/s	4.018	1.599	1.012			
Pressure Drop (ΔP)	bar	12.2	1.1	0.3			
ρV²	kg/m.s2	14,597	2,312	925			

By checking pump suction and outlet criteria, 8 inch is selected as inlet pipe size and 6 inch as outlet pipe size.

Since the stream will be divided to two sub-streams, including one being returned to the reboilers and one being directed to wash column, another line sizing is performed for second sub-stream.

Line No. :	3	315	Service (From/To)
Total Flow Rate	kg/hr	9000		
Fluid phase (Liquid/Vapor)		Liquid	Washing Water	
Temperature	С	48		
Density	kg/m3	904.000	Material	
Viscosity	Ср	0.1826	C	S
Calculation Results		Trial 1	Trial 2	Trial 3
Pipe Length (DEF.)	m	1000	1000	1000
Nominal Pipe Size	inch	2	3	4
Schedule No.		80	80	80
Line Roughness (DEF.)	inch	0.0018	0.0018	0.0018
Pipe Internal Diameter	mm	49.3	73.7	97.2
Pipe Internal Area	mm ²	1,905	4,261	7,417
Reynold 's No.		353927	236643	179369
Friction Factor		0.0198	0.0188	0.0185
Velocity	m/s	1.452	0.649	0.373
Pressure Drop (ΔP)	bar	3.8	0.5	0.1
ρV²	kg/m.s2	1,905	381	126

3 inch is selected.

.....

Based on the piping department layout during basic design, the initial distance between pump and the packed column is approximately 150m. So, the pressure loss would be:

Pressure loss or Head =
$$\frac{150}{1000} \times 0.5 = 0.075 \text{ bar} \times \frac{10000}{9.81 \times 904} = 0.845 \text{ m}$$

Also here is the calculation for pump inlet equivalent length:

 L_e = Approximate line length \times Multiplying factor = 100 \times 3.4 = 340 ft = 340 \times 12 \times 2.54 cm = 10.363 m

Pressure loss or Head = $\frac{10}{1000} \times 0.3 = 0.003 \ bar = \frac{0.003 \times 100000}{9.81 \times 904} = 0.033 \ m$

.....

Vapor Pressure = $(4.597 \text{ bar} \times 100000)/(9.81 \times 904) = 51.83 \text{ m}$

.....

NPSH = Suction Head - Vapor Pressure = 55.4 - 51.83 = 3.57 m

.....

Discharge Side

Discharge Vessel Head	11.27 m
Height Above Pump Center	38 m
Pressure Loss	
Piping	0.845 m
Equipment	11.26 m
Flow Measurement	1.57 m
Control Valve	7.89 m
Total Max. Discharge Head	70.83 m

Discharge Vessel Head = $(Pd \times 100000)/(9.81 \times 904) = (1 \times 100000)/(9.81 \times 904) = 11.27 \text{ m}$ Height Above Pump Center = 38 m

.....

Pressure Loss

Piping:

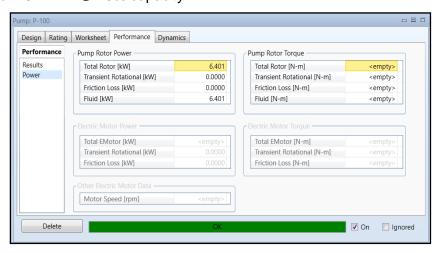
Based on the piping department layout during basic design, the initial distance between pump and the packed column is approximately 150m. So, the pressure loss would be:

Pressure loss or Head =
$$\frac{150}{1000} \times 0.5 = 0.075 \text{ bar} \times \frac{10000}{9.81 \times 904} = 0.845 \text{ m}$$

Equipment:

We have air-cooled heat exchanger, water-cooled heat exchanger, orifice flowmeter and a control valve.

