Equipment & Process Design

Air-cooler Design and Principle AE-5005

1. Process Specification

Description	She	l Side	Tube	Side	Units	
Description	Inlet	Outlet	Inlet	Outlet	Onits	
Fluids			Methanc	l Vapour		
Quantity: total			418	225	kg/h	
liquid				418225	kg/h	
gas			418225		kg/h	
Operating temperature			67	65	°C	
Operating pressure			0.1		bar g	
Total molecular weight					kg/kmol	
Liquid: molecular weight				32.04	kg/kmol	
density				750	kg/m³	
viscosity				0.332	сP	
specific heat capacity				2.831	kJ/kg/°C	
thermal conductivity				0.1865	W/m/°C	
boiling temperature			6	7	°C	
Gas: molecular weight			32.04		kg/kmol	
density			1.29		kg/m³	
viscosity			0.011		cP	
specific heat capacity			1.537		kJ/kg/°C	
thermal conductivity			0.0208		W/m/°C	
dew point			6	7	°C	
Latent heat			26	0.9	kcal/kg	
	Perform	ance				
Pressure drop, max. allowable/calculated		1	0.05	1	bar	
Fouling resistance			0.00	017	m².°C/W	

Heating / Cooling Table							
			Tube si	ide			
					Liquid heat	Liquid thermal	
Temperature	Gas fraction	Duty profile	Liquid density	Liquid viscosity	capacity	conductivity	Surface tension
°C	wt %	MW	kg/m³	сP	kJ/kg/°C	W/m/°C	dyn/cm
67	99.11	0.0	748	0.323	2.853	0.1855	19
67	88.03	14.1	748	0.323	2.853	0.1855	19
67	76.95	28.1	748	0.323	2.853	0.1855	19
67	65.87	42.2	748	0.323	2.853	0.1855	19
67	54.78	56.2	748	0.323	2.853	0.1855	19
67	43.70	70.3	748	0.323	2.853	0.1855	19
67	32.62	84.3	748	0.323	2.853	0.1855	19
67	21.54	98.4	748	0.323	2.853	0.1855	19
67	10.45	112.4	748	0.323	2.853	0.1855	19
67	0.00	125.7	748	0.323	2.853	0.1855	19
65	0.00	126.5	750	0.332	2.831	0.1865	19
					Gas heat	Gas thermal	
Temperature	Gas fraction	Duty profile	Gas density	Gas viscosity	capacity	conductivity	
°C	wt %	MW	kg/m³	сP	kJ/kg/°C	W/m/°C	
67	99.11	0.0	1.29	0.011	1.537	0.0208	
67	88.03	14.1	1.29	0.011	1.537	0.0208	
67	76.95	28.1	1.29	0.011	1.537	0.0208	
67	65.87	42.2	1.29	0.011	1.537	0.0208	
67	54.78	56.2	1.29	0.011	1.537	0.0208	
67	43.70	70.3	1.29	0.011	1.537	0.0208	
67	32.62	84.3	1.29	0.011	1.537	0.0208	
67	21.54	98.4	1.29	0.011	1.537	0.0208	
67	10.45	112.4	1.29	0.011	1.537	0.0208	
67	0.00	125.7					
65	0.00	126.5					

