Equipment & Process Design

E-6003

Design and Principles

Process data

		Shell Side		Tube	Side	11
		Inlet	Outlet	Inlet	Outlet	Units
Fluids		Process c	ondensate	Coolin	g water	
Quantity:	total	47:	47200		009	kg/h
	liquid	47200	47200	166009	166009	kg/h
	gas					kg/h
Operatin	g temperature	100	65	38	48	°C
Operatin	g pressure	1,5		4,5		bar g
Liquid:	molecular weight	18,02	18,02	18,02	18,02	kg/kmol
	density	958	980	993	989	kg/m ³
	viscosity	0,283	0,434	0,681	0,567	cP
	specific heat capacity	4,213	4,184	4,175	4,177	kJ/kg/°C
	thermal conductivity	0,6768	0,6505	0,6199	0,6323	W/m/°C
	boiling temperature	1	06			°C
Gas:	molecular weight					kg/kmol
	density					kg/m³
	viscosity					cP
	specific heat capacity					kJ/kg/°C
	thermal conductivity					W/m/°C
	dew point					°C

Heating and Cooling Table

			Shell s	ide			
Temperature °C	Gas fraction wt %	Duty profile MW	Liquid density kg/m³	Liquid viscosity cP	Liquid heat capacity kJ/kg/°C	Liquid thermal conductivity W/m/°C	Surface tension dyn/cm
100	0,00	0,0	958	0,283	4,213	0,6768	58
96	0,00	-0,2	961	0,295	4,209	0,6746	59
92	0,00	-0,4	964	0,307	4,205	0,6723	60
88	0,00	-0,6	966	0,321	4,201	0,6697	60
84	0,00	-0,9	969	0,336	4,197	0,6670	61
81	0,00	-1,1	971	0,352	4,194	0,6641	62
77	0,00	-1,3	974	0,37	4,191	0,6609	63
73	0,00	-1,5	976	0,389	4,189	0,6576	63
69	0,00	-1,7	978	0,411	4,186	0,6541	64
65	0,00	-1,9	980	0,434	4,184	0,6505	65
			Tube s	ide			. Filli
Temperature	Gas fraction	Duty profile	Liquid density	Liquid viscosity	Liquid heat capacity	Liquid thermal conductivity	Surface tensio
°C	wt %	MW	kg/m³	cP	kJ/kg/°C	W/m/°C	dyn/cm
48	0,00	0,0	989	0,567	4,177	0,6323	63
47	0,00	0,2	990	0,579	4,176	0,6309	63
46	0,00	0,4	990	0,59	4,176	0,6296	64
45	0,00	0,6	991	0,602	4,176	0,6283	64
44	0,00	0,9	991	0,614	4,176	0,6269	65
42	0,00	1,1	992	0,627	4,175	0,6255	65
41	0,00	1,3	992	0,64	4,175	0,6241	66
40	0,00	1,5	992	0,653	4,175	0,6227	66
39	0,00	1,7	993	0,667	4,175	0,6213	67
38	0,00	1,9	993	0,681	4,175	0,6199	67