Equipment	Pressure Drop	Our Example	Head
Air-cooled Heat Exchanger	0.35-0.7 bar	0.5 bar	(0.5×100000)/ (9.81× 904) = 5.63m
Water-cooled Heat Exchanger	0.35-0.7 bar	0.5 bar	(0.5×100000)/ (9.81× 904) = 5.63m
Orifice Flowmeter	0.14 bar	0.14 bar	(0.14×100000)/(9.81×904) = 1.57m
Control Valve	0.7 bar	0.7 bar	(0.7×100000)/ (9.81× 904) = 7.89m


Total Max. Discharge Head: Discharge Vessel Head + Height Above Pump Center + Pressure Loss = 11.27 + 38 + 0.845 + 5.63 + 5.63 + 1.57 + 7.89 = 70.83 m

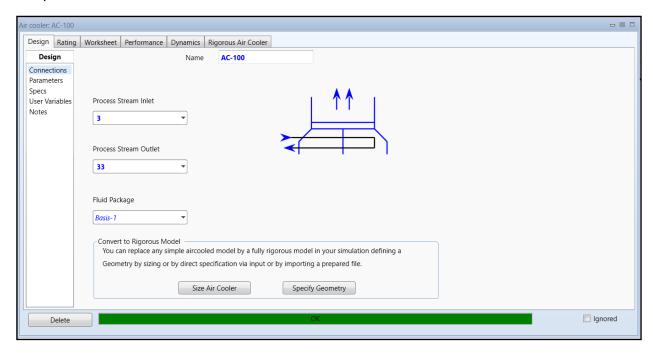
Performance

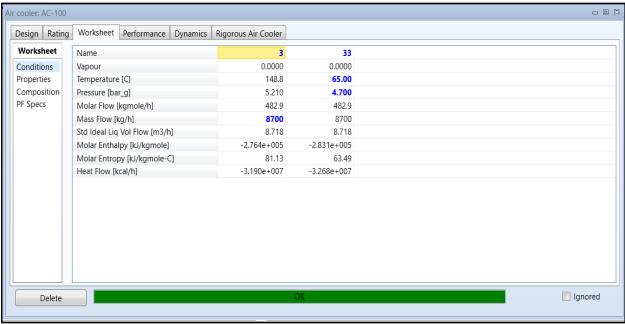
Differential Head = Total Max. Discharge Head - Total Minimum Suction Head = 70.83 - 55.4 = 15.43 m

.....

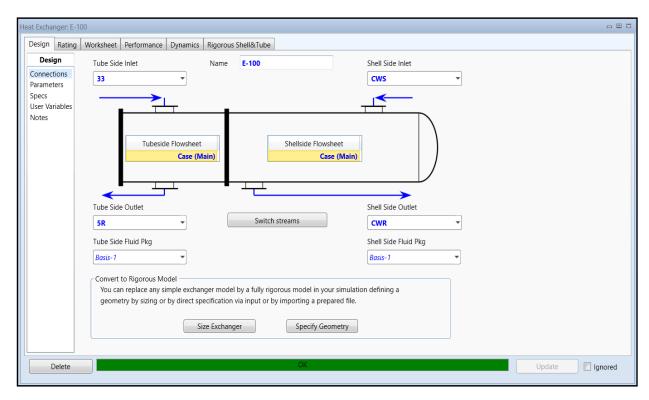
Power required = 6.4 kW. @ 75% capacity

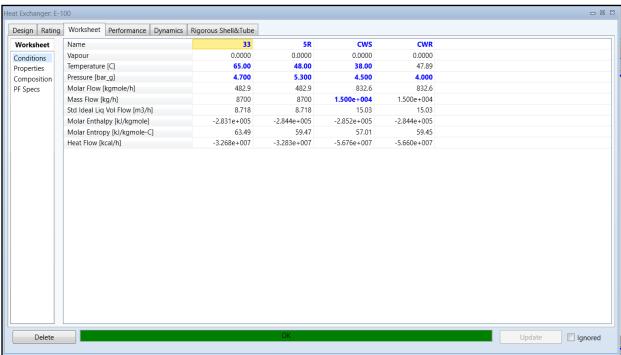
Differential Head	15.43 m
Power Required	6.4 kW
Efficiency	75%

