

Distillation Column Sizing

Example: Simulate and size a distillation column for the methanol + water mixture with the following condition:

Flowrate – kg/hr.	118484
Composition	Methanol 0.7 Water 0.3
Temperature- C	86
Pressure-barg	3.5

Steps to be taken:

- 1.Add water and methanol to the component list.
- 2.Select NRTL as the fluid package

3.Enter Simulation Environment and define the stream with the above conditions.

Vaterial Stream: 1 🗖 🖻 🛱						
Worksheet Attachme	nts Dynamics			i		
Worksheet	Stream Name	1	Liquid Phase			
Conditions	Vapour / Phase Fraction	0.0000	1.0000			
Properties	Temperature [C]	86.00	86.00			
Composition	Pressure [kPa]	451.3	451.3			
Oil & Gas Feed	Molar Flow [kgmole/h]	4562	4562			
K Value	Mass Flow [kg/h]	1.185e+005	1.185e+005			
User Variables	Std Ideal Liq Vol Flow [m3/h]	139.8	139.8			
Notes	Molar Enthalpy [kJ/kgmole]	-2.530e+005	-2.530e+005			
Cost Parameters	Molar Entropy [kJ/kgmole-C]	72.41	72.41			
Normalized Yields	Heat Flow [kJ/h]	-1.154e+009	-1.154e+009			
P Emissions	Liq Vol Flow @Std Cond [m3/h]	139.0	139.0			
	Fluid Package	Basis-1				
	Utility Type					
		OK				
Delete	Define from Stream	View Assay	+ +]		

Educational Institute for Equipment and Process Design

			1	
Worksheet		Mass Fractions	Liquid Phase	
Conditions	CO2	0.0000	0.0000	
Properties	со	0.0000	0.0000	
Composition	Hydrogen	0.0000	0.0000	
Oll & Gas Feed	Methanol	0.7000	0.7000	
K Value	H2O	0.3000	0.3000	
	Total	1.00000		

4.Add a distillation column and act like below:

Distillation Column Input Expert	-		×
Condenser Energy Stream QC	Condenser		1
Column Name T-100	n+1 Partial Ovhd Liquid Outlet	•	
Inlet Streams	n-1 Water Draw		
Stream Inlet Stage	# Stages Optional Side Draws		
<< Stream >>	n = 80> Stream Type Draw Stage		
Stage Numbering Top Down Bottom Up	2 Reboiler Energy Stream QB Bottoms Liquid Outlet B	•	
< Prev Next >	Connections (page 1 of 5)		

Based on Worksheet/composition, the separation has been perfect.

Column: T-100 / COL1 Fluid Pkg: Basis-1 / NRTL - Ideal 📼 🛱							
Worksheet		1	OVHD	В	^		
Conditions	CO2	0.0000	0.0000	0.0000			
Properties	СО	0.0000	0.0000	0.0000			
Compositions	Hydrogen	0.0000	0.0000	0.0000			
PF Specs	Methanol	0.5675	1.0000	0.0146	;		
	H2O	0.4325	0.0000	0.9854			
	Column Environment	Pure	Canada		E		
Delete	Column Environment	Run Reset	Converged	Update Outlets	Ignored		

5.Go to Internals and add new.

olumir. T-100 / COL1 Fluid Plig: Basis-1 / NRTL - Ideal						
Design Parameters Side Ops Internals Rating	Worksheet Performance Flowsheet Reactions Dynamics	0 ^				
Design/Rating Main Tower Active Internals-1	Column Description Internals calculations completed with warnings. Add New Auto Section Duplicate Import Template View Internals Summary Please see hydraulic plot for details.					
→	Section Start Stage End Mode Interna Tray/Packin Number of Downcomers Vendor Material Packing Dimension Tray Spacing / Dentals					
► ····· 40-····	CS-1 80_Moin Towe 1_Main Tower Interactive Sizing Trayed Sieve 2 0.6096 6.220 View X Include Static Vapor Head in Pressure Drop Calculations Calculate Pressure Drop Across Sump Simp Dameter 0.000 seconds Uquid Residence Time 60.000 seconds 0.000 seconds 0.0000 seconds 0.000	E				
View Hydraulic Plots	Export Pressure Drop from Top Export Pressure Drop from Bottom Initialize From Rating Send To Rating	*				

The moment we create one, the diameter is calculated.

6. Click view and see how you can change the geometry.

ay Results	Name CS-1				
ummarv	Name C3-1 Active				
y Tray	Section Starting Stage	80_Main	Tower		
	Section Ending Stage	1_Main	Tower		
	Tray Type	Balla	st-V4		
	Number of Passes		2		
	Tray Spacing [m]	0	.6096		
	Section Diameter [m]		6.220		
	Section Height [m]		48.77		
	Section Pressure Drop [mbar]		1460		
	Section Head Loss [mm]	2.098e	+004		
	Trays With Weeping		None		
	Section Residence Time [seconds]		541.6		
	Limiting Conditions				
	Property		Value	Tray	Location
	Maximum % Jet Flood (%)		80.00	80_Main To\	
	Maximum % Downcomer Backup (Aera	ated) (%)	88.01	80_Main To	
	Maximum Downcomer Loading (m3/h-	-m2)	205.7	11_Main To	Center
	Maximum Weir Loading (m3/h-m)		84.75	11_Main To	Side
	Maximum Aerated Height Over Weir (n	nm)	206.0	40_Main To	
	Maximum % Approach To System Limit	t (%)	49.45	80_Main To\	
	Maximum Cs Based On Bubbling Area	(m/s)	9.337e-002	80_Main To	
	Maximum % Downcomer Choke Flood	(%)	34.32	10_Main Tov	Center

Under result, we see that the diameter calculated by Aspen Hysys is 6.22 m. As stated, before it is recommended to see how such tower is designed using KG Tower and excel-sheet. Here is the comparison between KG method's result, Aspen Hysys result, excel result and licensor's result.

Licensor	Excel-sheet	KG Tower	Aspen Hysys
6350 mm	6140 mm	6332 mm	6220 mm

Now let's focus on the tower height:

To see how Aspen Hysys calculates the height let's do it manually; we know that the tray spacing is 0.6096 m and since we have 80 trays, the height between first tray and last tray would be:

 $\text{Height} = (80-1) \times 0.6096 = 48.15 \text{ m}$

Assuming that the feed tray has the same tray spacing of 0.6096 m. Such assumption is not exact and is one of the reasons why there is a difference of 0.5 m. Nonetheless, the difference is negligent.

Neither calculation by Aspen Hysys or manual approach is right since they do not take into account bottom height or spacing above first tray.

Total Height = H1 + H2 + H3

The problem arises from the fact Aspen Hysys simply neglects

H1 and H3.