<

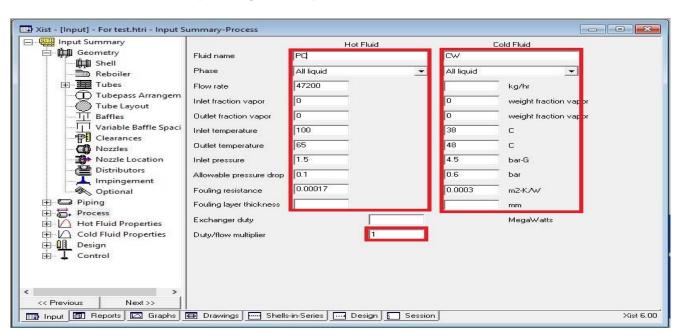
<< Previous

>

🗊 Input 🗐 Reports 🖾 Graphs 🖨 Drawings 🔤 Shells-in-Series 🗔 Design 💽 Session

Next>>

Equipment & Process Design

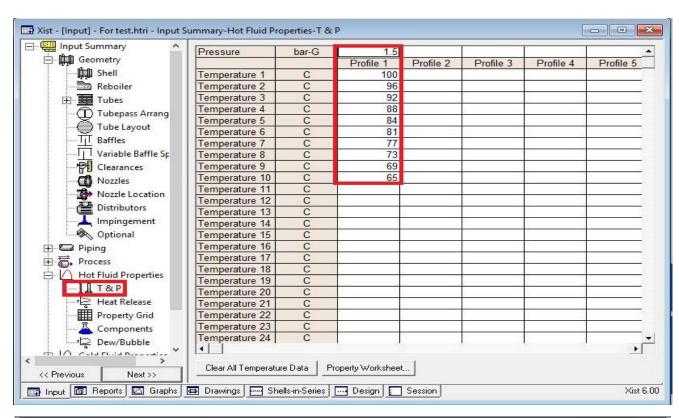


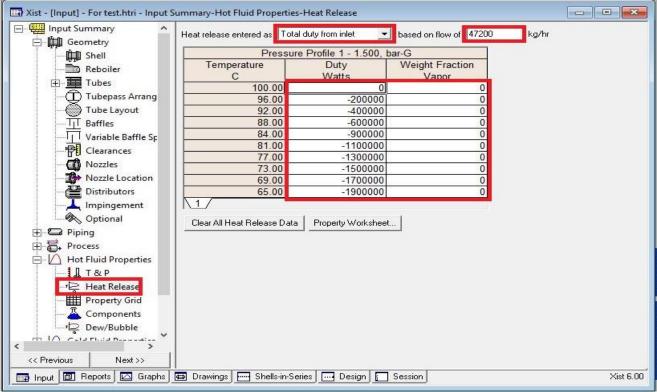
Xist 6.00

Input Summary	Case Mode	T
Geometry	■ Rating C Simulation C De	sign
Shell	Exchanger Configuration	
Reboiler Tubes	Exchanger service Generic Shell and Tube	
Tubepass Arrangem	Process Conditions	
Tube Layout	Flow rate Hot Shell 47200	Cold Tube kg/hr
Baffles	Inlet/outlet Y 0 / 0	0 / 0 Weight fraction vapor
Variable Baffle Spaci		38 / 48 C
Clearances		
- O Nozzles	Inlet P/allow dP 1.5 / 0.1	4.5 / 0.6 bar-G / bar
Nozzle Location	Fouling resistance 0.00017	0.0003 m2-K/W
Distributors	Shell Geometry	Baffle Geometry
Impingement	TEMA type B 👻 E 💌 M 👻	Type Single segmental 💌
Optional	ID 300 mm	Orientation Perpendicular 🗸
Process	Orientation Horizontal 👻	Cut 25 % ID
Hot Fluid Properties	Hot fluid Shellside 👻	Spacing 100 mm
Cold Fluid Properties	Tube Geometry	
Design		▼ Wall thickness 1.651 ▼ mm
E Control	Length 6.096 - m	Layout angle 30 V degrees
	Tube OD 19.05 • mm	Tubepasses 1 🗾
>	Pitch 25.4 mm	Tubecount
Input 📠 Reports 🖂 Graphs		
ist - [Input] - For test.htri - Input	Summary-Geometry	-
	Summary-Geometry	
Input Summary	Shell Geometry	Baffle Geometry
Input Summary	Shell Geometry TEMA type TEMA type	Baffle Geometry Type Single segmental
Input Summary Geometry IIII Shell	Shell Geometry	Baffle Geometry
Input Summary Geometry Geometry Communication Reboiler December Tubes	Shell Geometry TEMA type B v E v M v ID 300 mm Orientation Horizontal v	Baffle Geometry Type Single segmental
Input Summary Geometry Geometry Geometry Geometry Geometry Geometry Reboiler Geometry Tubes Geometry Geom	Shell Geometry TEMA type B E M ID 300 mm Orientation Horizontal	Baffle Geometry Type Single segmental Orientation Perpendicular Cut 25 % ID
Input Summary Geometry Geometry Communication Reboiler Tubes Communication Tubepass Arrangem Communication Tube Layout	Shell Geometry TEMA type B E M ID 300 mm Orientation Horizontal	Baffle Geometry Type Single segmental Orientation Perpendicular
Input Summary Geometry Shell E- Tubes Tubepass Arrangem Tube Layout Baffles	Shell Geometry TEMA type B E M ID 300 mm Orientation Horizontal Hot fluid Shellside	Baffle Geometry Type Single segmental Orientation Perpendicular Cut 25 % ID
Input Summary Geometry Shell Comparison Tubes Comparison Tubepass Arrangem Comparison Tube Layout Comparison Baffles Comparison Tube Layout Comparison Com	Shell Geometry TEMA type B E M ID 300 mm Orientation Horizontal Hot fluid Shellside	Baffle Geometry Type Single segmental Orientation Perpendicular Cut 25 % ID
Input Summary Geometry Shell E- Tubes Tubepass Arrangem - Tube Layout - Baffles - Variable Baffle Spaci - Clearances	Shell Geometry TEMA type B F E M F ID 300 mm Orientation Horizontal F Hot fluid Shellside F Tube Geometry Type Plain F	Baffle Geometry Type Single segmental Orientation Perpendicular Cut 25 % ID Spacing 100 mm Wall thickness 1.651 mm
Input Summary Geometry Shell Tubes Tubepass Arrangem Tube Layout Baffles Variable Baffle Spaci Clearances	Shell Geometry TEMA type B E M ID 300 mm Orientation Horizontal Hot fluid Shellside Tube Geometry	Baffle Geometry Type Single segmental Orientation Perpendicular Cut 25 % ID Spacing 100 mm
Input Summary Geometry Shell Class Arrangem Tubepass Arrangem Tube Layout Shell Shell Clearances Nozzles Nozzle Location	Shell Geometry TEMA type B F E M F ID 300 mm Orientation Horizontal F Hot fluid Shellside F Tube Geometry Type Plain F	Baffle Geometry Type Single segmental Orientation Perpendicular Cut 25 % ID Spacing 100 mm Wall thickness 1.651 mm
Input Summary Geometry Shell Class Arrangem Tubepass Arrangem Tube Layout Baffles Clearances Nozzles Nozzle Location Distributors	Shell Geometry TEMA type ID 300 mm Orientation Horizontal Hot fluid Shellside Tube Geometry Type Plain Length 6.096 m Tube OD 19.05 mm	Baffle Geometry Type Single segmental Orientation Perpendicular Cut 25 % ID Spacing 100 mm Wall thickness 1.651 mm Layout angle 30 degrees
Input Summary Geometry Shell Clearances Clearances Nozzles Nozzle Location Distributors Impingement	Shell Geometry TEMA type E M ID 300 mm Orientation Horizontal Hot fluid Shellside Tube Geometry Type Plain Length 6.096 m Tube OD 19.05 mm	Baffle Geometry Type Single segmental Orientation Perpendicular Cut 25 % ID Spacing 100 mm Wall thickness 1.651 mm Layout angle 30 degrees Tubepasses 1
Reboiler Tubes Tubepass Arrangem Tube Layout Tube Layout Tube Layout Clearances Nozzles Nozzle Location Distributors Impingement Optional	Shell Geometry TEMA type ID 300 mm Orientation Horizontal Hot fluid Shellside Tube Geometry Type Plain Length 6.096 m Tube OD 19.05 mm	Baffle Geometry Type Single segmental Orientation Perpendicular Cut 25 % ID Spacing 100 mm Wall thickness 1.651 mm Layout angle 30 degrees Tubepasses 1
Input Summary Geometry Shell Clearances Clearances Nozzles Nozzle Location Distributors Impingement Optional	Shell Geometry TEMA type ID 300 mm Orientation Horizontal Hot fluid Shellside Tube Geometry Type Plain Length 6.096 m Tube OD 19.05 mm	Baffle Geometry Type Single segmental Orientation Perpendicular Cut 25 % ID Spacing 100 mm Wall thickness 1.651 mm Layout angle 30 degrees Tubepasses 1
Input Summary Geometry Shell Clearances Clearances Nozzles Nozzle Location Distributors Impingement Optional Piping Process	Shell Geometry TEMA type ID 300 mm Orientation Horizontal Hot fluid Shellside Tube Geometry Type Plain Length 6.096 m Tube OD 19.05 mm	Baffle Geometry Type Single segmental Orientation Perpendicular Cut 25 % ID Spacing 100 mm Wall thickness 1.651 mm Layout angle 30 degrees Tubepasses 1
Input Summary Geometry Shell Clearances Clearances Nozzles Nozzles Nozzles Nozzle Location Distributors Impingement Optional Piping Process Hot Fluid Properties	Shell Geometry TEMA type ID 300 mm Orientation Horizontal Hot fluid Shellside Tube Geometry Type Plain Length 6.096 m Tube OD 19.05 mm	Baffle Geometry Type Single segmental Orientation Perpendicular Cut 25 % ID Spacing 100 mm Wall thickness 1.651 mm Layout angle 30 degrees Tubepasses 1
Input Summary Geometry Shell Clearances Clearances Nozzles Nozzle Location Clearances Nozzle Location	Shell Geometry TEMA type ID 300 mm Orientation Horizontal Hot fluid Shellside Tube Geometry Type Plain Length 6.096 m Tube OD 19.05 mm	Baffle Geometry Type Single segmental Orientation Perpendicular Cut 25 % ID Spacing 100 mm Wall thickness 1.651 mm Layout angle 30 degrees Tubepasses 1

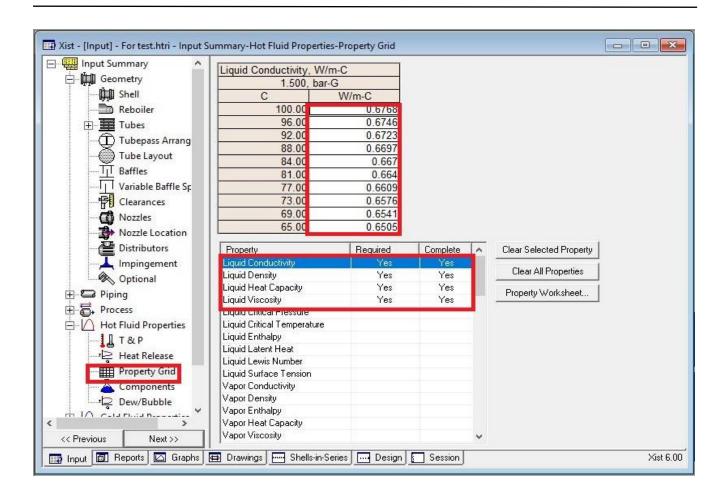
Open HTRI and Input Summery sheet and enter data in red areas