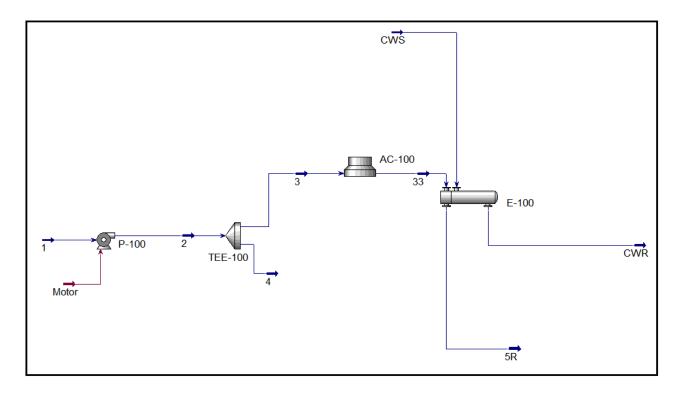

Pump Material in liquid contact: CS
Construction Code: API 610
Max allowable total noise level: 85 db
Max acceptable NPSH _R = NPSH _A -1 = $3.57 - 1 = 2.57$ m

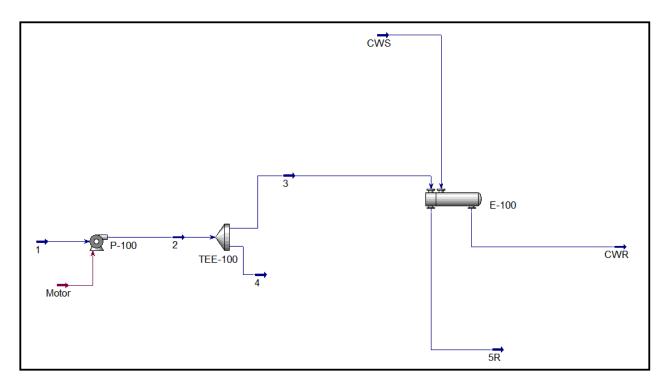


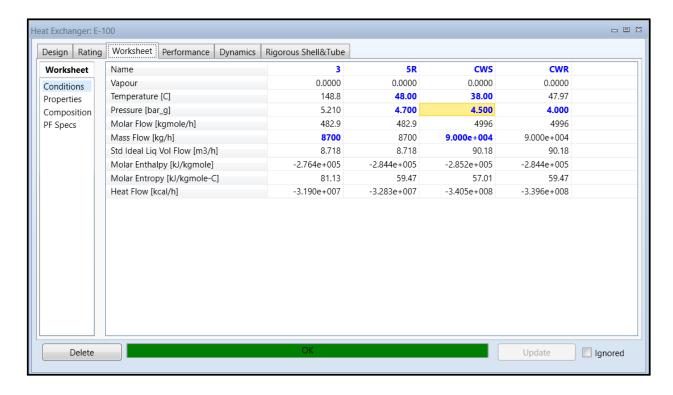
	Process Plant Des	ign	Educa	ational Institute for Equipme	nt and Process Design	1
CIEDD		Document Number:				
EIEPD			Page: 1		Item Info: P 5007 A/	В
			Datasheet for Ce	ntrifugal Pump	•	
Item Info.	Pump Type		Driver Info.	Driver ⁻	Туре	Normal Status
P 5007 A	Centrifugal		MP 5007 A	Electric I	Motor	Running
P 5007 B	Centrifugal		MP 5007 B	Electric I	Motor	Stand-by
			General Equipm	ent Information		
Design Cas	е		Summer-Winter or EOR/S	OR Rich/Lean Case - EOR	Rich Gas Case	
Location			Outdoor			
			Operati	ing Data		
Performand	e Point		Normal	Rated	Start-up	Unit
Capacity			105.8	116.38		m3/h
Temperatur	е		148.8			С
Desnsity			904			kg/m3
Viscosity			0.1826			cP
Vapor Pres	sure		4.6			bar a
Suction Vessel Pressure			4.6			bar a
Discharge \	/essel Pressure		1			bar a
			Suction	n Side		
Suction Ves			51.87			m liq.
Height Above Pump Center			3.5			m liq.
Pressure Lo			0.033			m liq.
	Equipment		0			m liq.
Flow Orifice			0			m liq.
	Suction Head		55.4			m liq.
Vapour Pre	ssure		51.83			m liq.
NPSHA			3.57			m liq.
			Discharg	ge Side	T	T
	/essel Head		11.27			m liq.
	ve Pump Center		38			m liq.
Pressure Loss: Piping			0.845			m liq.
Equipment		11.26			m liq.	
Flow Orifice			1.57			m liq.
Tatal Mass	Control Valve		7.89			m liq.
i otal Max.	Discharge Pressure		70.83 Pump Per	formanco		m liq.
Differential	Uaad		15.43	TOTTIATICE		m lia
Estimated E			75			m liq.
	Shaft Power		6.4			kW
Louinated 3	Jilait FUWEI		0.4		1	K V V




