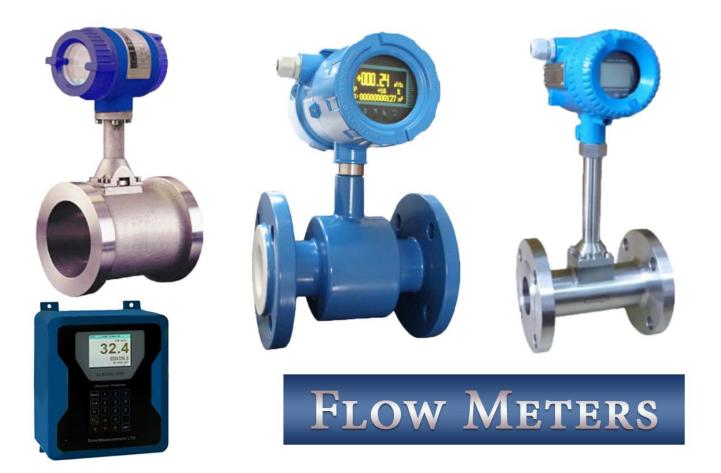
Flowmeters

Selection, Sizing, Troubleshooting

From Basic Design to Start-up

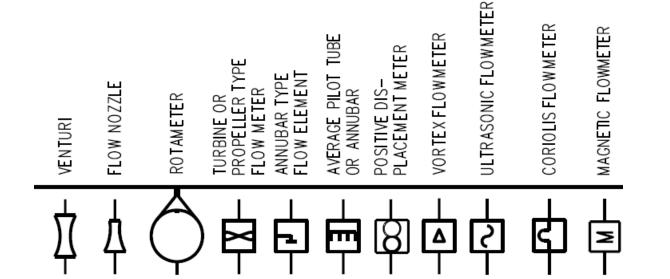
Educational Institute for Equipment and Process Design


CONTENT

Торіс	Duration
General Procedure	1 min
Selection Pattern	5 min
Examples	10 min
Sizing- Coriolis flowmeter	5 min
Sizing-Vortex flowmeter	5 min
Sizing-Orifice flow meter	5 min
Piping Design Consideration	6 min
Algorithm of calculation	6 min
Our Mistake and Experience	5 min
Summarization	7 min
Vendor List	2 min
Total	1 hour