2.Process Input to HTRI

🔣 Xace - [Input] - AE-5005Example38	oower.htri - Input Summary-Proc	ess				
Input Summary		Tubesid	le Fluid (Hot)	Airs	ide Fluid	
Geometry	Fluid name	Methanol Vap	or	Air		
	Phase / Airside flow rate units	Condensing	•	Face velocity		•
Optional	Flow rate	418225	kg/hr		m/s	
Bundle	Inlet fraction vapor	0.9911				
Bundle Lavout	Outlet fraction vapor	0				
Process	Inlet temperature	67	с	48	С	
Hot Fluid Properties	Outlet temperature	65	с		с	
⊡∎ Control	Inlet pressure / Altitude of unit 💿	01	- bar G	25	-	
	(above sea level)		bar-G	120		
			bard		5	
	Allowable pressure drop	0.05	Dar		Pa	
	Fouling resistance	10.00017	m2-K/W		m2-K/W	
	Fouling layer thickness		mm		mm	
	Exchanger duty				MegaWatts	
	Duty/flow multiplier		1.2			
<< Previous Next >>						
En a la En Danada de Caraba d	- Drawings - Multiple Service		Cossien			Xaaa 6.00
		es 🛄 🔤 Uesign	Session			Adde 6.00
		es <u> </u>				Adde 6.00
Xace - [Input] - AE-5004-3.htri - Inp	put Summary-Hot Fluid Properti	ies				
Xace - [Input] - AE-5004-3.htri - Input Imput Summary	out Summary-Hot Fluid Properti	ies ol Vap <mark>l</mark> or				
Xace - [Input] - AE-5004-3.htri - Inp	put Summary-Hot Fluid Properti Fluid name Methano	ies ol Vaplor				
Xace - [Input] - AE-5004-3.htri - Inp The second s	Pluid name Methano Fluid compressibility	ies ol Vaplor	Heat Belease Inc.	t Method		
Xace - [Input] - AE-5004-3.htri - Input Input Summary Geometry Geometry Fans Optional	Fluid name Methance Fluid compressibility Physical Property Input Option	ies	Heat Release Inpu	ut Method		
Xace - [Input] - AE-5004-3.htri - Input Comput Summary Geometry Geometry Fans Optional Bundle	Fluid name Methano Fluid name Methano Fluid compressibility	ies ol Vaplor	Heat Release Inpu	ut Method		
Xace - [Input] - AE-5004-3.htri - Input Disput Summary Geometry Geometry Geometry Fans Optional Bundle Geometry Contemport Bundle Contemport Bundle Contemporta Contemport Contemport Contemport Contemport Contemport	Fluid name Methano Fluid compressibility	ies ol Vaplor	Heat Release Inpr • User specified • Specified dev	at Method 1 1/bubble point		
Xace - [Input] - AE-5004-3.htri - Input Input Summary Geometry	Fluid name Methane Fluid name Methane Fluid compressibility Image: Component of the properties of th	ies ol Vaplor t erties	- Heat Release Inpu	ut Method 1 J/bubble point ulated		
Xace - [Input] - AE-5004-3.htri - Input Page Input Summary Geometry Geome	Fluid name Methano Fluid name Methano Fluid compressibility	es Design ies ol Vapor t erties	Heat Release Inpu User specified Specified dev Program calco Flash Type	ut Method		
Xace - [Input] - AE-5004-3.htri - Input Market Summary Geometry	Fluid name Methana Fluid name Methana Fluid compressibility Image: Component by component Component by component Component and grid proper Composition Units Image: Composition Units Image: Composition Units Image: Composition Units	es Design ies ol Vaplor t erties	Heat Release Inpu C User specified C Specified dev C Program calcu Flash Type C Differential	ut Method f 1/bubble point ulated		
Xace - [Input] - AE-5004-3.htri - Input Input Summary Geometry	Fluid name Methano Fluid name Methano Fluid compressibility	ies ol Vaplor t erties	- Heat Release Inpu C User specified C Specified dev C Program calcu- Flash Type C Differential C Integral	ut Method 1 J/bubble point ulated		
Xace - [Input] - AE-5004-3.htri - Input Summary Geomet	Fluid name Methand Fluid name Methand Fluid compressibility Image: Component and grid properties Component and grid properties Composition Units Composition Units Image: Composition Units Mass Image: Composition Units Mass Image: Composition Units Image: Composition Units Image: Composition Units Image: Composition Units <t< td=""><td>ies ol Vapor t arties</td><td>Heat Release Inpu User specified Specified dev Program calco Flash Type Differential Integral</td><td>ut Method J Jubble point ulated</td><td></td><td></td></t<>	ies ol Vapor t arties	Heat Release Inpu User specified Specified dev Program calco Flash Type Differential Integral	ut Method J Jubble point ulated		
Xace - [Input] - AE-5004-3.htri - Input Composition Summary Composition Composition Composition Composition Composition Components	Provings With the Service put Summary-Hot Fluid Properti Fluid name Methand Fluid compressibility Image: Service Physical Property Input Option Image: Service Image: Service Mixture properties via grid Image: Component by component Image: Service Image: Composition Units Image: Service Image: Compositi	es Design ies ol Vapor t erties	Heat Release Inpu © User specified © Specified dev © Program calcu © Flash Type © Differential © Integral	ut Method j u/bubble point ulated		
Xace - [Input] - AE-5004-3.htri - Input Accession of the second	Property Options Composition Units	es ies in Design	Heat Release Inpu C User specified C Specified dev C Program calcu- Flash Type C Differential C Integral	It Method		
Xace - [Input] - AE-5004-3.htri - Input Summary Geomet	Fluid name Methand Fluid name Methand Fluid compressibility Image: Component Input Option Mixture properties via grid Component by component Component and grid proper Composition Units Mass Moles Property Options Temperature interpolation	es ies ol Vapor t arties	Heat Release Inpu User specified Specified dev Program calco Flash Type Differential Integral	ut Method j i/bubble point ulated Property Genera		
Acce - [Input] - AE-5004-3.htri - Input Accession - Accession - A	Provings With the Service put Summary-Hot Fluid Properti Fluid name Methand Fluid compressibility Image: Service Physical Property Input Option Image: Service Image: Service Mixture properties via grid Image: Component by component Image: Service Image: Composition Units Image: Service Image: Compositi	es Design ies ol Vapor et erties	Heat Release Inpu © User specified © Specified dev © Program calcu- Flash Type © Differential © Integral	It Method	itor	
Xace - [Input] - AE-5004-3.htri - Input Carbon Summary Geometry	Provings Matchine Service put Summary-Hot Fluid Properti Fluid name Methand Fluid compressibility Image: Service Physical Property Input Option Image: Service Image: Service Mixture properties via grid Image: Component by component Image: Service Image: Component and grid properties Image: Service Image: Composition Units Image: Service Image: Composition Units Image: Service Image: Property Options Image: Service Image: Property Options Image: Service Image: Temperature interpolation Image: Service	es ies ol Vaplor et erties	Heat Release Inpu © User specified © Specified dev © Program calcu- Flash Type © Differential © Integral	It Method	tor	
Xace - [Input] - AE-5004-3.htri - Input AE-5004-3.htri - Input Geometry G	Provings With the Service put Summary-Hot Fluid Properti Fluid name Methand Fluid compressibility	es Design ies ol Vapor t erties	Heat Release Inpu © User specified © Specified dew © Program calco Flash Type © Differential © Integral	ut Method j i/bubble point ulated Property Genera Property Worksh	itor	
Xace - [Input] - AE-5004-3.htri - Input Tuput Summary Geometry	Provings With the Service put Summary-Hot Fluid Properti Fluid name Methand Fluid compressibility Image: Service Physical Property Input Option Image: Service Image: Service Mixture properties via grid Image: Component by component Image: Service Image: Component and grid properties Image: Service Image: Composition Units Image: Service Image: Composition Units Image: Service Image: Property Options Image: Service Image: Temperature interpolation Image: Service	es Design ies ol Vapor et erties	Heat Release Inpu © User specified © Specified dev © Program calcu- Flash Type © Differential © Integral	It Method	itor	