Equipment & Process Design


Enter operating data in process sheet in red areas


Enter heating and cooling table data in hot and cold fluid properties in red areas

🔛 Xist - [Input] - For test.htri - Input Sun	nmary-Hot Fluid Properties	
Input Summary Geometry Geometry Figure Shell Tubes Tubepass Arrangem Tube Layout Tub Baffles	Fluid name Fluid compressibility Fluid compressibility Fluid compressibility Physical Property Input Option Heat Release Input Method Image: Component by component Image: Component by component	
Variable Baffle Spaci	C Component and grid properties C Program calculated Composition Units C Mass C Moles Property Options Temperature interpolation Program Program	
Piping Process Hot Fluid Properties Cold Fluid Properties Design Control	Property Generator Property Worksheet	
<< Previous Next >> Imput Reports Graphs	Drawings - Shells-in-Series - Design - Session	Xist 6.00



Equipment & Process Design

Put shell info in shell sheet in red areas

Note:

1. Initially estimate shell ID between 1.5-3 times tube-side pipeline ID, here it is 6 inch so

first estimation would be 12 inch.

🔛 Xist - [Input] - For test.htri - Input Su	mmary-Geometry-Shell	• •
□ Input Summary	Case Mode	
Image: Shell	TEMA Type Multiple Shells Image: Shell Inside Diameter Number of shells in series 300 mm Shell Orientation Image: Shell Orientation Image: Horizontal Flow Direction Image: Vertical Flow in 1st tubepass Image:	
Distributors Impingement Optional Design Design Design Design Design Design Design Design D	Hot Fluid Location	
< Previous Next >>	Drawings - Shells-in-Series - Design - Session	Xist 6.00

Equipment & Process Design

In Reboiler Sheet do not enter an input

😨 Xist - [Input] - E-5010.htri - Input Su	mmary-Geometry-Reboiler		
🖃 🛄 Input Summary 🔥 🔺	Reboiler Data		
🖨 🛄 Geometry	Reboiler type	No piping specified	
🛄 Shell	0.000		
- 🔁 Reboiler	Bundle diameter]mm	
田 🧮 Tubes	Kettle diameter	mm	
Tubepass Arrang 	Liquid level height/bundle diamete		
Baffles	Entrainment ratio	kg liquid/kg vapor	
Variable Baffle Sp	Number of boiling components		
Clearances	Required liquid static head	m	
Nozzle Location	Inlet Pressure Location		
Distributors	 At inlet nozzle 		
- Impingement	C At column bottom		
Optional	C At top of bundle		
🕂 🖾 Piping			
🕀 👼 Process			
😑 🛆 Hot Fluid Properties 👘			
Heat Release			
Property Grid			
Dew/Bubble			
🚊 🖉 Cold Fluid Properties 🗸			
< >			
<< Previous Next >>			
📑 Input 🗊 Reports 🖾 Graphs	🖶 Drawings 🔤 🔤 Shells-in-Series 💽	🖸 Design 🚺 Session	Xist 6.00

Equipment & Process Design

Put Tube mechanical data

Since it is cooling water, 19.05 is selected and thanks to presence of CO2 and Ammonia

in the water Duplex SS is selected.

According to table below tube thickness of 1.65 is chosen.

Table 1.3 Typical diameters, thicknesses and pitch arrangement of tubes

Tube outside dian	neter	mm	15.88	19.05	25.40	31.75
		in ⁻	3 8	3	1	1¦
Tube thickness	Carbon and low-alloy steels	mm	1.65	2.11	2.77	3.40
	·	in	0.065	0.083	0.109	0.134
		b.w.g.	16	14	12	10
	Stainless steels, aluminium, copper and nickel alloys	mm	1.24	1.65	2.11	2.77
		in	0.049	0.065	0.083	0.109
		b.w.g.	18	16	14	12
Minimum tube	Clean service (30° or 60°)	mm	19.84	23.81	31.75	39.69
pitch	•	in	22	15 16	11	1 🐇
	Fouling service (45° or 90°)	mm	22.22	25.40	31.75	39.69
		in	?	1	11	1 16

Input Summary	Tube Geometry FJ Curves					
Shell	Туре	Plain	<u> </u>	Tube Pitch-		_
Reboiler	Tube internals	None	-	Pitch	25.4	mm
1 Tubes	Tube OD	19.05 👻	mm	Ratio	1.33333	-
Tubepass Arrangem	Average wall thickness	1.651 💌	mm	1		
	Bundle Geometry Tube layout angle	30 💌	degrees	Tubecount		
Clearances	Tubepasses	1 💌		🔽 Rigorou	s tubecount	
Nozzles	Length	6.096 💌	m			
	Tube Material Material	Super Duplex	25Cr-7Ni-4Mo (532750)		-
Impingement Optional	Thermal conductivity	-	W/m-C	Density		kg/m3
E Piping	Elastic modulus		MPa			
E Frocess	Tapered Tubes for Reflux	Condensation				
Hot Fluid Properties Cold Fluid Properties	Taper angle		deg			
< Previous Next >>						

Equipment & Process Design

Act like below

🔝 Xist - [Input] - untitled3 - Input Sun	nmary-Geometry-Tube Layout	- • ×
Input Summary Geometry	Use tube layout drawing as input No	
∰ Shell ∰ Reboiler ⊕∰ Tubes		
Tubepass Arrangem		
····· <mark>· </mark> Baffles ·····I] Variable Baffle Spaci ···· P [] Clearances		
Distributors		
⊕ - 🕢 Hot Fluid Properties ⊕ - 💦 Cold Fluid Properties ⊕ - 🔐 Design		
⊞ ↓ Control		
< Colored Action		
Input Reports Graphs	🖬 Drawings 🔤 Shells-in-Series 🗔 Design 💽 Session	Xist 6.00

Equipment & Process Design

Put baffle info in baffle sheet in red areas like below

out Summary	Baffle Geometry		
Geometry	Type Single segmental	💌 🕫 Cut 🛛 25	% of shell ID
🛄 Shell 	Cut orientation Program sets	C Window area	percent
Tubes	Crosspasses		
Tubepass Arrangem	Baffle Spacing		
Tube Layout	Central 100 mm	Inlet spacing	mm
	Variable 🗖	Outlet spacing	mm
Clearances	Miscellaneous		
Nozzle Location	Double-seg. overlap	Tuberows	
Distributors	Thickness	mm	
L Impingement	Thickness at tube hole	mm	
···· Ø Optional Piping	Support plates / baffle space	T	
Process	Windows cut from baffles	0 💌	
Hot Fluid Properties	Distance from tangent to last baffle	mm	
Cold Fluid Properties Design	Rho-V2 for NTIW cut design	kg/m-s2	
Control	Central pipe OD	mm	
	Helical baffle crossing fraction		
>			
ous Next>>			