If we proceed with first sketch:







So, we need to 15 ton/hr. of cooling water to bring down the temperature to 48C. But if we change the scenario and just use water-cooled heat exchanger, then we need 90 ton/hr. of cooling water.

So here we have a stream with flowrate of 8700 kg/hr., temperature of 48C and pressure of 4.7 barg.

Control Valve Datasheet

In order to control the flowrate, we need a control valve. Here is the info about the stream:

1. Operating Condition

Flowrate	8700 kg/hr.
Inlet Pressure	5.3 barg
Outlet Pressure	4.6 barg
Inlet Temperature	0.48 C
Liquid Specific Gravity	0.99
Dynamic Viscosity	0.563 cP
Vapor Pressure	-0.9 barg
Critical Pressure	220 barg
Recovery Factor	0.9
Valve Style Modifier	1
Cavitation Coefficient	1
Upstream Pipe Size	3 in
Upstream Pipe Schedule	80
Downstream Pipe Size	3 in
Downstream Pipe Schedule	80
Valve Diameter	1.5 in

Here is the result of Fisher FSM

SIZING OUTPUTS						
Flow Coefficient (Cv)				12.256		
Application Ratio				0.113		
Pressure differential	bar	~		0.70000		
Valve dP/P1 pressure ratio				0.111		
Choked flow pressure drop	bar	~		4.99952		
Cavitation Pressure Drop	bar	~		6.12210		
Liquid critical pressure drop ratio factor				0.95		
Pipe and fitting flow correction factor				0.99		
Combined recovery factor				0.89		
Kinematic viscosity	cSt	~	1.000	0.569	1.000	1.000
Upstream Inside Diameter	mm	~		73.66		
Downstream Inside Diameter	mm	~		73.66		
Volumetric Flow Rate Liquid	m3/h	~		8.7971		
Reynolds Number				357087.08		
Inlet Density	kg/m3	~		989.84		
NOISE OUTPUTS						
Sound Pressure at 1m	dB(A)			< 50		
VELOCITY OUTPUTS						
Fluid Velocity Upstream	m/s	~		0.5732		
Fluid Velocity Downstream	m/s	~		0.5732		

2.Body/Bonnet

In Body/Bonnet Tab the following information should be determined:

- 1.Type
- 2. Size
- 3.Rating
- 4. Connection type
- 5.Body material
- 6.Pipe inlet and outlet

Type:

Since the valve is used for flow controlling application a Globe valve is used.

Size:

Based on above calculation, the valve diameter is 1.5 inch.

Rating:

The rating of valves is the same as the rating of connecting pipes. Since the adjacent pipe class is 300, the valve class would be 300

Connection type:

The three most common methods of installing control valves into pipelines are by means of screwed pipe threads, bolted gasketed flanges, and welded end connections. Screwed end connections, popular in small control valves, offer more economy than flanged ends. The threads usually specified are tapered female NPT (National Pipe Thread) on the valve body. They form a metal-to-metal seal by wedging over the mating male threads on the pipeline ends.