Zace - [Input] - AE-5005Example38	power.htri - Input Sun	nmarv-Hot Fl	uid Properties-T	& P		[
			ala riopenies i	<u>.</u>			
	Pressure	bar-G	0.1				▲
Geometry			Profile 1	Profile 2	Profile 3	Profile 4	Profile 5
Unit	Temperature 1	С	67				
Fans	Temperature 2	С	67				
Optional	Temperature 3	C	67				
Bundle	Temperature 4	C	67				
Tube Types	Temperature 5	<u> </u>	67				
Bundle Layout	Temperature 6	<u> </u>	6/				
	Temperature 7	<u> </u>	67				
	Temperature 0	<u> </u>	67				
Hot Fluid Properties	Tomporature 10	<u> </u>	67				
	Temperature 11	<u> </u>	65				
Heat Release	Temperature 12	<u> </u>	00				
Property Grid	Temperature 13	Č					
Components	Temperature 14	C C					
Dew/Bubble	Temperature 15	C					
	Temperature 16	С					
	Temperature 17	С					
	Temperature 18	С					
	Temperature 19	С					
	Temperature 20	С					
	Temperature 21	С					
	Temperature 22	С					
	Temperature 23	С					_
							•
	Clear All Temperati	ure Data P	onertu Worksheel	- 1			
<< Previous Next >>							
💷 Input 📵 Reports 🖂 Graphs	🖨 Drawings 🔤 Mi	ultiple Services	🗔 Design [Session			Xace 6.00
	,_						
ſ							
Xace - [Input] - AE-5005Example38	power.htri - Input Sur	mmary-Hot Fl	uid Properties-H	leat Release		[
Xace - [Input] - AE-5005Example38	power.htri - Input Sur	nmary-Hot Fl	uid Properties-H	leat Release	u of 418225	[
Xace - [Input] - AE-5005Example38	power.htri - Input Sur Heat release entered	mmary-Hot Fl as Total duty	uid Properties-H from inlet	leat Release	w of 418225	kg/hr	- • •
Xace - [Input] - AE-5005Example38	power.htri - Input Sur Heat release entered	mmary-Hot Fl as Total duty Pressure Pro	uid Properties-H from inlet v file 1 - 0.100, j	leat Release based on flo bar-G	w of 418225	kg/hr	
Xace - [Input] - AE-5005Example38	power.htri - Input Sur Heat release entered Temperature	mmary-Hot Fl as Total duty Pressure Pro	uid Properties-H from inlet ofile 1 - 0.100, I Duty	leat Release based on floo bar-G Weight Fr	w of 418225	kg/hr	
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C	mmary-Hot Fl as Total duty Pressure Pro	uid Properties-H from inlet file 1 - 0.100, I Duty Watts	leat Release based on flo bar-G Weight Fr Vapo	w of 418225	kg/hr	- • •
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6	nmary-Hot Fl as Total duty Pressure Pro	uid Properties-H from inlet ▼ mfile 1 - 0.100, Duty Watts 0	leat Release based on flo bar-G Weight Fr Vapo	w of 418225	(kg/hr	
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6	nmary-Hot Fl as Total duty Pressure Pro 7.00	uid Properties-H from inlet Difle 1 - 0.100, Duty Watts 0 1.41e+7	Heat Release based on floo bar-G Weight Fr Vapo	w of 418225 action or 0.9911 0.8803	kg/hr	
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6 6 6	nmary-Hot Fl as Total duty Pressure Pro 7.00 7.00	uid Properties-F from inlet file 1 - 0.100, Duty Watts 0 1.41e+7 2.81e+7 2.81e+7	leat Release based on flow bar-G Weight Fr Vapo	w of 418225	kg/hr	
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6 6 6 6	nmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00	uid Properties-F from inlet Duty Watts 0 1.41e+7 2.81e+7 4.22e+7 4.22e+7 5.000 2	leat Release based on floo bar-G Weight Fr Vapo	w of 418225	kg/hr	-
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6 6 6 6 6 6 6	nmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00	uid Properties-H from inlet Duty Watts 0 1.41e+7 2.81e+7 4.22e+7 5.62e+7 7 0.2 7	leat Release based on floo bar-G Weight Fr Vapo	w of 418225 action or 0.9911 0.8803 0.7695 0.6587 0.5478 0.107	kg/hr	
Xace - [Input] - AE-5005Example38	Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	mmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-F from inlet file 1 - 0.100, Duty Watts 0 1.41e+7 2.81e+7 4.22e+7 5.62e+7 7.03e+7 2.42e+7 2.81e+7 2.81e+7 2.81e+7 2.81e+7 2.81e+7 2.81e+7 2.81e+7 2.82e+7 2	leat Release based on floo bar-G Weight Fr Vapo	w of 418225 action or 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.2362	kg/hr	
Xace - [Input] - AE-5005Example38	Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	mmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0 1.41e+7 2.81e+7 4.22e+7 5.62e+7 7.03e+7 8.43e+7 0.94c+7	leat Release based on floo bar-G Weight Fr Vapo	w of 418225 action or 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2164	kg/hr	-
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	mmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0 1.41e+7 2.81e+7 4.22e+7 5.62e+7 7.03e+7 8.43e+7 9.84e+7 9.84e+7 1.124e+9	leat Release based on floo bar-G Weight Fr Vapo	w of 418225 action 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2154 0.1045	kg/hr	
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	mmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0 1.41e+7 2.81e+7 4.22e+7 5.62e+7 7.03e+7 8.43e+7 9.84e+7 1.124e+8 1.257e+8	Heat Release based on floo bar-G Weight Fr Vapo	w of 418225 action 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2154 0.1045 0	kg/hr	
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	mmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0] 1.41e+7 2.81e+7 4.22e+7 5.62e+7 7.03e+7 8.43e+7 9.84e+7 1.124e+8 1.265e+8	Heat Release based on floo bar-G Weight Fr Vapo	w of 418225 action or 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2154 0.1045 0 0	kg/hr	