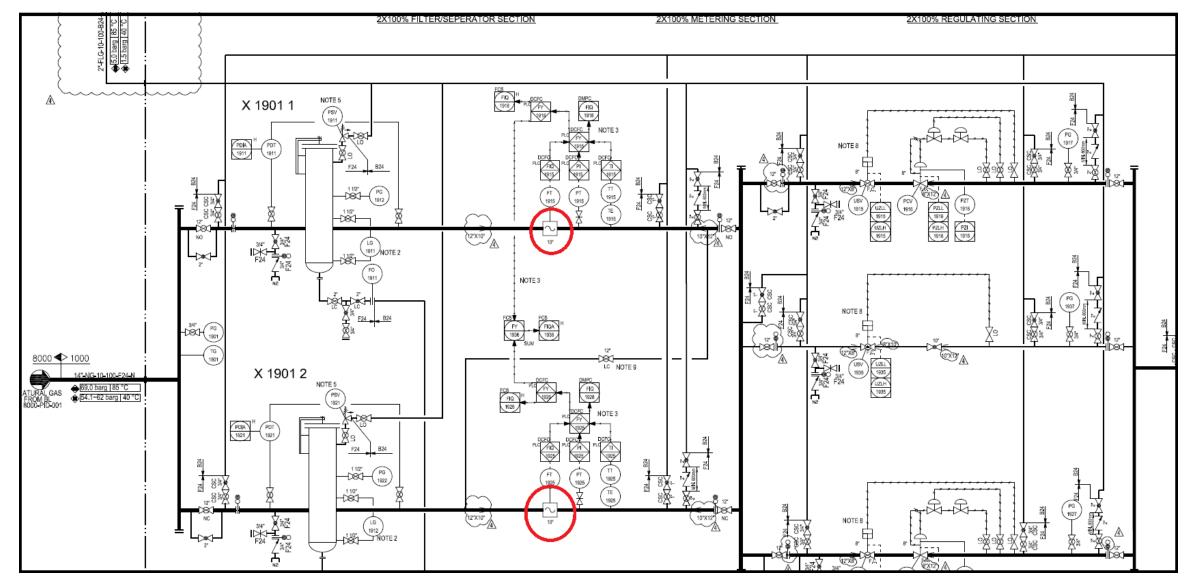
General Procedure

- 1. Selection
- 2. Sizing
- 3. Installation
- 4. Start-up
- 5. Normal Operation

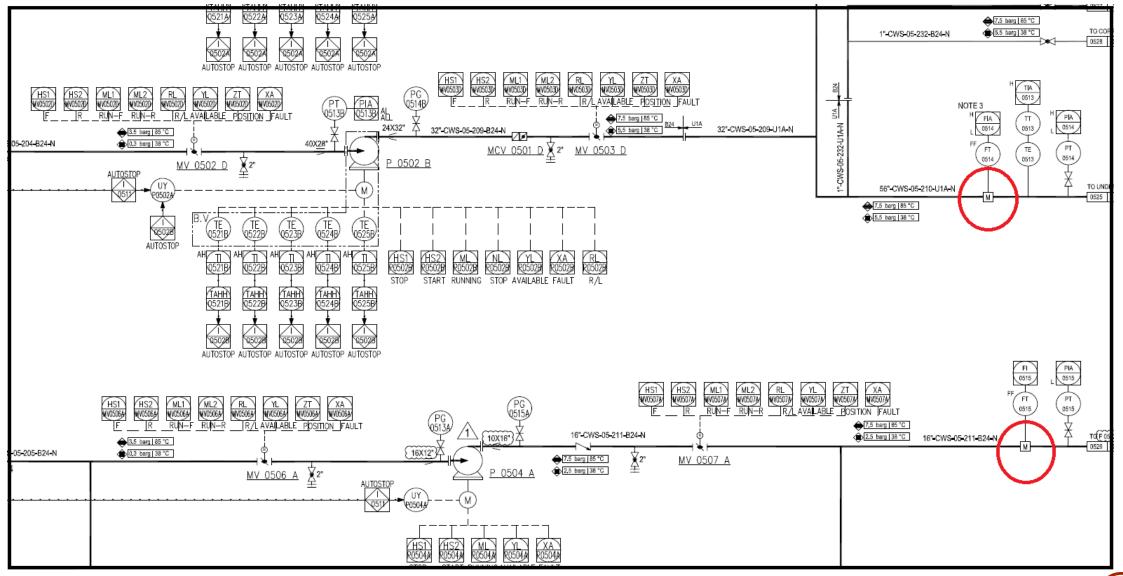


Selection Pattern

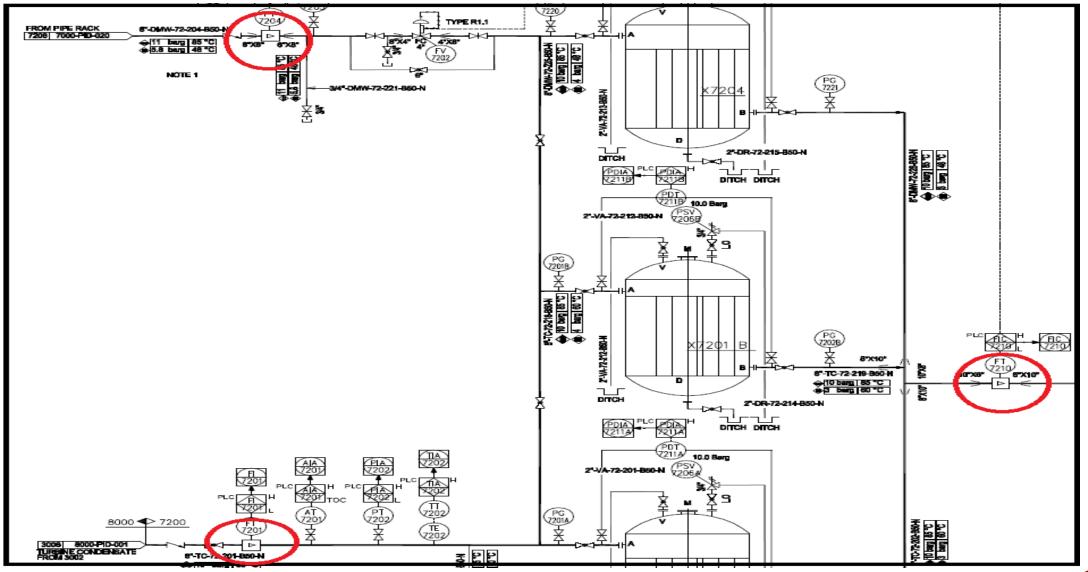
Application	Flowmeter Type
Gas station	Ultrasonic
Fuel system	Ultrasonic-Turbine-Vortex
Fluid with high amount of conductivity	Magnetic
Fluids with conductivity less than 5 us/m	Vortex
Low pressure gases	Venturi
High pressure steam services	Flow nozzle
High erosion present	Flow nozzle
Battery limit-Product	Coriolis
Process unit where controlling parameters is a high priority	Orifice