This connection style, usually limited to valves NPS 2 (DN 50) or smaller, is not recommended for elevated temperature service. Valve maintenance might be complicated by screwed end connections if it is necessary to take the body out of the pipeline because the valve cannot be removed without breaking a flanged joint or union connection to permit unscrewing the valve body from the pipeline.

Flanged end valves are easily removed from the piping and are suitable for use through the range of working pressures for which most control valves are manufactured. Flanged end connections can be used in a temperature range from near absolute zero to approximately 815°C (1500°F). They are used on all valve sizes. The most common flanged end connections include flat-face, raised-face, and ring-type joint.

Screwed End	Flanged End	Welded End
2" and smaller	Up to class 900	Suitable for class 1500 and 2500

Body material

- 1.A216 WCB/WCC or forged carbon steel, A105 is used in non-corrosive services from -28 to 427C.
- 2. If there are some severe conditions such as flashing, it is typical to use A217 WC9
- 3. For high temperature services like steam let-down station or HHPS it is a practice to use A217 WC6.
- 4. A351 CF8 is used mostly for combined flashing and corrosive services and for temperatures below -28C.
- 5. For oxygen services, it is highly recommended to use Monel.
- A 216 WCB is selected for such applications.

3. Trim

For Trim Tab the following should be specified:

- 1.CV calculation
- 2.Charachteristic
- 3.Type
- 4.Material
- 5.Leakage Class

CV Calculation

CV calculated by Fisher FSM is 12.25.

Characteristic

- 1. Use Equal Percentage if the valve functions as FV or TV
- 2. Use Linear if the valve functions as PV or LV
- 3. Use Linear if there is Split Range Control

EQ% is selected for this flow control valve.

Type

Single-seated is the standard valve type in sizes below 8 inches in non-severe service where the pressure drop and shut-off pressure can be handled. Cage-guided globe valves shall be used for more rough services. Balanced trim can be considered for bigger sizes.

So single-seated is selected.

Material

AS standard, the material shall be AISI-316, unless otherwise specified.

Seat Leakage

Control valves are designed to throttle, but they are also often expected to provide some type of shut-off capability. A control valve's ability to shut off has to do with many factors: Balanced or unbalanced plug, seat material, actuator thrust, pressure drop, and the type of fluid can all play a part in how wella particular control valve shuts off.

Classification

Class II: 0.5% of rated capacity Class III: 0.1% of rated capacity Class IV: 0.01% of rated capacity

Class V: 0.03 ml water/min. per 100 mm port diameter per bar differential

Class VI

Class IV is also known as a "Metal-to-Metal" seat classification. It is the kind of leakage rate you can expect from a valve with a metal plug and metal seat.

Class VI is known as a "Soft Seat" classification. Soft Seat Valves are those where either the plug or seat or both are made from some kind of composition material such as <u>Nitrile or Polyurethane</u>. Since it is with metal-to-metal seats Class IV is selected.

Actuators

As positioners are normally required, control valves shall be equipped with pneumatic actuators with a spring range from 0.4-2 barg, in order to obtain small and fast actuators. If feasible, higher ranges may be used for bigger valves, but the maximum range pressure should not exceed the minimum instrument air supply pressure minus 10%. If not otherwise specified, actuators shall be sized to obtain a stroke time in seconds that does not exceed the valve size in inches. However, higher speeds will be required for anti-surge valves and slower speed for preventing water hammer. Ball and plug valves used as shut-down valves shall have actuators designed with a safety factor of 2.5 with respect to start friction, as the friction increases if the valves have remained in one position for a long time.

As a rule, actuators shall be diaphragm or piston-type with springs to provide the necessary failure action.

Double-acting piston actuators with volume tank and lock-up valves that ensures correct failure position are acceptable where high trust is required. The volume tank shall be of stainless steel and be sized to stroke the valve twice.

For actuator and positioners Tab the following should be specified:

- 1.Type
- 2.Modulating or ON/OFF
- 3. Failiure position
- 4.dP for sizing
- 5.Positioner

Actuator Type:

Based on above criteria, Diaphragm with spring return with spring range of 0.4-2 bar is selected. Modulating type is selected. AIR TO CONTROL VALVE OPEN

Failure position

Control valves shall be such that on air failure the valve takes automatically a safe position either open, or close, or locked in position, depending upon the process requirements. Based on process requirement, fail to close is selected.