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	nmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0 1.41e+7 2.81e+7 2.81e+7 4.22e+7 5.62e+7 7.03e+7 8.43e+7 9.84e+7 1.124e+8 1.257e+8 1.265e+8	leat Release based on floo bar-G Weight Fr Vapo	w of 418225 action or 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2154 0.1045 0 0 0	kg/hr	
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	nmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0 1.41e+7 2.81e+7 4.22e+7 5.62e+7 7.03e+7 8.43e+7 9.84e+7 1.124e+8 1.257e+8 1.265e+8	leat Release based on floo bar-G Weight Fr Vapo	w of 418225 action or 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2154 0.1045 0 0 0 0 0 0 0 0 0 0 0 0 0	kg/hr	
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	nmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0 1.41e+7 2.81e+7 4.22e+7 5.62e+7 7.03e+7 8.43e+7 9.84e+7 1.124e+8 1.257e+8 1.265e+8 1.265e+8	leat Release based on floo bar-G Weight Fr Vapo	w of 418225 action or 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2154 0.1045 0 0 0 0 0 0 0 0 0 0 0 0 0	kg/hr	
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	nmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0 1.41e+7 2.81e+7 4.22e+7 5.62e+7 7.03e+7 8.43e+7 9.84e+7 1.124e+8 1.257e+8 1.265e+8 1.265e+8	leat Release based on floo bar-G Weight Fr Vapo	w of 418225 action or 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2154 0.1045 0 0 0 0 0 0 0 0 0 0 0 0 0	kg/hr	
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	nmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0 1.41e+7 2.81e+7 4.22e+7 4.22e+7 5.62e+7 7.03e+7 8.43e+7 9.84e+7 1.124e+8 1.257e+8 1.265e+8 1.265e+8	leat Release based on floo bar-G Weight Fr Vapo	w of 418225 action or 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2154 0.1045 0 0 0 0 0 0 0 0 0 0 0 0 0	kg/hr	
Xace - [Input] - AE-5005Example38	Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	nmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0 1.41e+7 2.81e+7 4.22e+7 7.03e+7 5.62e+7 7.03e+7 9.84e+7 1.124e+8 1.257e+8 1.265e+8 1.265e+8	leat Release based on floo bar-G Weight Fr Vapo	w of 418225 action or 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2154 0.1045 0 0 0 0	kg/hr	
Xace - [Input] - AE-5005Example38	Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	mmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0 1.41e+7 2.81e+7 4.22e+7 5.62e+7 7.03e+7 8.43e+7 9.84e+7 9.84e+7 1.124e+8 1.257e+8 1.265e+8 1.265e+8	teat Release based on floo bar-G Weight Fr Vapo	w of 418225 action or 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2154 0.1045 0 0 0 0 0 0	kg/hr	
Xace - [Input] - AE-5005Example38	Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	mmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0 1.41e+7 2.81e+7 4.22e+7 5.62e+7 7.03e+7 8.43e+7 9.84e+7 9.84e+7 1.124e+8 1.257e+8 1.265e+8 roperty Workshee	teat Release based on floo bar-G Weight Fr Vapo	w of 418225 action 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2154 0.1045 0 0 0	(kg/hr	
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	mmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0 1.41e+7 2.81e+7 4.22e+7 5.62e+7 7.03e+7 8.43e+7 9.84e+7 1.124e+8 1.265e+8 1.265e+8 roperty Workshee	teat Release based on floo bar-G Weight Fr Vapo	w of 418225 action 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2154 0.1045 0 0 0	(kg/hr	
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	nmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0 1.41e+7 2.81e+7 4.22e+7 5.62e+7 7.03e+7 8.43e+7 9.84e+7 1.124e+8 1.265e+8 1.265e+8 roperty Workshee	teat Release based on floo bar-G Weight Fr Vapo	w of 418225 action 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2154 0.1045 0 0 0 0	kg/hr	
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	nmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0] 1.41e+7 2.81e+7 4.22e+7 5.62e+7 7.03e+7 8.43e+7 9.84e+7 1.124e+8 1.257e+8 1.265e+8 1.265e+8	Heat Release based on floo bar-G Weight Fr Vapo	w of 418225 action or 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2154 0.1045 0 0 0 0	kg/hr	
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	nmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0] 1.41e+7 2.81e+7 4.22e+7 5.62e+7 7.03e+7 8.43e+7 9.84e+7 1.124e+8 1.257e+8 1.265e+8 1.265e+8	Heat Release based on floo bar-G Weight Fr Vapo	w of 418225 action or 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2154 0.1045 0 0 0 0	kg/hr	
Xace - [Input] - AE-5005Example38	Power.htri - Input Sur Heat release entered Temperature C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	nmary-Hot Fl as Total duty Pressure Pro 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	uid Properties-H from inlet file 1 - 0.100, Duty Watts 0 1.41e+7 2.81e+7 4.22e+7 5.62e+7 7.03e+7 8.43e+7 9.84e+7 1.124e+8 1.265e+8 1.265e+8 1.265e+8	Heat Release based on flow bar-G Weight Fr Vapo	w of 418225 action 0.9911 0.8803 0.7695 0.6587 0.5478 0.437 0.3262 0.2154 0.1045 0 0 0	kg/hr	×ace 6.00