Examples

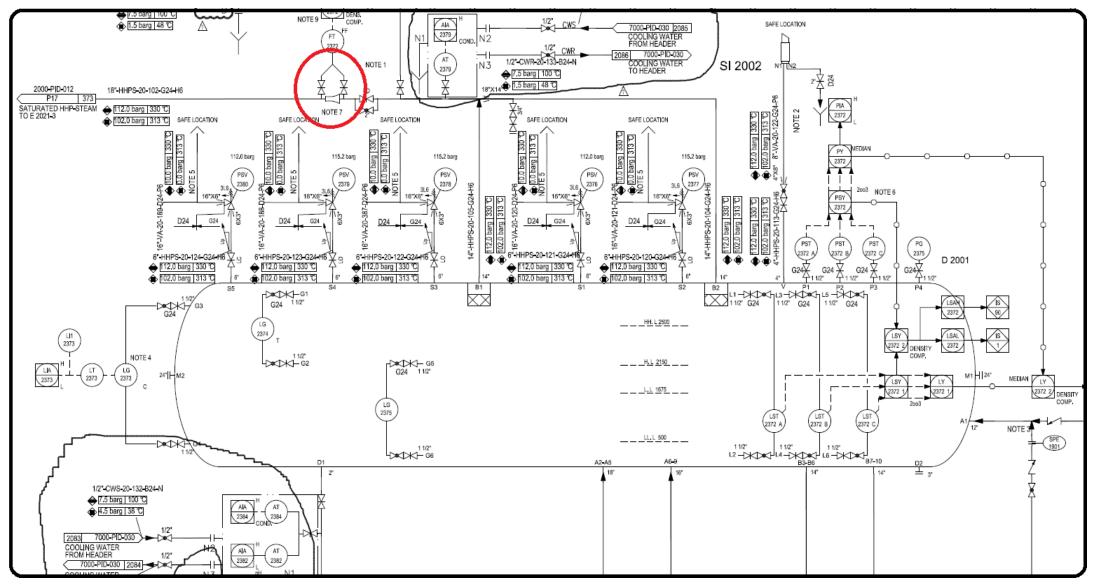


GAS STATION

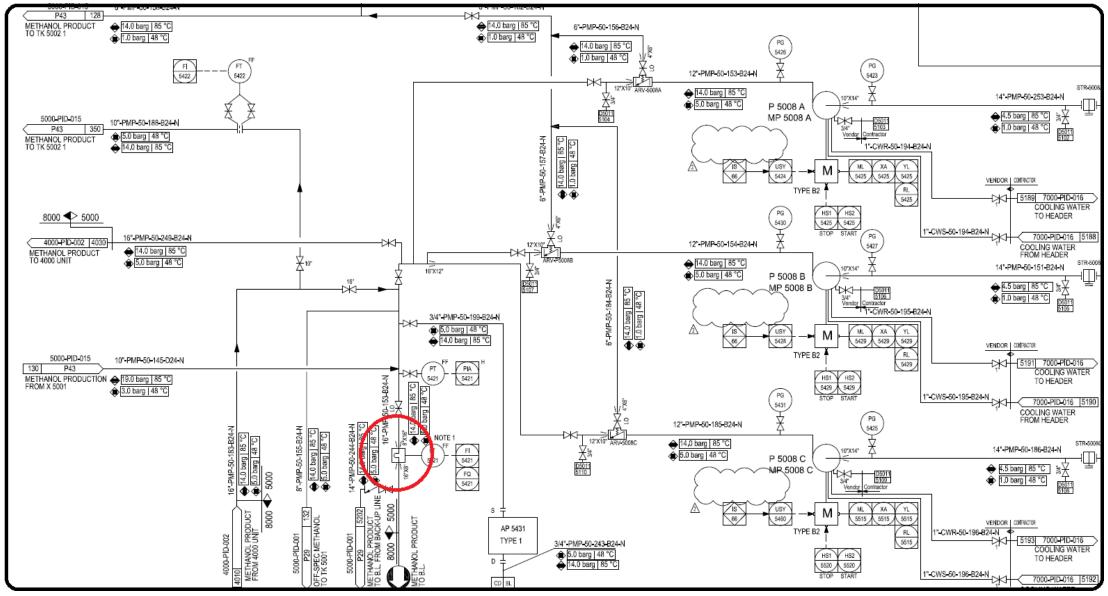


FLUID WITH HIGH AMOUNT OF CONDUCTIVITY- COOLING WATER SYSTEM

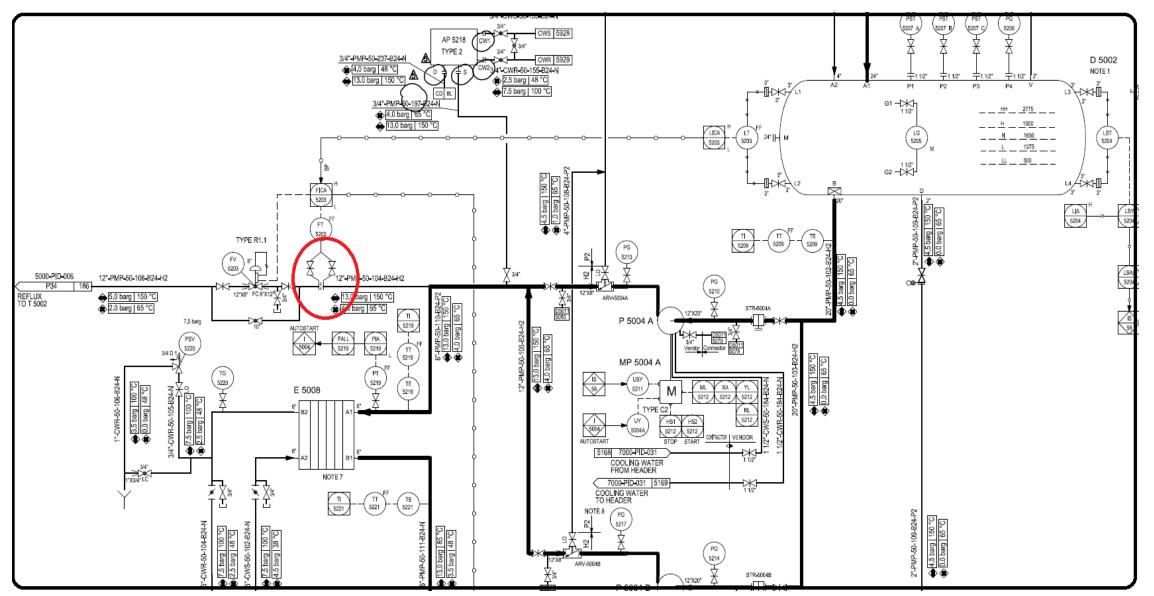
FLUIDS WITH CONDUCTIVITY LESS THAN 5 US/M-POLISHING UNIT



LOW PRESSURE GASES-COMBUSTIONAIR

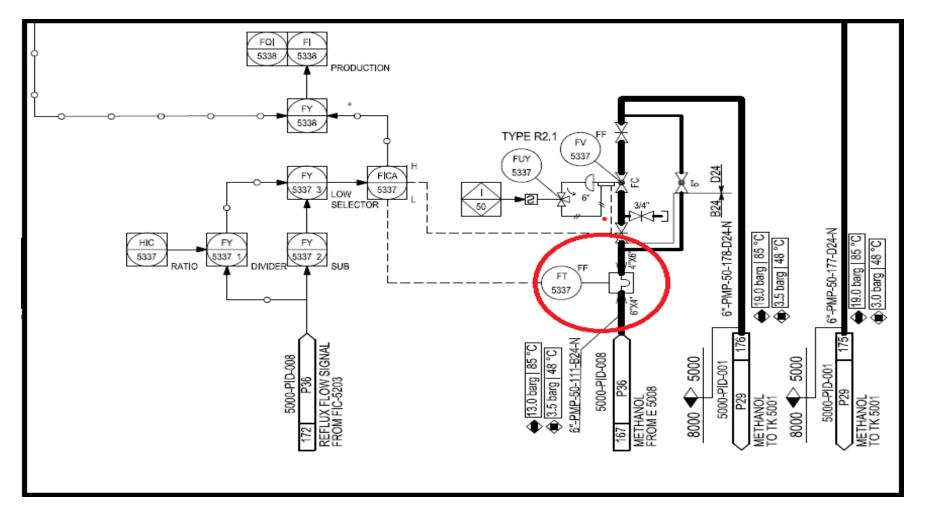


HIGH PRESSURE STEAM SERVICES-STEAM DRUMS



BATTERY LIMIT-PRODUCT

PROCESS UNIT WHERE CONTROLLING PARAMETERS IS A HIGH PRIORITY



FLOWMETER SIZING

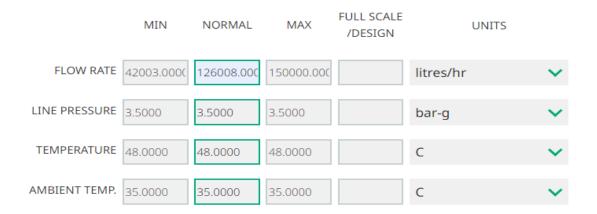
EXAMPLE : METHANOL

EMERSON FLOWMETER SIZING

Flow Transmitter, Mass Coriolis

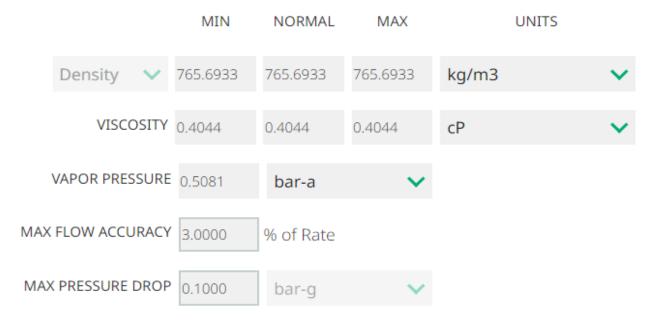
150000 kg/h
42003 kg/h
126008 kg/h
Liquid
3.5 bar g
0.40 cP
32.04 kg/kmol
6"
AISI 316
6", Class 150, RF
<0.1 bar