Equipment & Process Design

🗔 Xist - [Input] - For test.htri - Input Sur	nmary-Geometry-Impinge	ement		
Input Summary	Impingement Device			
Geometry	Impingement device preser	If required by TEMA	-	
Reboiler	Impingement type	Rectangular plate	-	
Tubes	Rho-V2 for impingement	kg/m-s2		
Tubepass Arrangem	Plate/nozzle diameter	plate dia	ameter/nozzle diameter ratio	
Tube Layout	Plate thickness	mm		
Variable Baffle Spaci	Plate height above tubes	mm		
Clearances	Plate length	mm		
Nozzles	Plate width	mm		
Distributors	Rows of rods			
	Rod diameter	mm		
Process				
Hot Fluid Properties				
Cold Fluid Properties				
⊡ Design ⊡ L Control				
< >				
<< Previous Next >>		eries 🗔 Design [S		Xist 6.00
Input 🗐 Reports 🖸 Graphs 🖽	Diawings Per Shelistin-S	elles [Design] [5	ession	AISt 6.00
[
Xist - [Input] - E-5010.htri - Input	Summary-Geometry-Cle	arances		
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Pairs of sealing strips	Program Set 💌		
Shell	Seal strip width	mm		
Reboiler	Seal strip clearance	mm		
	Baffle clearance type	TEMA	•	
Tubepass Arrang	Block Bypass Stream	s	Passlane Seal Device	
Baffles	A stream	F stream	Seal device type Ro	ids 🔄 👻
	E stream		Number of rods Pro	ogram Set 💌 🚔
Clearances			Rod diameter	
Nozzle Location	Diametral Clearances		Height under Nozzles	
Distributors	Tube-to-baffle	mm		mm
	Baffle-to-shell		Outlet	
Optional		·		
Process	Bundle-to-shell	mm	Liquid outlet	mm
Hot Fluid Properties				
T&P				
Components				
Dew/Bubble				
Cold Fluid Properties				
	1			
Input Reports Graphs	Drawings - She	ells-in-Series 🗔 Design	Session	Xist 6.00

Act exactly like below for impingement sheet and Clearance

Equipment & Process Design

Enter nozzle info from piping info

😨 Xist - [Input] - For test.htri - Input Su	mmary-Geometry-Nozzles	
Input Summary Geometry Shell Reboiler Tubes Tubepass Arrangem Tube Layout Tube Layout Tube Baffles Variable Baffle Spaci Clearances Nozzles Nozzles Nozzles Nozzles Nozzles Nozzles Nozzles Nozzles Notributors Impingement Optional Process Optional Process P	Shellside Tubeside Nozzle standard 02ANSI_B36_13_TAE • Nozzle schedule • Inlet ID 97.00 Number at each position 1 Outlet ID 97.181 Number at each position 1 Liquid outlet ID 97.181 Number at each position 1 Liquid outlet ID 97.181 Shellside • Inlet type • Outlet type • Shellside Nozzle Locations • Radial position on shell of inlet nozzle Top Longitudinal position on shell of inlet nozzle • Location of nozzle at U-bend •	
🗊 Input 🗐 Reports 🖸 Graphs 🔄	🗊 Drawings 🔤 Shells-in-Series 🔤 Design 🚺 Session	Xist 6.00

Equipment & Process Design

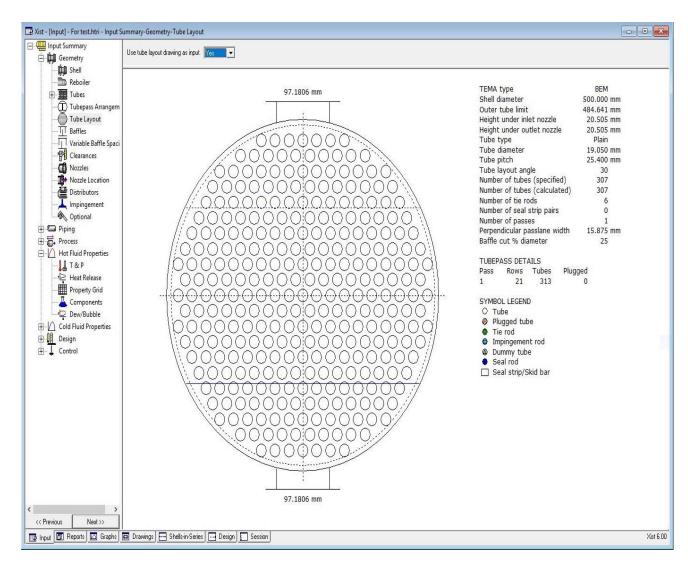
Set nozzle location

Xist - [Input] - For test.htri - Input Sur	mmary-Geometry-I	Nozzle Location			
⊡∰ Input Summary ⊡∭ Geometry	- Shellside Positions	and the second se	Tubeside Pos		Front Head
Line Geofficial Shell	Inlet radial	100 -	Inlet position	Front head 🔄 💌	Location 🗾 🗾
Reboiler	Inlet longitudinal	Rear head 🔹	Inlet type	Radial 👱	ТЕМА Туре
⊡- ≣ Tubes	Outlet radial	Opposite side 💽	Outlet type	Same as inlet 💌	B • E • M •
	Nozzle at U-bend	At U-bend 💌	Tubeside Pro	cess All liquid	
			Type	TAiriidaia	
Variable Baffle Spaci					
Clearances					
Nozzles					
- (Distributors				1	1 I
Optional					
⊞					
Hot Fluid Properties					
E-Cold Fluid Properties					
🗄 🛄 Design					
⊞-↓ Control		TT.			
		11			
📑 Input 🗊 Reports 🖾 Graphs 🖬	Drawings 🔤 Sł	hells-in-Series 🗔 🚾 Desi	gn 🚺 Session	J	Xist 6.00

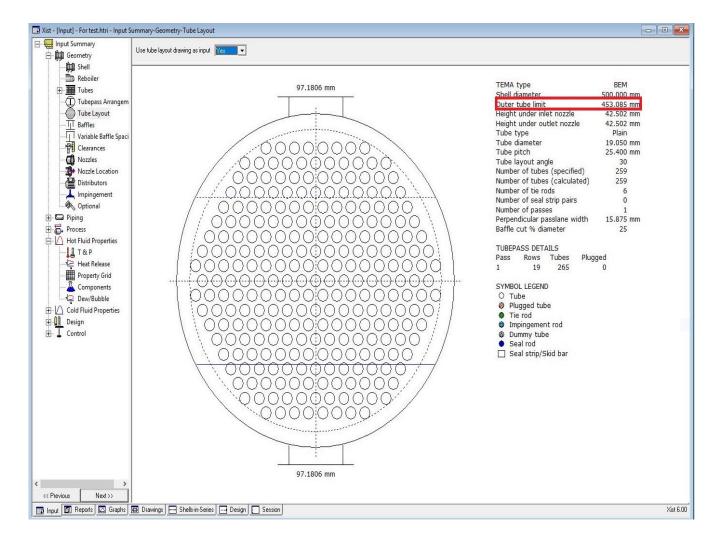
Equipment & Process Design

Results:

- 1. Now run and the dp in hot shell side becomes 1.62 bar and overdesign factor becomes -22%
- 2. Now increase the shell ID and overdesign factor becomes 35% and dp reduces to 0.89 bar
- 3. Now increase baffle spacing to 250 mm and run it again. Dp reduces to 0.215 and overdesign Factor to 33%.