Positioners and tubing

Positioners shall be FF/P for Fieldbus communication with full diagnostic possibilities. Positioners shall be vibration-resistant. Output shall match bench-setting of the valve. Positioners shall have output gauges in stainless steel and filter regulators with pressure gauges. Valves in split range shall also have FF AI input; the split is done in the control system.

The positioners shall have sufficient air capacity to strokes the valves.

Air tubes and fitting shall be in stainless steel. Size shall be adequate for the stroking time required. Tubing shall be thin-walled with an OD of not less than 6 mm. Larger valve require tubing with a larger diameter.

For this valve the type of positioner for this valve is FF/P. Air tubes and fitting are in SUS.

Additional

Packing

The packing design for linear motion valves shall include a packing flange. PTFE shall be used as standard packing material for bonnet temperature below 230C and graphite for higher temperatures. Higher temperatures can be accepted for PTFE if the bonnet is extended. Packing design and material shall be selected carefully for minimum stem friction and live-loading packing boxes shall be considered for PTFE packing.

Vacuum service and special services like oxygen, require special packing materials and should be given special consideration.

Since the temperature is less than 230C then PTFE or equivalent is selected as packing for the valve.

Depending upon design of the valve, an extension bonnet may be required to keep the temperature at the stuffing box to an acceptable value for the applied packing. An extension bonnet may also be required, when the operating differential pressure across the valve may cause

freezing of the stuffing box/packing and/or ice formation on the trim. This may be the case, for instance, on compressor recycle (anti-surge) valves. For valves in vacuum service, the bonnet shall have an extended stuffing box, a lantern ring and a number of packing rings. Special attention shall be paid to the type of stem packing/sealing facilities as well as stem surface finish. Packing lubricators with steel isolating control valve shall be provided if required.

The bonnet shall be bolted according to ASME B31.3 and material shall be the same as the body material. Requirements for an extended bonnet depend on the fluid temperature and the chosen packing material.

	Bonnet Style			
Fluid Type	Plain	Extension	Finned	
Gas	0	100	135	
Superheated Vapor	0	100	135	
Saturated Vapor	0	0	0	
Liquid	0	140	185	

Based on water temperature which is 48C, a standard bonnet is selected.

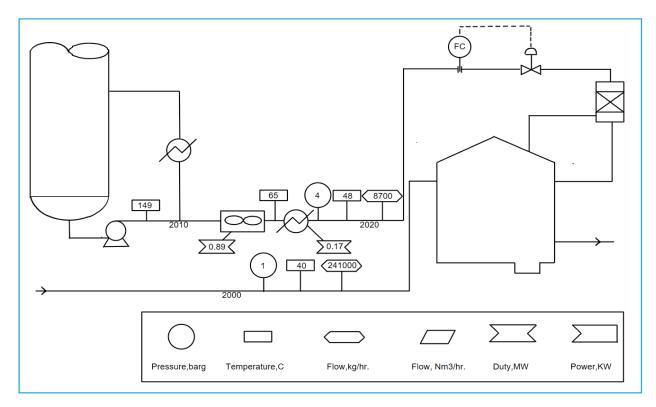
Flow Tendency

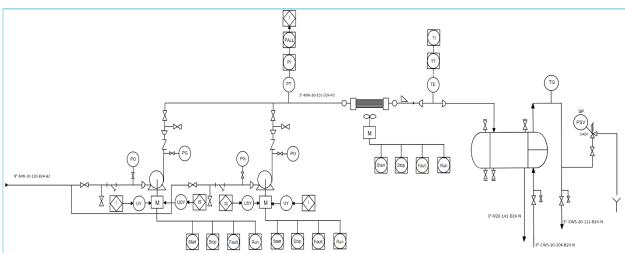
For valves in shut-off service, flow tendency shall comply with the action required to put the plant in a safe condition in the case of power failure. In some cases it is the back-flow scenario that shall be considered.