Sizing Input


5 1					
Measuremen	t Type				
Flow	Density	Viscosity			
Select Techno	ology				
 Coriolis 	Density	 Magnetic 			
 Viscosity 	 Vortex 				
Equipment Se	election				
 Coriolis Flow Transmitter; Sensor Only MVDSolo)	les Sensor and			
MVDSolo Application Requirements					
□ Hygienic (3A	VEHEDG)				
Display All Sensors with no filters					
PRODUCT FAMILY					
ALL SENSOR	S	~			
LINE SIZE					
6 INCH (DN1	150)	~			

Fluid Selection

FLUID STATE	
LIQUID	~
FLUID SOURCE	
DATABASE	~
PICK FROM FLUIDS	DATABASE
METHANOL	~


Process Variables

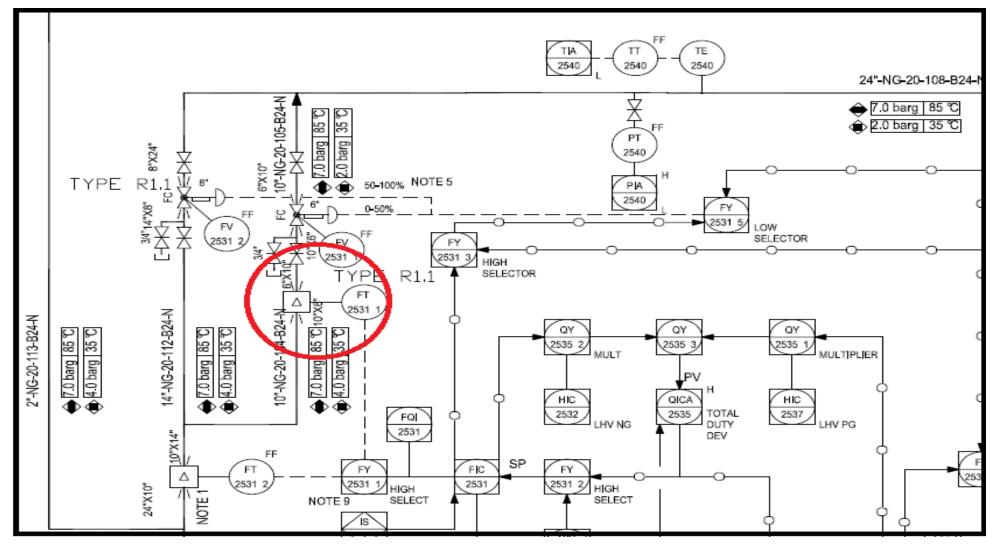
OPERATING CONDITIONS

FLUID PROPERTIES

RESULT

		MASS F	LOW RATE ACC	URACY	PR	ESSURE DRO)P	τu	(M/SEC)	Y	DENSITY 🔺	FLOW	
MODEL NAME	COMPARE	MIN 🍦		MAX $^{\diamond}$	MIN ^{\$}		MAX	MIN ^{\$}		MAX [‡]	ACCURACY (KG/M3)	RATE REPEATABILITY	MODEL DESCRIPTION
CMFHC4M		0.3098	0.1033	0.1	0.0003	0.0025	0.0035	0.3639	1.0916	1.2994	0.5000	0.05	MICRO MOTION ELITE CORIOLIS METER, 10-14 INCH (DN250-DN350), 316L STAINLESS STEEL
CMFHC3Y		0.1976	0.1	0.1	0.0007	0.0055	0.0077	0.5685	1.7056	2.0304	0.5000	0.05	MICRO MOTION ELITE CORIOLIS METER, 8-10 INCH (DN200-DN250), SUPER DUPLEX STEEL, HIGH PRESSURE
CMFHC2G		0.1	0.1	0.1	0.0022	0.0167	0.0233	0.9398	2.8195	3.3563	1.0000	0.05	MICRO MOTION ELITE CORIOLIS METER, 8 INCH (DN200), 316L STAINLESS STEEL
СМҒНСЗА		0.1976	0.1	0.1	0.0007	0.0055	0.0077	0.5685	1.7056	2.0304	0.5000	0.05	MICRO MOTION ELITE CORIOLIS METER, 8-10 INCH (DN200-DN250) HIGH TEMPERATURE SENSOR; 316L STAINLESS STEEL, HIGH TEMPERATURE
CMFHC3G		0.1976	0.1	0.1	0.0007	0.0055	0.0077	0.5685	1.7056	2.0304	1.0000	0.05	MICRO MOTION ELITE CORIOLIS METER, 10 INCH (DN250), 316L STAINLESS STEEL

FLOW RATE (LITRES/HR)	MASS FLOW ACCURACY	PRESSURE DROP (BAR)	VELOCITY	REYNOLDS NUMBER
150000.0000	0.1	0.0077	2.0304	439455.5008
139200.3000	0.1	0.0066	1.8842	407815.5837
128400.6000	0.1	0.0057	1.7380	376175.6665
126008.0000	0.1	0.0055	1.7056	369166.0583
117600.9000	0.1	0.0048	1.5918	344535.7494
106801.2000	0.1	0.0040	1.4456	312895.8322
96001.5000	0.1	0.0033	1.2995	281255.9151
85201.8000	0.1	0.0026	1.1533	249615.9979
74402.1000	0.1116	0.0020	1.0071	217976.0808
63602.4000	0.1305	0.0015	0.8609	186336.1636
52802.7000	0.1572	0.0011	0.7147	154696.2465
42003.0000	0.1976	0.0007	0.5685	123056.3293


Flow Rate (litres/hr)