3.Unit data to HTRI

C2.5.3 Air-Cooled Heat Exchanger Configurations	In some situations, the choice of heat exchanger type is critical to proper plant operation; the project engineer must therefore understand advantages and drawbacks associated with various configurations.
C2.5.3.1 Forced-Draft, Horizontal Bundle	Horizontal arrangements are the most common forced-draft design. The size of shop-erected units is limited by transportation restrictions; field-erected units are larger, their size limited only by practicality. Units with average length-to-width ratios ranging from 2–2.5 to 1 require a two-fan design. Large process coolers have two or more fans.
C2.5.3.1 Forced-Draft, Horizontal Bundle, continued	 Forced-draft air-cooled heat exchangers with horizontal bundles have these advantages over induced-draft ACHEs: Less power is needed to convey air because fans are located in the cool airstream below the bundle.
	• Maintenance is easier because fan drives are located below the unit.
	• The construction material is not critical because fans are unlikely to overheat unless near a very high temperature bundle or in a recirculation cabin.
	• Bundles are located above the plenum chamber, which simplifies assembly of the structure. Disassembly is usually not required to remove bundles for cleaning or repair.
	This type of design also has several disadvantages:
	 Unless the unit is grade-mounted, underslung walkways are required for motor and fan access.
	• The velocity of air escaping from the bundle's top is low—typically 500–700 ft/min (2.5–3.5 m/s)—making the unit susceptible to crosswind effects and inducing external recirculation around the cooler. This problem is accentuated by proximity to tall structures or to other units that are not part of the same continuous bank. Anti- recirculation fences may have to be fitted at considerable expense.

Equipment & Process Design

Figure C2.5-1. Forced-draft, horizontal configuration.

C2.5.3.1 Forced-Draft, Horizontal Bundle, continued

- Good airflow distribution is more difficult to achieve than with induced-draft exchangers.
- The bundles are exposed to solar radiation, which increases the heat load. For most cases, the increase in heat load is small (< 2%) and can be neglected. However, for cases where the effective mean temperature difference is low (< 5.6 °C (10 °F)) and the tubeside heat transfer coefficient is low (for example, in laminar single-phase flow), the solar radiation can increase the duty more than 5% and should be included in the performance analysis.

C2.5.3.2 Induced-Draft, Horizontal Bundle	Horizontal induced-draft units, often designed for processes requiring considerable cooling surface, are usually multiple-bay installations.
Min Town onwoodh	Advantages typical of this design follow:
Min. Temp. approach Forced draft Induced draft 12 C 8 C	• The unit is less susceptible to crosswind because the velocity of air discharging from the fan can reach 32.8 ft/s (10 m/s).
	• Cooling air is less likely to recirculate than in other designs.
	• The plenum chamber, whether a hood or a flat deck, protects against sudden performance surges caused by rain or hail; it also reduces the effects of solar radiation on the bundle, making horizontal induced-draft units popular in the Middle East.
	 Acting as a chimney, the plenum chamber and fan ring provide a higher heat rejection under fan failure conditions.
	For close temperature control; i.e. induced draft when +/- 3 C control is required.

Figure C2.5-2. Induced-draft, horizontal configuration

A few disadvantages are also ascribed to this configuration:

- Except for very low process temperatures (below 158 °F (70 °C)), the gearbox or belt drive system cannot be mounted in the hot airstream.
- Except for those with remote actuation, all autovariable fans have low maximum operating temperatures and are unsuitable for mounting in hot airstreams.
- All fans made of or containing combustible materials (e.g., plastic, rubber) have low temperature limits. The unit must be rated at the maximum process temperature with the motor off to ensure the fan's suitability for service.
- With the fan operating in a warm airstream, the unit's power consumption will be higher for a given thermal performance.

Bay

One or more tube bundles, serviced by two or more fans, including the structure, plenum and other attendant equipment.

Equipment & Process Design

3.6.3 Headers

Most applications involve straight tubes attached to front and rear box-shaped headers. The front header is akin to the stationary end of a shell-and-tube exchanger to which the inlet nozzles, and outlet nozzles if there are two or more even number of passes, are attached. The rear header is akin to the floating head of a shell-and-tube exchanger and nozzles will only be attached to it if there are one or more odd number of passes. Similar to a shell-and-tube exchanger, pass partition plates, welded-in, divide the headers into passes.

The wide tube pitch, and ligament between adjacent tubes, used in air-cooled heat exchanger design provides thinner tubesheets than those in shell-and-tube exchangers. In an air-cooled heat exchanger using 25.4 mm (1 in) diameter base tubes, for example, the gap between adjacent tubes is about 35 mm (1.375 in), compared with 6.35 mm (0.25 in) in a shell-and-tube exchanger. Minimum thicknesses of ferrous parts are usually 19.05 mm (0.75 in) for tubesheets and plug sheets, 25 mm (1 in) for cover plates and 13 mm (0.5 in) for other plates.