Generally, it is the flow-to-open tendency that is the most stable type of operation for modulating control valves. This is therefore the preferred flow direction for globe valves. For angle valves, the direction should be flow-tends-to-close. The direction of flow shall be clearly marked on the valve body.

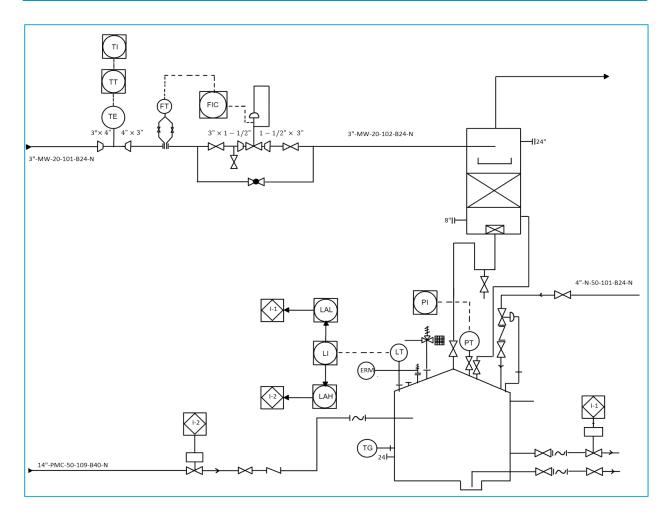
There is a practice by some vendors which as follows:

Over-plug flow for liquid services Under-plug flow for gas and vapor services


For the valve with water as fluid a Over-plug flow with flow-to-open tendency is selected.



			DATA SHEET FOR P	PNEUMATIC		Documer	nt Number:		
-		EIEDD			Sheet Number:				
		EIEPD	CONTROL VALVE				IIIIDEI.		
	- 1	Itam Na					EV 5020		
_	1	Item No.	Tag No.	\\/b4-	-	FV-5020			
General	2	Service	Wash water				TIOW CONTROL		
e u	3	Line No.	1			•			
۳	4	P&ID No.	Inlet/Outlet Pipe Size			3	3		
	5	Ambient Temperature	Area Classification	5-52 C			Zone X		
	6	Process Fluid	Fluid State	Water		Liquid			
Process Data	7	ow Min./Nor./Max. kg/h		3480			700 9570		
	8	Ambient Temperature, C		48	+	8 48			
	9	Inlet Pressure, barg		5.3			5.3		
	10	Outlet Pressure, barg		4.6	4.6		4.6		
ess	11	Shut-off Pressure, barg	Refer. Density kg/Nm3			1			
0 0	12	Viscosity, cP	Density at Operating Condition, kg/m	0.563		990			
<u> </u>	13	Molecular Wt.	Corrosive / Toxic	18.01		None			
	14	Liquid Vapor Pressure, barg	Critical Pressure, barg	-0.9			220		
1	15	Vapour Compressibility	Cp/Cv @ Flow Condition	-		-			
	16	Design Temperature, C	Design pressure, barg	-			-		
	17	Model	Allowable SPL				85dBA		
پ	18	Calculated Cv Min./Norm./Max.	Rated Cv	4.84/12.25/1	3.52		17.57		
] ac	19	Body Type	Body Material	Globe		A2	16 WCB/A 105		
Body & Bonnet	20	Body Size	End Conn Type & Standard	1-1/2"		Flang	ed, ASME B16.5		
≪	21	Inlet Connection Size /Ratg/Facg	Outlet Connection Size /Ratg/Facg	1.5", Class 30	00 RF	1.5"	, Class 300 RF		
l g	22	No. of Ports	Flow Direction	Single			Over-plug		
m	23	Bonnet Type	Packing Material	Standard			PTFE		
1	24	Bellows & Material	Steam Jacket						
	25	Trim Style	Trim Size	Plug			1-1/2"		
ء ا	26	Flow Characteristic	Rated Travel	EQ%		100%(100%(full open position)		
Tri	27	Plug/Ball/Disk Material	Seat Material	-			-		
1	28	Cage/Guide Material	Stem Material	-		-			
	29	Valve Leakage Class		IV					
ō	30	Manufacturer	Model	•			-		
nat	31	Actuator Type	Handwheel Type	Diaphragm, spring-return					
Act	32	Connecttion Type	Regulator Set Pressure						
<u></u>	33	Manufacturer	Model						
Positioner Actuator	34	Type/Characteristic	Input Signal	Digital	Linear		FF/P		
Sit				J		1			
٦	35	Electrical Connection	Certification/Housing			<u> </u>			
	36	Air Set	Model/Air Connection		1		T		
	37	Solenoid Valve: Manufacturer	Qty./Model				-		
es.	38	Туре	Certification/Housing			_			
Accessories	39	Power Supply	Electrical Connection			-			
es	40	Body Material	JB & Material				T		
Acc	41	Limit Switch: Manufacturer	Model/Electrical Connection				1		
	42	Type	Certification/Housing						
	43	Transmitter: Manufacturer	Model/Electrical Connection				1		
	44	Type	Certification/Housing						
_ι ν	45	Failsafe Requirement	Safety Integrated Level (SIL)						
Others	46	Valve Fail Position	Travel Time(sec.)			1			
ð	47	Air Supply barg							
	48	Manufecturer		<u> </u>					
	49 50								
Notes									
2	51 52								
l	53								