FLOWMETER SIZING

EXAMPLE : NATURAL GAS

EMERSON FLOWMETER SIZING

Flow Transmitter, Vortex

Sizing Flow	
Minimum Flow	2800 Nm3/h
Normal Flow	8400 Nm3/h
Fluid Phase	Gas
Sizing Pressure	4 bar g
Sizing Temperature	35 ℃
Sizing Density	3.30 kg/m3
Sizing Viscosity	0.012 cP
Sizing Compressibility	0.99
Sizing Cp/Cv Ratio	1.30
Sizing Moleweight	16.74
Meter size	6 "
Material	
Flange: Size, Rating, Type Located in 10" pipe	6", Class 150, RF

Sizing Input

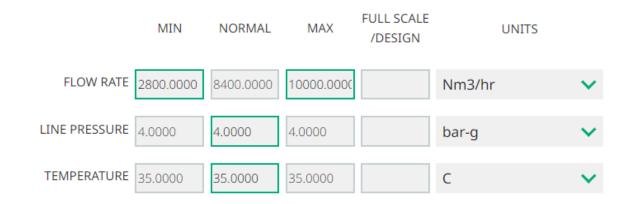
Measurement Type							
Flow	Density	Viscosity					
Select Techr	Select Technology						
	Density	 Magnetic 					
Viscosity	Vortex						
Application Requirements							
METER TYPE							
✓ Flanged/\	Flanged/Wafer						
Reducer							
Dual							
Quad							
PROCESS LINE SIZE							

10 INCH (DN250)

_ _ _ _ _ _ _ _ _ _ _ _

 \checkmark

Fluid Selection


FLUID STATE

METHANE

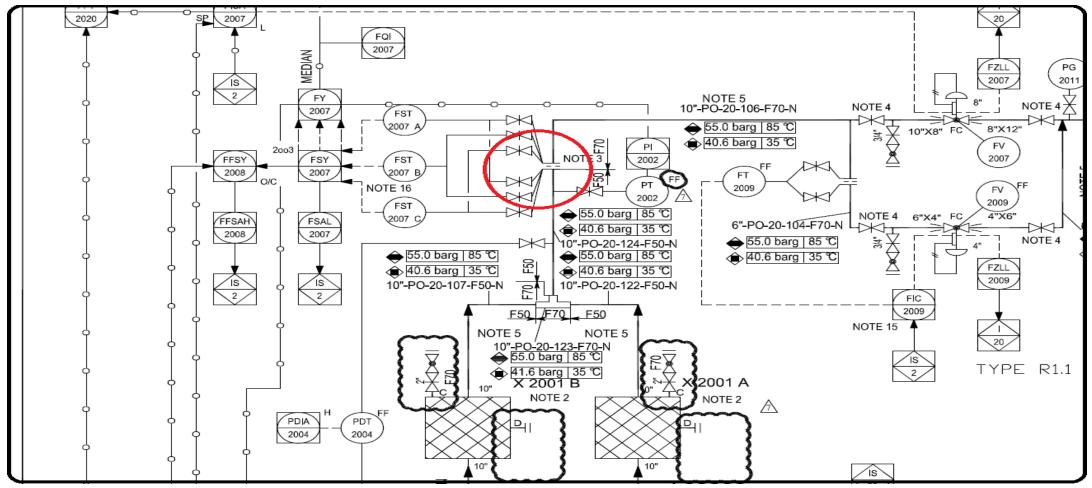
PICK FROM FLUIDS DATABASE	
DATABASE 🗸	
FLUID SOURCE	
GAS 🗸	

 \sim

OPERATING CONDITIONS

BASE REFERENCE CONDITIONS - GAS ONLY (FOR STANDARD/NORMAL UNIT CONVERSIONS)

FLUID PROPERTIES


	Min		Normal		Max		Full Scale /Design	
Flow Rate (Nm3/hr)	2800.0000		8400.000	00	10000.0000		-	
Line Pressure (bar-g)	4.00	00	4.0000		4.0000		-	
Temperature (C)	35.0	000	35.0000		35.0000		-	
Density (kg/m3)	3.16	38	3.1638	3.1638			-	
Viscosity (cP)	0.01	15	0.0115		0.0115		-	
Product Name		8600DF040		8800DF0	60	8600	0DF080	
Product Description	ו	Optimized for effective gene purpose flow r and clean fluid applications in steam air wate nitrogen.	ral netering d cluding	meter boo eliminates leak point sensors o temperate replacem	-free non-clog dy that s potential ts. Isolated offer flow and ure sensor ent without the process	effect purp and appl stea	mized for cost- ctive general oose flow metering clean fluid lications including m air water and ogen.	
Flow Accuracy @ Minimum		1		1		1		
Flow Accuracy @ Normal		1		1		1		
Flow Accuracy @ Maximum		1		1		1		
Pressure Drop @ Minimum (bar)		0.0157		0.0031		0.0010		
Pressure Drop @ Normal (bar)		0.1413		0.0275		0.0090		
Pressure Drop @ Maximum (bar)		0.2002		0.0390		0.0127		
Velocity @ Minimur (m/sec)	m	20.3100		8.9495		5.1683		
Velocity @ Normal (m/sec)		60.9301		26.8484		15.5048		
Velocity @ Maximu (m/sec)	m	72.5359		31.9624		18.4581		
Minimum Accurate Flow at 1% (Nm3/h	r)	567.3041		1287.4489		2229	9.3744	
Maximum Pressure rating (bar)	•							
Temperature Limits	; (C)							
Density Accuracy (Normal (kg/m3)	D							

FLOWMETER SIZING

EXAMPLE : PROCESS OXYGEN

EMERSON FLOWMETER SIZING

Orifice Plate Assembly

Sizing Flow	78000 Nm3/h
Minimum Flow	21923 Nm3/h
Normal Flow	65769 Nm3/h
Fluid Phase	Gas
Sizing Pressure	40 bar g
Sizing Temperature	_
Sizing Density	
Sizing Viscosity	0.022 cP
Sizing Compressibility	0.98
Sizing Cp/Cv Ratio	1.39
Sizing Moleweight	32.01 kg/kmol
Sizing dP	
Sizing Pipe ID, app	257.5 (10", Sch.30) mm
Sizing d/D Ratio, app	0.73
Material, Orifice Plate	Monel
Flange: Size, Rating, Type	10", Class 600, RF