All box-type headers comprise tubesheet, top and bottom plates to which the nozzles are attached, and end plates. As in a shell-and-tube exchanger, pass partition plates are installed if there are two or more tube-side passes. The four sides of the box may be constructed from four plates, or two U-shapes, welded together. Opposite the tubesheet is a removable cover, removable bonnet or a plug sheet, the functions of which are described below and illustrated in Fig. 3.5.

Removable cover plate header

This is similar to an N-type stationary head, or channel, of a shell-andtube exchanger, shown in Figs. 1.2 and 1.18(c), in which the header is welded to the tubesheet at one end and flanged and bolted to a flat cover at the other end. Removal of the flat cover provides access to the exposed tube ends for cleaning and repair, without breaking the nozzle/ external pipe joints. This type of construction is used if cleaning is expected to be frequent, but flanged rectangular shaped openings are prone to leakage at the corners.

Equipment & Process Design

Removable bonnet header

This is similar to a B-type stationary head, or channel, of a shell-and-tube exchanger, shown in Figs. 1.2 and 1.18(d), in which the complete bonnet header is bolted to the tubesheet. Removal of the complete bonnet provides access to the exposed tube ends for cleaning and repair, but nozzle/external pipe joints must be broken first. Although cheaper than the removable cover plate header, the flange is similarly prone to leakage at the corners.

Plug header

The side opposite the tubesheet is fitted with screwed shoulder plugs which coincide with each tube end. The diameter of the plug hole is about 0.8 mm (0.031 in) greater than the tube outside diameter and all operations involving the tube ends, such as cleaning and tube-tubesheet attachment, must be carried out through the plug hole. The plugs have hexagonal heads and the seal between plug shoulder and plug sheet achieved by a solid metal, or metal-jacketed, gasket. Despite the fact that the tube ends cannot be exposed, the plug header is the most common and used for pressures up to at least 300 bar.

Manifold header

At high pressures, where the plug header is unsuitable, manifold headers are used, in which the base tubes are welded into cylindrical headers at the inlet and outlet. Welded-on U-bends are used to connect one pass

Equipment & Process Design

🔣 Xace - [Input] - AE-5005Example38	power.htri - Input Summary-Geometry-Unit	• • •
🖃 🖳 Input Summary	Bay Description	
Geometry	Unit type Air-cooled heat exchanger	
Fans	Tube orientation Horizontal	
Optional	Hot fluid location 💿 Inside tube 🔿 Outside tube	
Bundle	Flow type C Cocurrent C Countercurrent	
H Bundle Layout	Fan arrangement C Forced 📀 Induced	
Process	Number of bays in parallel per unit 1	
Hot Fluid Properties	Number of bundles in parallel per bay 2 Number of services 1	
⊞ <mark></mark>	Number of tubepasses per bundle	
- •	Tubeside Nozzle Data	
	Nozzle database 01-ANSI_B36_10.TABLE 💌 Schedule	•
	Entry type / Perpendicular C Axial with distributor C Axial	
	Inlet Outlet	
	Tubeside nozzle inside diameter 202.718 102.261 mm	
	Number of nozzles per bundle 1 🔹 1	
<< Previous Next >>		
📑 Input 🗐 Reports 🖾 Graphs	🖾 Drawings 🔤 Multiple Services 🔜 Design 💽 Session	Xace 6.00

4.Fan Data to HTRI

Fan Diameter		Radial C mm	learance (in.)
m	(ft)	Minimum	Maximum
≤ 3.0	(≤ 9)	6.35 (¹ / ₄)	12.7 (1/2)
> 3.0 and ≤ 3.5	(> 9 and ≤ 11)	6.35 (1/4)	15.9 (⁵ / ₈)
> 3.5	<mark>(</mark> > 11)	6.35 (1/4)	19.05 (³ / ₄)

Table 6 — Radial Clearances

C2.5.8.1.1Air cooler fans are typically enclosed in rings because proper ring design
can greatly enhance fan performance. The correlation used to calculate the
pressure drop due to fan rings is [1]

$$\Delta P_{ring} = \frac{K \rho_{be} V_{fan}^2}{2} \tag{C2.5-9}$$

Experimentally measured K-factor values are tabulated in Table C2.5-1 [1], with ring geometries defined in Figure C2.5-7.

Figure C2.5-7. Fan ring geometries

Fan ring type	K-factor
Unflanged pipe	0.90
Flanged pipe	0.50
15-degree cone	0.13
30-degree cone	0.06
Smooth, well-rounded bell	0.05

Table C2.5-1. Fan Ring K-Factors (K)

🔣 Xace - [Input] - AE-5004-Example.h	tri - Input Summary-Geometry-Fans	[
🖃 🗒 Input Summary	Fan Information		
Geometry	Number of fans per bay	2 .	
Unit	Fan diameter	▼ m	
	Radial fan tip clearance	mm	
∰ Bundle ⊕⊡ Tube Types	Total combined fan and drive efficiency	65 %	
Bundle Layout	Fan manufacturer	Unspecified	
	Maximum sound pressure level	85 dBA (standard distance = 1m)	
⊡ Design	Number of fan shaft lanes per bundle		
E Control	Fan shaft lane width	mm	
	Fan Ring Type		
	© Straight	Flanged Is degree cone	
	C 30 degree cone	I C Bell	
<< Previous Next >>			
📰 Input 🗐 Reports 🖸 Graphs	🖨 Drawings 🔤 Multiple Services 🗔 D	esign Session	Xace 6.00