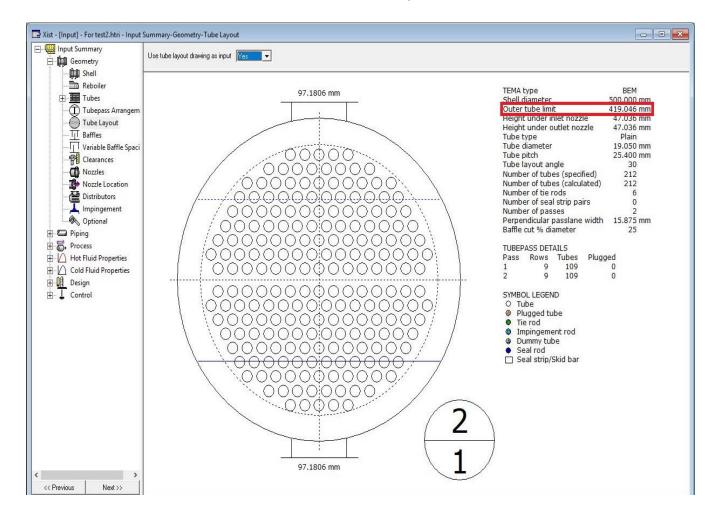

Spacing	Oversizing
100	35
250	33
300	31
350	31
400	30.5

- 4. Now decrease tube length to 4.87 to reduce oversize factor and run it and oversizing factor becomes 5.54%. As a result, dp also reduces to 10.17
- 5. Now increase Shell ID to 450mm and reduce Tube length to 4.27m simultaneously and the result is that dp becomes 0.138 bar and overdesign factor 14%



6. Now increase Shell ID to 500 mm and activate tube layout and run it and the overdesign

factor becomes 40%



7. Now omit some tube like below and run it and the overdesign becomes 21%

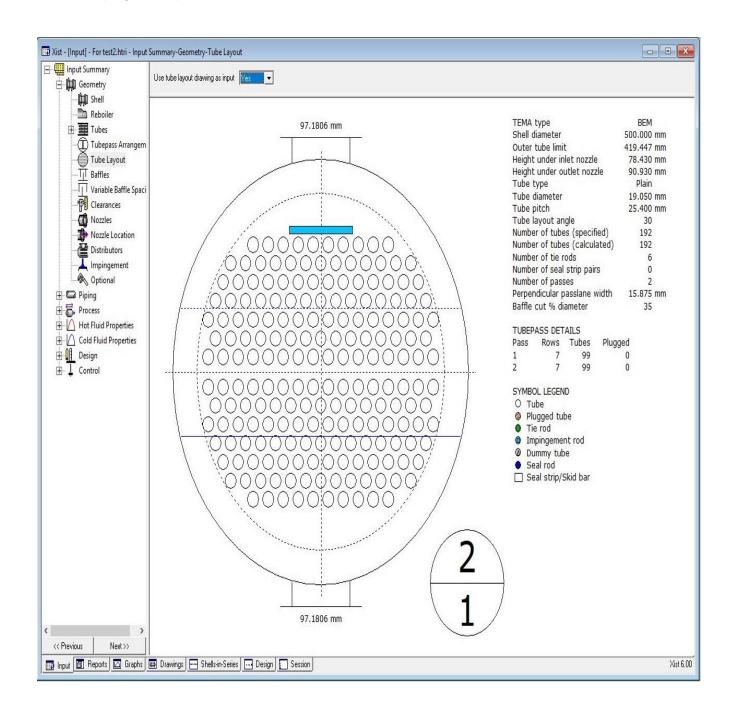
But after doing so, the water velocity in tube side reaches less than 1 m/s so we try to use double pass and by doing so, dp in tube side goes from 0.11 to 0.39 bar and tube side h goes from 5426 to 9898 and the velocity goes from 0.98 to 2.11.

8. Now omit some tubes like below and run it and overdesign factor becomes 7%

Now the only fly in the ointment is that B stream is low so different cut and spacing for baffle is tested and baffle cut of 35% is tested and the overdesign factor becomes 1.73% and B-stream increase to 50%.

tput Summary Run Log Data Check Messag Runtime Messages	IRL	Output Summa Released to the follow mekpco Behrouzi		er Company:	Page				
Final Results Shellside Monitor Tubeside Monitor	Horizontal Multipass F			ental Baffles	MEKPCO Units				
Rating Data Sheet	See Runtime Message Report for Informative Messages. Process Conditions Hot Shellside Cold Tubeside								
TEMA Spec Sheet									
Fluid nar	2773		PC		CV				
FIOWTAL			47200.2		166010				
	20 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000	0.000	0.000	0.000				
leprint Inlet/Out		100.00	65.00	38.00	48.00				
Inlet P/Av	The second se	1.500	1.466	4.500	4.252				
dP/Allow		0.069	0.100	0.497	0.60				
Fouling	(m2-K/W)	-	0.000170		0.00030				
		Exchanger Pe	A CONTRACTOR OF A CONTRACTOR A						
Shell h	(W/m2-K)	4067.17	Actual U	(W/m2-K)	982.99				
Tube h	(W/m2-K)	10403.3	Required U	(W/m2-K)	966.3				
Hot regin	-1. The state	Sens. Liquid	Duty	(MegaWatts)	1.898				
Cold reg		Sens. Liquid	Area	(m2)	53.65				
EMTD	(Deg C)	36.6	Overdesign	(%)	1.73				
	Shell Geome		and the second se	Baffle Geometr	у				
TEMA typ	e ()	BEM	Baffle type	()	Single-Seg				
Shell ID	(mm)	500.000	Baffle cut	(Pct Dia.)	35.0				
Series	()	1	Baffle orientatio	n ()	Perpend				
Parallel	()	1	Central spacing	ı (mm)	250.00				
Orientati	on (deg)	0.00	Crosspasses	()	1				
	Tube Geome	try		Nozzles					
Tube type	e ()	Plain	Shell inlet	(mm)	97.18				
Tube OD	(mm)	19.050	Shell outlet	(mm)	97.18				
Length	(m)	4.267	Inlet height	(mm)	47.03				
Pitch rati		1.3333	Outlet height	(mm)	47.03				
Layout	(deg)	30	Tube inlet	(mm)	146.33				
Tubecou		212	Tube outlet	(mm)	146.33				
Tube Pa		2	CONTRACTOR CONTRACTOR						
Therr	nal Resistance, %	Velocities	m/s	Flow Fr	actions				
Shell	24.17	Shellside	0.28	A	0.08				
Tube	11.43	Tubeside	2.25	в	0.49				
Fouling	52.38	Crossflow	0.30	c	0.30				
Metal	12.02	Window	0.30	E	0.11				
>				F	0.00				
Next>> > 4		1	13						

If baffle cut of 25% is selected then B-stream be as low as 41% but overdesign factor is