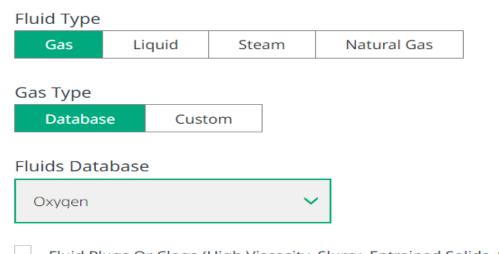
Sizing Name

Enter your Sizing Information below

*This information is not included in any custom tagging requirements

Sizing Name

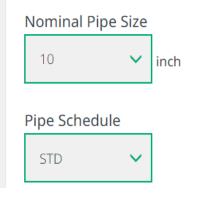
EIEPD


Service

Process Oxygen

Project Name

Methanol-ASU


Fluid Selection

rocess Pip	bing	
Units Of Me	easurement	
Inch	Millimeter	
Pipe Cross-	Section 🥡	٦
Pipe Cross- Circular	Section <i>i</i> Rectangular	
	Rectangular	
Circular	Rectangular	

Pipe Material

Stainless Steel (304, 316)	<
----------------------------	---

Pipe ID

Fluid Plugs Or Clogs (High Viscosity, Slurry, Entrained Solids, Solidifies Etc.)

Fluid Causes Wear And Erosion (Entrained Solids, Abrasive, Etc.)

Primary Element Details

Rosemount 1495 Orifice Plate		
Primary Element Material		
316 Stainless Steel	~	
Bore Configuration 🕡		
Concentric Bore, Square Edge	~	
Тар Туре 🏼 🧃		
Flange Tapping	>	
Orifice Flange/Fitting Type		
ASME B16.36 CL 600 RF	~	
Add A Model 1496 Orifice Flange	Unio	n
Calculation Standard		
ISO-5167-2 (2003)	~	

Solve For

Preferred DP	UOM		Condition	
0.24	bar	~	at Full Scale Flow	~

Process Variables

Operating Conditions

Rosemount 485 Annubar Primary

Built with a patented design, the Rosemount 485 Annubar Primary Element is an averaging pitot tube that delivers reliable measurement accuracy over a wide flow range. This sensor maintains a small profile in the pipe to reduce permanent pressure loss and increase energy savings. This T-shaped sensor is capable of temperature, pressure and flow measurements via a single pipe penetration.

Rosemount 1495 Orifice Plate

•

The Rosemount 1495 Orifice Plate Primary Element is engineered for reliable measurement performance. As the most common primary element used around the globe, this orifice plate offers a standard configuration with a squareedged concentric bore in both paddle and universal-type plates. This product is available in standard line sizes (2 - 24 in. or 50 - 600 mm) and is also suitable in high temperature and pressure applications. Permanent Pressure Loss (PPL): Medium

Permanent Pressure

Loss (PPL): Low

Straight Run: Better

Accuracy of Primary:

+0.75% of Rate

Insertion

Type of Installation:

- Straight Run: Good
- Accuracy of Primary: ±0.5-1.667% of Rate
- Type of Installation: Flanged

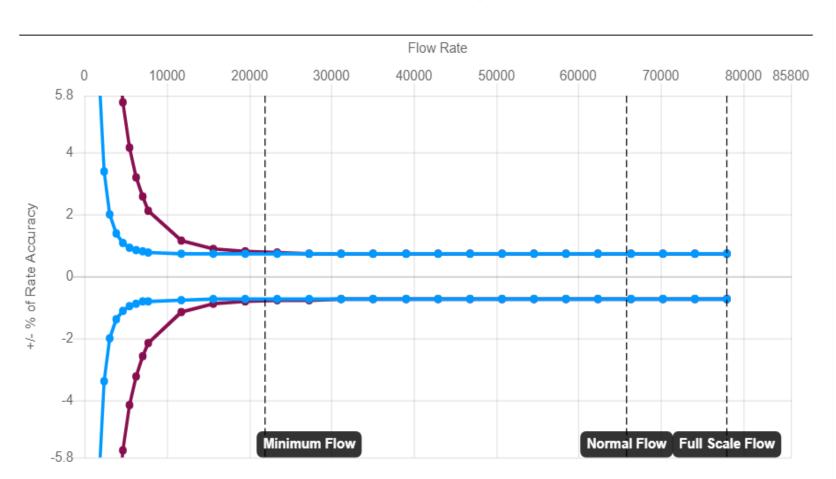
Rosemount[™] 405P Compact Orifice Plate

The Rosemount 405P Compact Orifice Plate Primary Element provides reliable and accurate flow measurements for closed loop control, general purpose monitoring and custody transfer applications. This easy-to-install, direct mount primary element is designed for gas, liquid and steam service. Available in a range of line sizes (0.5 – 12 in. or 15 - 300 mm), this product delivers reliable performance in barch process conditions.

- Permanent Pressure Loss (PPL): Medium
- Straight Run: Good
- Accuracy of Primary: ±1.25-2.25% of Rate
- Type of Installation: Wafer

Sort By: Perman	nent Pressure Loss	~				
Primary Eler	nent Technology	Operating Condition Notes	Calculated Minimum Flowrate (Nm3/hr)	Differential Pressure At Minimum Flow (bar)	Differential Pressure At Normal Flow (bar)	D I S
•	Rosemount 1495 Orifice Plate Standard Bore Bore Size = 7.250 inch (DP > Preferred DP)	Best Fit	2402.9993	0.021	0.186	
•	Rosemount 1495 Orifice Plate Special Bore Bore Size = 7.371 inch (DP = Preferred DP)	Good	2510.5898	0.019	0.171	
0	Rosemount 1495 Orifice Plate Standard Bore Bore Size = 7.375 inch (DP < Preferred DP)	Good	2514.6677	0.019	0.170	