PFD and P&ID Development

Interlocks and Process Emergency Description

IS-5007: Trip of distillation water pumps P-5007 A/B

The causes for trip are:

- Manual panel trip
- Low level in MP methanol column T-X, LSAL-X

The following actions are carried out automatically:

- Stop MP column recycle pump P-5007 A, stop MP-5007A
- Stop MP column recycle pump P-5007 B, stop MP-5007B

.....

I-5007: Auto-start of standby pump P-5007

The causes for the auto-start of standby pump are:

Low pressure downstream of P-5007

Note: The pumps should not be in tripped state.

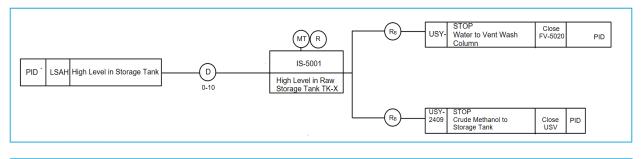
The following actions are carried out automatically:

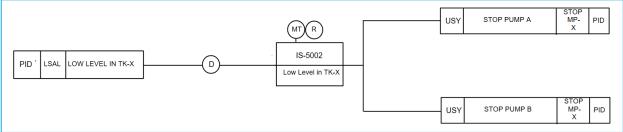
- Start the pump P 5007 A, start MP-5007A
- Start the pump P 5007 B, start MP-5007B

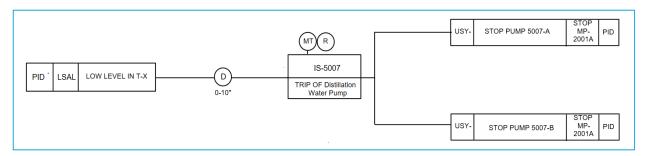
IS-5001: High level in raw methanol buffer tank TK-X The causes for trip are:

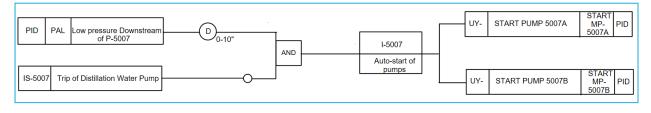
- Manual panel trip
- High level in raw methanol buffer tank TK-X

The following actions are carried out automatically:


- Stop water to vent wash column T 5004, close FV-5020
- Stop crude methanol to TK 5001, close USV


IS-5002: Trip of raw methanol pump, P 5001 A/B The causes for trip are:


- Manual panel trip
- Low level in raw methanol buffer tank TK 5001, LSAL-5002


The following actions are carried out automatically:

- Stop raw methanol pump P 5001 A, stop MP-5001A
- Stop raw methanol pump P 5001 B, stop MP-5001B