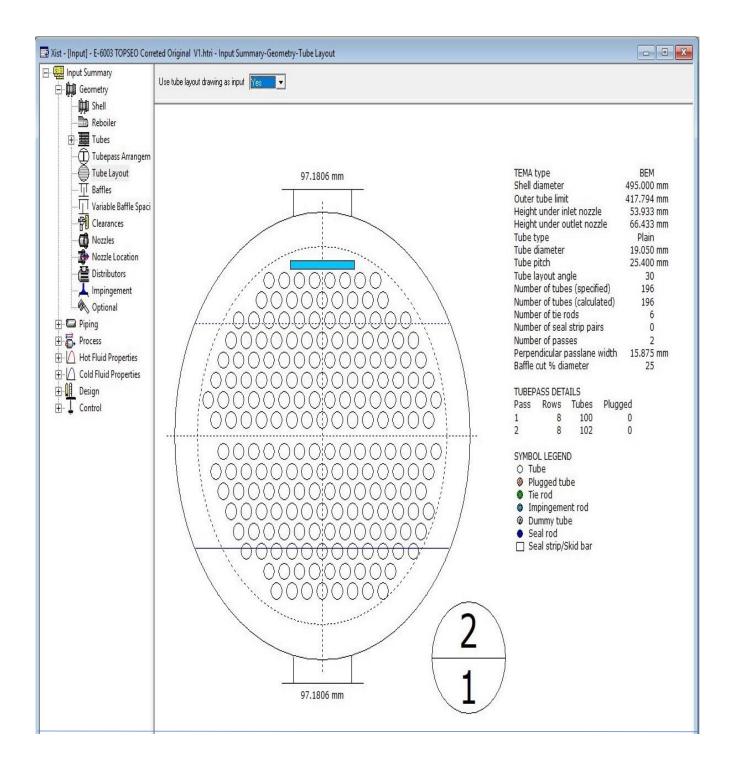

about 7%

utput Summary Run Log Data Check Messag Runtime Messages	ΗŢ	RL	Output Summa Released to the follow mekpco Behrouzi		r Company:	Page			
al Results ellside Monitor beside Monitor		ontal Multipass Fl	:09 SN: Vals100+ low TEMA BEM Shell \		ental Baffles	MEKPCO Units			
ration	See Data Check Messages Report for Informative Messages. See Runtime Message Report for Informative Messages.								
Sheet	Process	Process Conditions Hot Shellside Cold Tu							
Sheet	Fluid name			PC		CW			
nitor	Flow rate	(kg/hr)		47200.2		166010			
perties	Inlet/Outlet Y	(Wt. frac vap.)	0.000	0.000	0.000	0.000			
	Inlet/Outlet T	(Deg C)	100.00	65.00	38.00	48.00			
	Inlet P/Avg	(bar-G)	1.500	1.461	4.500	4.252			
	dP/Allow.	(bar)	0.078	0.100	0.497	0.600			
	Fouling	(m2-K/W)		0.000170		0.000300			
			Exchanger Pe	erformance					
	Shell h	(W/m2-K)	5172.72	Actual U	(W/m2-K)	1036.58			
	Tube h	(W/m2-K)	10407.5	Required U	(W/m2-K)	968.35			
	Hot regime	()	Sens, Liquid	Duty	(MegaWatts)	1.8988			
	Cold regime	(-)	Sens, Liquid	Area	(m2)	53.654			
	EMTD	(Deg C)	36.5	Overdesign	(%)	7.05			
		Shell Geomet	try	Baffle Geometry					
	TEMA type	()	BEM	Baffle type	()	Single-Seg.			
	Shell ID	(mm)	500.000	Baffle cut	(Pct Dia.)	25.00			
	Series	()	1	Baffle orientation		Perpend			
	Parallel	()	i	Central spacing	(mm)	250.000			
	Orientation	(deg)	0.00	Crosspasses	()	250.000			
		Tube Geomet			Nozzles	10			
	Tube type	()	Plain	Shell inlet	(mm)	97.181			
	Tube OD	(mm)	19.050	Shell outlet	(mm)	97.181			
	Length	(m)	4.267	Inlet height	(mm)	47.036			
	Pitch ratio	()	1.3333	Outlet height	(mm)	47.036			
	Lavout	(deg)	30	Tube inlet	(mm)	146.330			
	Tubecount		212	Tube miet	5.08.56.200				
	Tube Pass	() ()	212	Tube outlet	(mm)	146.330			
			-		F1 F				
	Contraction of the second second second	esistance, %	Velocities,	10000000000000000000000000000000000000		actions			
	Shell	20.04	Shellside	0.25	A	0.143			
	Tube	12.05	Tubeside	2.25	В	0.419			
	Fouling	55.24	Crossflow	0.30	С	0.300			
>	Metal	12.67	Window	0.44	E	0.139			
1 1					F	0.000			
t>> >	4								

Equipment & Process Design

Now if the baffle cut 35% and increase tube length to 4.87 and run it. This results in overdesign factor of 16% and so reduce the number of tubes till the overdesign factor becomes 10%. Then activate impingement plate and omit some tubes and run it.

ut Summary Run Log Data Check Messag Runtime Messages	I KL	Output Summa Released to the follow mekpco Behrouzi		r Company:	Pag				
Shellside Monitor Fubeside Monitor Fubeside Monitor Fubeside Monitor	ontal Multipass Fl ck Messages Re	et of SN: Vals100+	Messages.	ental Baffles	MEKPCO Unit				
Rating Data Sheet	See Runtime Message Report for Informative Messages. Process Conditions Hot Shellside Cold Tubeside								
TEMA Spec Sheet	Conditions	Hot Shells	0103350	Cold Tu	ibeside				
. IFluid name			PC		CI				
erty Monitor Flow rate	(kg/hr)		47200.2		16601				
n Properties Inlet/Outlet Y	(Wt. frac vap.)	0.000	0.000	0.000	0.00				
rint Inlet/Outlet T	(Deg C)	100.00	65.00	38.00	48.0				
Inlet P/Avg	(bar-G)	1.500	1.467	4.500	4.18				
dP/Allow.	(bar)	0.067	0.100	0.641	0.60				
Fouling	(m2-K/W)		0.000170		0.00030				
	22	Exchanger Pe	erformance						
Shell h	(W/m2-K)	4048.31	Actual U	(W/m2-K)	990.3				
Tube h	(W/m2-K)	11241.3	Required U	(W/m2-K)	932.2				
Hot regime	()	Sens. Liquid	Duty	(MegaWatts)	1.898				
Cold regime	()	Sens. Liquid	Area	(m2)	55.60				
EMTD	(Deg C)	36.6	Overdesign	(%)	6.2				
	Shell Geomet			Baffle Geometr	195				
		-							
TEMA type	(-)	BEM	Baffle type	()	Single-Seg				
Shell ID	(mm)	500.000	Baffle cut	(Pct Dia.)	35.0				
Series	()	1	Baffle orientation	Contraction of the second	Perpend				
Parallel	()	1	Central spacing	(mm)	250.00				
Orientation	(deg)	0.00	Crosspasses	()	1				
	Tube Geomet	ry		Nozzles					
Tube type	()	Plain	Shell inlet	(mm)	97.18				
Tube OD	(mm)	19.050	Shell outlet	(mm)	97.18				
Length	(m)	4.877	Inlet height	(mm)	78.43				
Pitch ratio	()	1.3333	Outlet height	(mm)	90.93				
Layout	(deg)	30	Tube inlet	(mm)	146.33				
Tubecount		192	Tube outlet		140.33				
Tube Pass	() ()	192	Tube outlet	(mm)	140.33				
				200000000	20 -				
TIS TO A STREET OF A STREET	esistance, %	Velocities	Ciercourt -	Flow Fra	10-10-10-10-10-10-10-10-10-10-10-10-10-1				
Shell	24.46	Shellside	0.27	A	0.07				
Tube	10.66	Tubeside	2.49	В	0.48				
Fouling	52.78	Crossflow	0.30	C	0.33				
Metal	12.11	Window	0.28	E	0.11				
		2		F	0.00				
Next>> > 4									