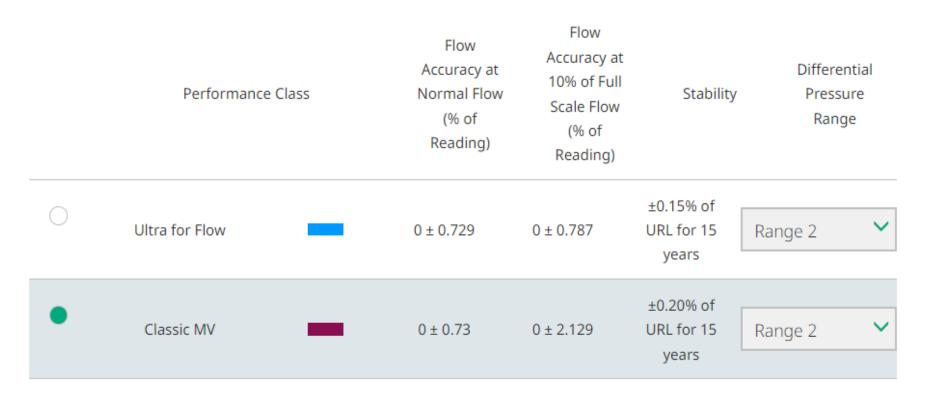
Transmitter Connection


Mounting Style Direct Mount Remote Mount	
Manifold Style Conventional	
Transmitter Details	
Communication Protocol 4-20mA HART® ✓	
Flow Calculations ? Fully Compensated Mass, Volumetric and Energy Flow No Flow Calculations 	
 Measurement Type Differential Pressure Static Pressure Process Temperature 	
Accuracy and Long Term Stability 🥡 Optimized for Flow (15 Year Stability, 14:1 Flow Turndown, 0.04% of Reading Accuracy)	
Optimized for Flow (15 fear stability, 14.1 Flow furnidown, 0.04% of Reading Accuracy)	

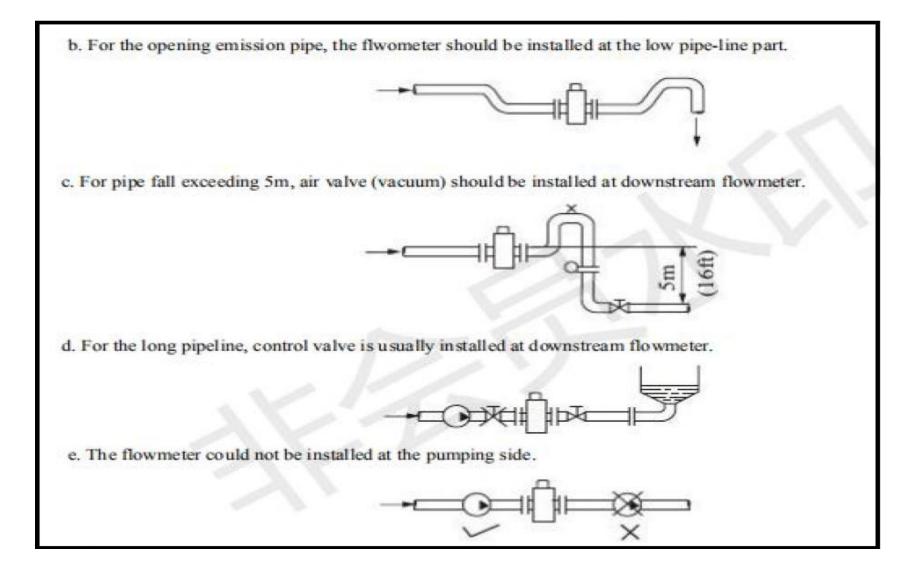
Industry Leading (15 Year Stability, 8:1 Flow Turndown, 0.04% of Span Accuracy)