Equipment & Process Design

5. Optional Data to HTRI

C2.5.8.1.2 Fan Screens or Guards

Like fan rings, fan screens/guards are nearly ubiquitous in air cooler design because they protect both personnel and fans from damage. The equation used to predict pressure drop due to fan screens or guards is

$$\Delta P_{grd} = \frac{K\rho_{bs}V_{fan}^2}{2} \tag{C2.5-10}$$

However, the experimental determination of the fan screen/guard K-factors was based on velocities at the screen/guard. *Xace* uses the velocities at the fan, as demonstrated by Equation (C2.5-10). Thus, the two velocities are related through an intermediate K-factor, K_{int} :

C2.5.8.1.2 Fan Screens or Guards, continued

$$K = K_{int} \left[\left(\frac{100}{S_{nf}} \right)^2 - 1 \right]; \ 0 < K < 1$$
 (C2.5-11)

Values of K_{int} depend on the fan ring and are listed in Table C2.5-2 [4].

Fan ring type	Intermediate K-factor
Unflanged pipe, forced draft	0.23
Unflanged pipe, induced draft	0.33
Unflanged cone, 15° taper	0.15
Unflanged cone, 30° taper	0.15
Unflanged dual cone, 45° into 15° taper	0.15
Smooth, well-rounded bell	0.13

Table C2.5-2. Fan Screen or Guard Intermediate K-Factors (Kint)

Equipment & Process Design

C2.5.8.1.6 Hail Screens

Hail screens are positioned at the top of an air cooler and act as the first line of defense against structural damage, particularly hail. They are used with both forced and induced draft geometries. In the forced draft configuration, hail screens protect the bundle, whereas in induced draft, they shield the fan. Hail screen pressure drop is calculated with

$$\Delta P_{hs} = \frac{K\rho_{be}V_{fan}^2}{2} \tag{C2.5-26}$$

$$K = 0.752879 - 0.00789865S_{nf}; 0 < K < 1$$
(C2.5-27)

Drivers

For electric motor drivers, the minimum required driver rated shaft power (*P*dr) shall be calculated as follows:

 $Pdr \ge 1.05 (Pf1/Em)$

 $Pdr \ge 1.10 (Pf2)$

Where

Pdr is driver rated shaft power;

*P*f1 is fan shaft power operating at specified minimum design temperature with blade angle set for design dry-bulb temperature;

Em is mechanical efficiency of the power transmissions;

*P*f2 is fan shaft power operating at design dry-bulb temperature.

These requirements apply to fixed-pitch, variable-pitch and variable-speed fans unless otherwise specified.

Equipment & Process Design

Once installed in the bundle, the tubes must be supported to prohibit intermeshing of the fins, and "bunching" of the tubes, which allows for openings in the tube that allow channeling of the airflow. Several means of tube support are utilized dependent on manufacture.

The most common tube support is provided by a "wiggle strip" that is place between each row, and runs between each tube. This method allow for support of the tube from the fin tip and is susceptible to movement in the bundle during transportation.

Another common method, utilized by some manufacturers, is to wrap aluminum strips around the perimeter of the tube at designated spots along the length. These strips are stapled to prohibit them from loosening. Again, this provides support from the tip of the fin.

A third method is the scalloped channel. This method provides a strip, normally fabricated from aluminum that cradles each tube and runs the entire width of the bundle.

The scalloped channel is formed to provide both supports from the fin tip, and to the tube

wall. Based on the configuration, it is not able to move after inserted, and also provides a means of keeping the tubes spaced properly.

Tube support can also be provided by cast zinc collars. This method requires a zinc collar to be poured at each support spot on the tube. This method, while providing excellent support, is normally cost prohibitive.

Typical Bundle configuration

Equipment & Process Design

3.6.4 Bundle framework

The bundle has stout longitudinal side plates, or channels, one on each side, to contain the tubes. In addition they give the complete bundle sufficient rigidity to enable it to be lifted and transported without damage. Bolted to the top of the side frames, at the same intervals as the bottom tube supports, are cross-members termed tube keepers, whose function is to hold down the tubes within the bundle. As the finned tube bundle is similar to a floating-head or U-tube bundle of a shell-and-tube exchanger, the tubes must be free to expand independently of the framework and supporting structure. To achieve this the front header is 'fixed' and the rear header allowed to 'float'. Should large temperature differences between passes arise the full header must be split into two or more separate headers to prevent loosening of the tube-tubesheet attachment.

In order to prevent the air from by-passing the bundle, leading to a loss in performance, gaps are sealed off with thin metal strips. API 661 considers any gap greater than 10 mm (0.375 in) to be excessive.

C2.5.6 Plenum, Fan Deck, and Fan	Plenums, either box- or transition-type, are constructed of ribbed 14 gauge steel sheets, 0.083-in. (2.1-mm) minimum thickness.
Ring Construction	A large deck or one made from welded plates requires bracing. A fabricated fan deck should support 50 lb/ft ² (245 kg/m ²) and be constructed of 12 gauge steel, 0.109-in. (2.77-mm) minimum thickness.
	Transition plenums, used primarily in induced-draft designs, are more rigid than the box-type and require no additional fan deck.