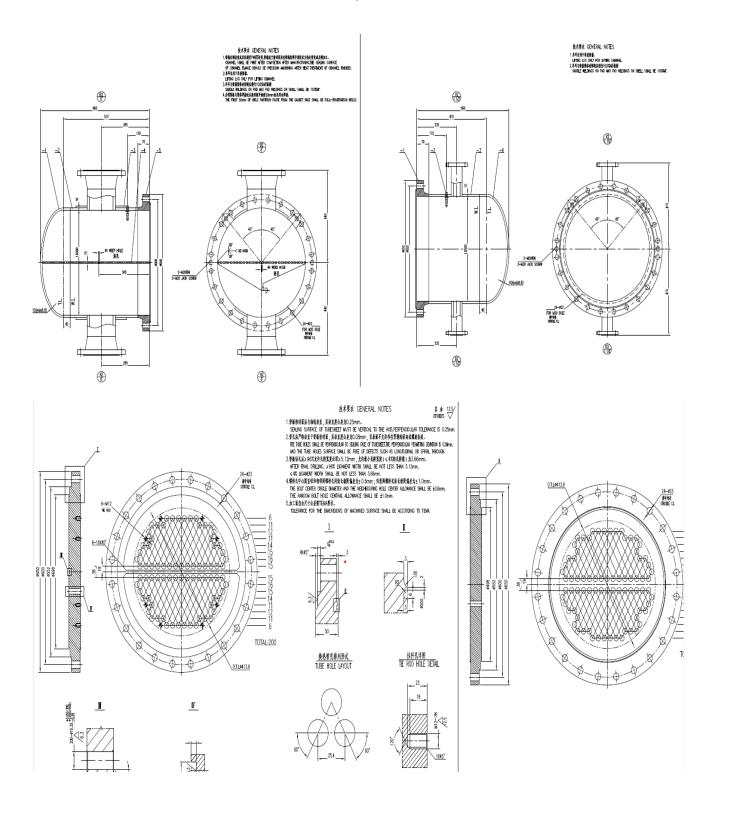

Equipment & Process Design

Licensor Design

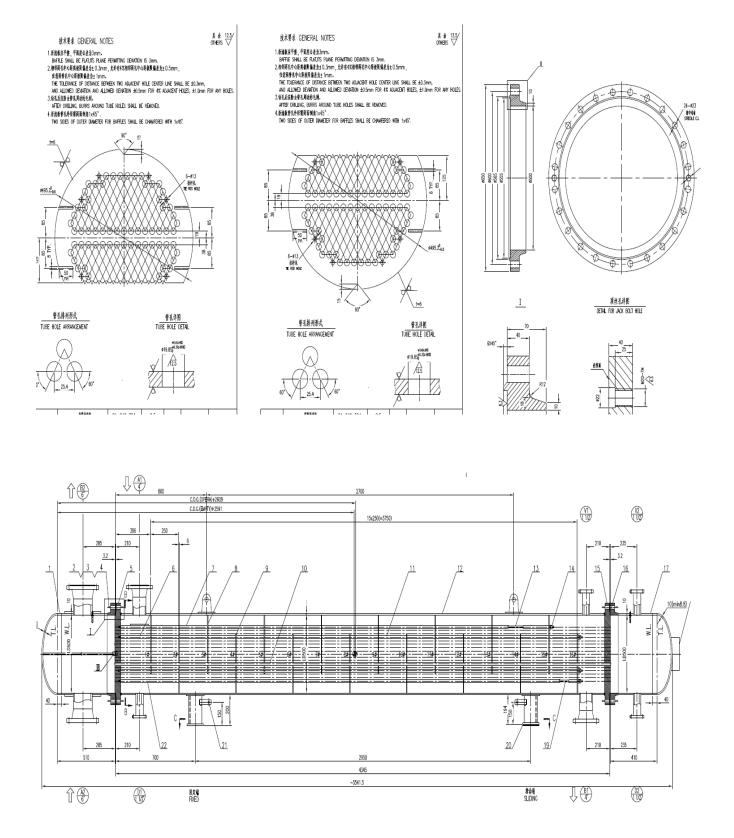
ut Summary	a think from	and the lot of the	Output Summa	rv		Page				
Run Log			Released to the follow		er Company:					
ata Check Messag	1 1 1		mekpco							
e Messages	Behrouzi Xist E Ver. 6.00 8/11/2022 11:52 SN: Vals100+ MEKPCO Un									
Results	AISTE VEL. 0.00	0 0/11/2022 11.	52 5N. Vais 100+			WERFCO UNIC				
hellside Monitor										
beside Monitor	Rating - Horizo	ontal Multipass Fl	ow TEMA BEM Shell	With Single-Segn	nental Baffles					
pration	See Data Check Messages Report for Informative Messages.									
	See Runtime	Message Report	for Informative Mes	sages.						
Data Sheet	Process	Conditions	Hot Shells							
Spec Sheet	Fluid name			PC		CV				
y Monitor	Flow rate	(kg/hr)		47200.2		16601				
n Properties	Inlet/Outlet Y	(Wt. frac vap.)	0.000	0.000	0.000	0.00				
Contraction and the second second	Inlet/Outlet T	(Deg C)	100.00	65.00	38.00	48.0				
eprint	Inlet P/Avg	(bar-G)	1.500	1.461	4.500	4.21				
	dP/Allow.	(bar)	0.078	0.500	0.565	0.60				
	Fouling	(m2-K/W)	0.070	0.000170	0.505	0.00030				
	Exchanger Performance									
	01-11-1	000-010			01/010	4050 5				
	Shell h	(W/m2-K)	5243.03	Actual U	(W/m2-K)	1058.5				
	Tube h	(W/m2-K)	11070.5	Required U	(W/m2-K)	1047.7				
	Hot regime	(-)	Sens. Liquid	Duty Area	(MegaWatts)	1.898				
	Cold regime EMTD	()	Sens. Liquid 36.5	Overdesign	(m2) (%)	49.60				
	EMID	(Deg C)	0.0	Overdesign						
		Shell Geomet			Baffle Geometry					
	TEMA type	()	BEM	Baffle type	()	Single-Seg				
	Shell ID	(mm)	495.000	Baffle cut	(Pct Dia.)	25.0				
	Series	()	1	Baffle orientation		Perpend				
	Parallel	()	1	Central spacing	g (mm)	250.00				
	Orientation	(deg)	0.00	Crosspasses	()	1				
		Tube Geomet	ry		Nozzles					
	Tube type	()	Plain	Shell inlet	(mm)	97.18				
	Tube OD	(mm)	19.050	Shell outlet	(mm)	97.18				
	Length	(m)	4.267	Inlet height	(mm)	53.93				
	Pitch ratio	()	1.3333	Outlet height	(mm)	66.43				
	Layout	(deg)	30	Tube inlet	(mm)	146.33				
	Tubecount	()	196	Tube outlet	(mm)	146.33				
	Tube Pass	()	2							
		esistance, %	Velocities	Second Second	Flow Fra	actions				
	Shell	20.19	Shellside	0.25	A	0.13				
	Tube	11.57	Tubeside	2.46	В	0.13				
	Fouling	56.41	Crossflow	0.31	C	0.42				
	Metal	11.84	Window	0.44	E	0.13				
		11.01			F	0.00				

Equipment & Process Design

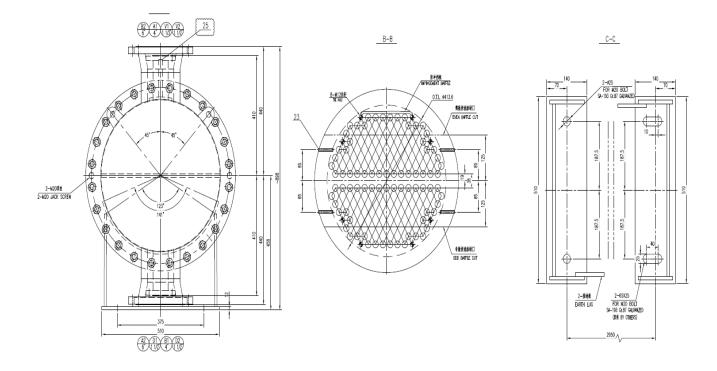
Which one should be selected?