Transmitter Capabilities

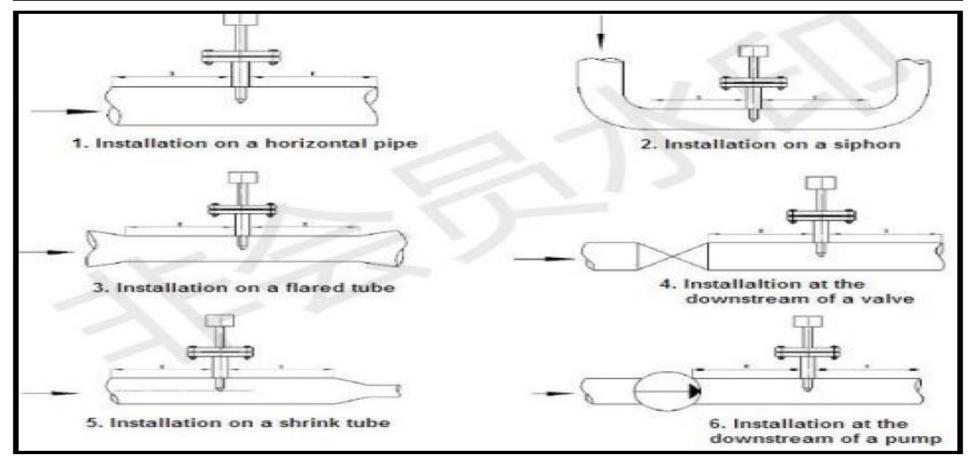
NEXT >



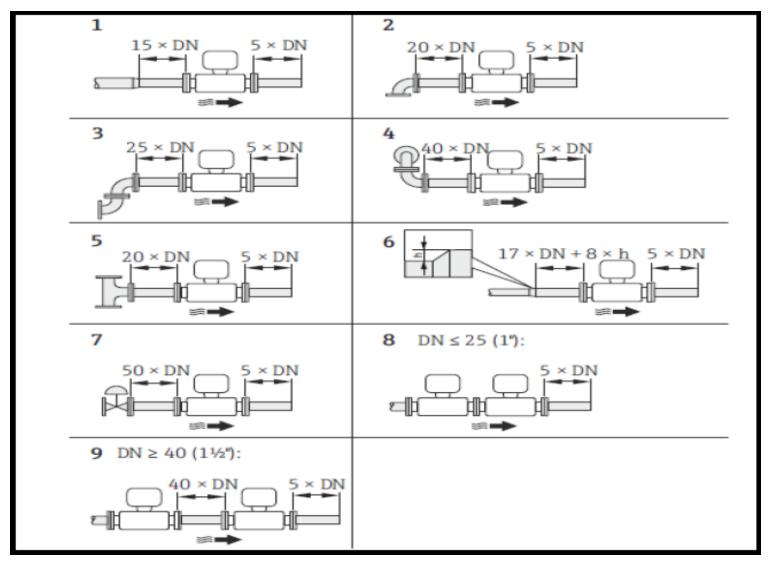
Flow Accuracy


20

Rosemount[™] 3051S MultiVariable[™] Pressure Transmitter and 1495 Orifice Plate



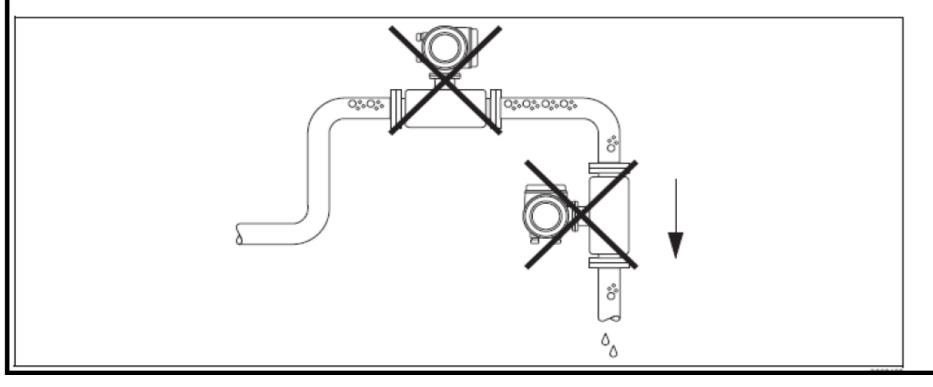
INSTALLATION PIPING DESIGN CONSIDERATION MAGNETIC FLOWMETER



Pipe installation type	Installation diagram	Upstream part	Downstream pant
Horizontal pipe	1	10D	5D
Syphon	2	20D	5D
Flared tube	3	20D	10D
Downstream of valve	4	20D	5D
Shrink tube	5	10D	10D
Downstream of pump	6	30D	1 0D
Mixed liquid	7	30D	5D

INSTALLATION PIPING DESIGN CONSIDERATION VORTEX FLOWMETER

INSTALLATION PIPING DESIGN CONSIDERATION MASS FLOWMETER


Mass flowmeter

3.1 Installed on site

Entrained air or gas bubbles in the measuring tube can result in an increase in measuring errors Avoid the following mounting locations in the pipe:

Highest point of a pipeline. Risk of air accumulating.

Directly upstream from a free pipe outlet in a vertical pipeline

PRE-COMMISSIONING AND START-UP

Standard Algorithms

Pressure, Temperature and Mole Weight Compensation of Flow

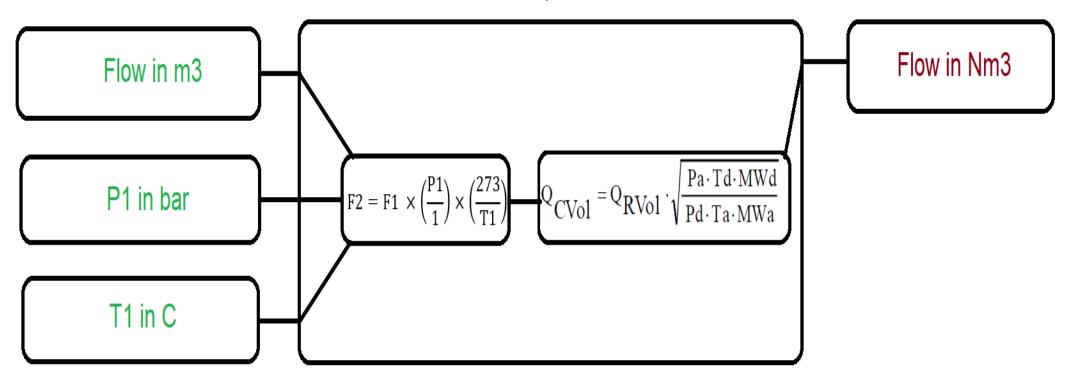
Where stated, pressure, temperature and mole weight compensation of flow is applied after

square root extraction of flow signal with the following algorithm:

	$Q_{CVol} = Q_{RVol} \cdot \sqrt{\frac{Pa \cdot Td \cdot MWd}{Pd \cdot Ta \cdot MWa}}$	or	$Q_{CMass} = Q_{RMass} \cdot \sqrt{\frac{Pa \cdot Td \cdot MWa}{Pd \cdot Ta \cdot MWd}}$
where Q_{CVol} Q_{RVol} Q_{CMass} Q_{RMass}	: Compensated flow [Nm ³ /h] : Uncompensated flow [Nm ³ /h] : Compensated flow [kg/h] : Uncompensated flow [kg/h]	P _a T _a Mw _a P _d T _d Mw _d	: Actual Pressure [bar a] : Actual Temperature [K] : Actual Mole Weight [kg/kmole] : Sizing Pressure [bar a] : Sizing Temperature [K] : Sizing Mole Weight [kg/kmole]

Gas and vapor flow measurements based on vortex meters are compensated by one of the following algorithms:

$$Q_{CVol} = Q_{RVol} \cdot \frac{Pa \cdot Td}{Pd \cdot Ta} \qquad \text{or} \qquad Q_{CMass} = Q_{RMass} \cdot \frac{Pa \cdot Td \cdot MWa}{Pd \cdot Ta \cdot MWd}$$


In case of failure of sensors used for compensation, then Pa, Ta or Mwa are to be replaced by Pd, Td or Mwd. If pressure, temperature and/or mole weight are not required, the factors must be removed in the above equation.

Flow compensation algorithms shall generally be configured with a plausibility check of compensating factors; i.e. if the factor values are outside predetermined limits, e.g. +/-15%, the limit factor shall be used for compensation, or in the case of sensor failure, the factors shall be set to the default (sizing) values. In both cases an alarm shall be initiated. Start-up flow loops with wide varying temperature and/or pressure shall be configured without limits.

Flow Compensation

	• • = • • • • • = • • • •
EMERSON	UK
FAURE HERMAN	FR
• FUJI	JAPAN
 INSTROMET 	NETHERLAND
KROHNE	GERMANY

ULTRASONIC FLOWMETER

MASS FLOWMETER (CORIOLIS TYPE)	
 BOPP & REUTHER EMERSON ENDRESS & HAUSER HONEYWELL KROHNE OVAL XI'AN DONGFENG MACHINERY&ELCTRONIC CO.,LTD BEIJING MAIN-LEND INSTRUMENT 	GERMANY UK/CHINA GERMANY/CHINA W.EUROPE GERMANY/CHINA JAPAN/CHINA CHINA CHINA

VENDOR LIST