While Topsoe design offers a heat exchanger with lower weight, that of mine offers a heat exchanger with higher overdesign factor.

By the way Topsoe configuration was also tested on my design and my configuration was slightly higher than that of Topsoe design


Equipment & Process Design

Drawings



Datasheet

				er Main Data			
TEMA type			EM	Calculated surface		45,2	m²
Duty		1,9	MW	Installed surface	area per unit	49,9	m²
MTD		38	°C	Shells per unit			1
Corrected N	MTD	36,3	°C	_			
		Oper	ating Da	ta (One Unit)		
	Description		Sh	ell Side	Tube	Side	Units
	Description		Inlet	Outlet	Inlet	Outlet	Units
Fluids				condensate	Cooling		
	total			7200	1660	009	kg/h
	liquid		47200	47200	166009	166009	kg/h
	gas						kg/h
	Operating temperature		100	65	38	48	°C
Operating p	pressure		1,5		4,5		bar g
- Loron - G. and	molecular weight		18,02	18,02	18,02	18,02	kg/km
	density		958	980	993	989	kg/m ³
2	viscosity		0,283	0,434	0,681	0,567	cP
	specific heat capacity		4,213	4,184	4,175	4,177	kJ/kg/°
	thermal conductivity		0,6768	0,6505	0,6199	0,6323	W/m/°
	boiling temperature			106			°C
Gas:	molecular weight						kg/km
	density						kg/m
	viscosity						cP
	specific heat capacity						kJ/kg/°
	thermal conductivity						W/m/°
	dew point						°C
			Perform	mance			
Pressure dr	Pressure drop, max. allowable/calculated			/ 0,1	1	0,6	bar
Fouling resi	the fact the descent of the second		0	00017	0,00	030	m².°C/
Film coeffic	cient, refers to outside surf	ace	5	715,95	1066	37,4	W/m²/
Heat transfe	er coefficients (clean/dirty)		2	631,24	/ 1171	1,95	W/m²/
Mean metal	l temperature		80		57		°C
		M	lechanic	al Design			
		Me	chanical Des	ign Conditions			
Design tem	perature (min/max)			/ 125	1		°C
	ssure (min/max)	1)		/ 9.0	/	7,5	bar g
Design pres				. 0,0			bar g
Design pres Test pressu	ure						
Design pres	ure	1		1	2	2	
Design pres Test pressu Number of	ure passes	1	Gen	1 eral	2		
Design pres Test pressu Number of Constructio	ure passes on code	ASME Sec.	VIII Div. 1 or	1 eral 2 Stress relieving		Accord	ding to cod
Design pres Test pressu Number of	ure passes on code	ASME Sec.	VIII Div. 1 or Class R	1 eral 2 Stress relieving Design mean me			ding to cod
Design press Test pressu Number of Constructio TEMA Clas	ure passes on code ss	ASME Sec.	VIII Div. 1 or Class R Sh	1 eral 2 Stress relieving Design mean me ell	etal temp. diff.	Accord 30	ding to cod
Design pres Test pressu Number of Constructio TEMA Clas	ure passes on code ss diameter (ID)	ASME Sec. TEMA	VIII Div. 1 or Class R Sh mm	1 eral 2 Stress relieving Design mean me ell Shell orientation	etal temp. diff.	Accord 30 Ho	ding to cod °C prizontal
Design pres Test pressu Number of Constructio TEMA Clas Shell inner Constructio	ure passes on code ss diameter (ID) on material	ASME Sec. TEMA 455	VIII Div. 1 or Class R Sh Mm SS	1 eral 2 Stress relieving Design mean me ell	etal temp. diff.	Accord 30	ding to cod °C
Design pres Test pressu Number of Constructio TEMA Clas Shell inner Constructio Insulation p	ure passes on code ss diameter (ID) on material ourpose	ASME Sec. TEMA 455 Personne	VIII Div. 1 or A Class R Sh SS el protection	1 eral 2 Stress relieving Design mean me ell Shell orientation	etal temp. diff.	Accord 30 Ho	ding to cod °C
Design pres Test pressu Number of Constructio TEMA Clas Shell inner Constructio Insulation p	ure passes on code ss diameter (ID) on material	ASME Sec. TEMA 455 Personne	VIII Div. 1 or Class R Sh SS el protection Yes	1 eral 2 Stress relieving Design mean me ell Shell orientation Corrosion allowa	etal temp. diff.	Accord 30 Ho	ding to cod °C
Design pre: Test pressu Number of Constructio TEMA Clas Shell inner Constructio Insulation p Impingeme	ure passes on code ss diameter (ID) on material ourpose ont plate (shell inlets)	ASME Sec. TEMA 455 Personne	VIII Div. 1 or Class R Sh SS el protection Yes Front and Rea	1 eral 2 Stress relieving Design mean me ell Shell orientation Corrosion allowa ar End Heads	etal temp. diff.	Accord 30 Ho	ding to cod °C prizontal
Design pre: Test pressu Number of Constructio TEMA Clas Shell inner Constructio Insulation p Impingeme	ure passes on code ss diameter (ID) on material ourpose ent plate (shell inlets) mead material	ASME Sec. TEMA 455 Personne	VIII Div. 1 or Class R Sh SS el protection Yes Front and Re CS	1 eral 2 Stress relieving Design mean me ell Shell orientation Corrosion allowa	etal temp. diff.	Accord 30 Ho	ding to cod °C prizontal
Design pres Test pressu Number of Constructio TEMA Clas Shell inner Constructio Insulation p Impingeme Front end h	ure passes on code ss diameter (ID) on material ourpose ont plate (shell inlets)	ASME Sec. TEMA 455 Personne	VIII Div. 1 or Class R Sh SS el protection Yes Front and Rea	1 eral 2 Stress relieving Design mean me ell Shell orientation Corrosion allowa ar End Heads	etal temp. diff.	Accord 30 Ho	ding to cod

		Tube E	Bundle		
No. of tubes	196		Effective tube length	4250	mm
Construction material	Duple	ex SS	Total tube length incl. tubesheet		mm
Tube outer diameter (OD)	19,05	mm	Tube inner diameter (ID)	15,75	mm
Tube pitch pattern	Trian	Triangular Tube pitch		25,4	mm
Minimum distance from shell side inl	et nozzle to tube t	oundle: 55 n	nm		
		Tubes	heets		
Construction material	SS		Corrosion allowance	0	mm
	Baffles,	Tie Rods a	and Dummy Tubes		
Baffle type	Single se	egmental	Baffle cut type	Horizo	ontal
Baffle spacing	250	mm	Construction material	SS	3
Baffle cut (% of shell ID)	25	%	Free baffle hole area	0,0234	m²
Tubes in outer baffle window	Y	es			