Equipment & Process Design

The plenum chamber is constructed of steel sheet with minimum thicknesses of 2 mm (0.075 in) if flat, or 1.6 mm (0.06 in) if ribbed. As shown in Fig. 3.6, panel plenums are box-shaped, which provides a sharp change of section between the plenum entry or exit and the fan ring. As the name implies, transition plenums shown in Fig. 3.6 provide a gradual instead of a sharp change in cross-section between entry or exit and the fan ring.

Although simple in appearance, the design of plenum chambers has been the subject of considerable research. The objective has been to produce a uniform air flow across the bundle to achieve maximum fan efficiency and pressure recovery at minimum fan power requirements. Although there are no standard proportions, typical plenum proportions are given below, where A_b = bundle exposed cross-sectional area normal to air flow (i.e. face area), A_f = fan ring cross-sectional area, D_f = nominal fan diameter, H_p = distance between the plane of the fan and the bundle, H_r = fan ring height, and θ = maximum air dispersion angle (from API 661), defined in Fig. 3.7.

As expected, better performance is achieved if the air discharges into a plenum of square, rather than rectangular, cross-section. A further improvement is obtained if the plenum corners are rounded off by curved plates.

Equipment & Process Design

3.7 Temperature control

Several methods are used to control the performance of air-cooled heat exchangers to meet variations in weather and process requirements. Air-cooled heat exchangers operating in extremely cold climates require particular attention. Each case must be considered on its merits to decide on the best method of control. Rubin (1982) and Monroe (1983) state the case for variable pitch fan blades to achieve significant fan power reduction.

3.7.1 By-pass

ı

¢

Control devices are installed which enable part of the process fluid to by-pass the unit. This method has the advantages of low initial cost and close, continuous, control but does not reduce fan power consumption.

3.7 Temperature control

Several methods are used to control the performance of air-cooled heat exchangers to meet variations in weather and process requirements. Air-cooled heat exchangers operating in extremely cold climates require particular attention. Each case must be considered on its merits to decide on the best method of control. Rubin (1982) and Monroe (1983) state the case for variable pitch fan blades to achieve significant fan power reduction.

3.7.1 By-pass

Control devices are installed which enable part of the process fluid to by-pass the unit. This method has the advantages of low initial cost and close, continuous, control but does not reduce fan power consumption.

3.7.4 Variable-pitch fans

The pitch of each fan blade may be altered manually to suit the prevailing operating conditions, which will reduce fan power consumption. Although fan design permits the alteration of fan-blade pitch to be carried out

rapidly, the control is of a coarse, stepwise nature.

Automatic variable-pitch blades provide close, continuous, control but at greater capital cost.

3.7.5 Control for low air temperature

In extremely cold environments, overcooling of the process fluid may cause it to freeze. This may lead to tube rupture, which in turn may necessitate an expensive shutdown for repair. Air-cooled heat exchangers have operated at temperatures of -50 °C and several methods are used to prevent overcooling of the process stream.

Steam coils

These may be mounted at the cooler base to warm up the inlet air, but must be a separate unit and not part of the process tube bundle. Steam coils are usually employed at start-up to reduce the viscosity of highly viscous fluids.

Air recirculation

In this method, which is used with forced-draft units, some of the hot exhaust air is ducted back to warm up the incoming cold air. The principle of this method is shown in Fig. 3.9.

As an alternative, one fan in a bay is arranged to supply air in the opposite direction to the remainder. It draws in hot exhaust air to mix with the inlet cold air.

Equipment & Process Design

6.Bundle Data to HTRI

7.2.3 Fans and Fan Hubs

7.2.3.1 Two or more fans aligned in the direction of tube length shall be provided for each bay, except that single-fan arrangements may be used if agreed by the Purchaser.

7.2.3.2 Fans shall be of the axial flow type.

7.2.3.3 Each fan shall be sized such that the area occupied by the fan is at least 40 % of the bundle face area served by that fan (the bundle face area being the nominal width of the bundle or bundles multiplied by the nominal tube length).

7.2.3.4 Each fan shall be located such that its dispersion angle shall not exceed 45 degrees at the bundle centerline, as shown in Figure 7.

7.2.3.5 The fan tip speed shall not exceed the maximum value specified by the fan manufacturer for the selected fan type. Fan tip speed shall not exceed 60 m/s (12,000 ft/min) unless approved by the Purchaser. In no case shall the fan tip speed exceed 80 m/s (16,000 ft/min). Noise limitations can require lower speeds.

🔛 Xace - [Input] - AE-5005Example38p	ower.htri - Input Summary-(Geometry-Bundle		
🖃 🛄 Input Summary	Air Cooler and Economizer T	ube		
Geometry	Default bundle type	Rows	-	
I Unit	Number of tuberows /			
Fans	tubepasses		Tube (con	
Optional	i ubes in odd/even rows		Tube form [Straight	•
Bundle	Clearance, wall to first tube	9.525 mm	Tube layout 📧 stagger	ed Cinline
Bundle Layout	Bundle width	3 m	Ideal bundle 🛛 🕥 Yes	C No
	- Tube Length			
Hot Fluid Properties	Tube length	12.5 m	Additional unbeated length	mm
Design			Equivalent tube length in	
tontrol	I otal unfinned tube length	l mm	tube bends for U-tubes	m
	Row	asses for Rows with	Defined Passes Bundle	fype
<< Previous Next >>				
Input I Reports Graphs	🖨 Drawings 🖂 Multiple Se	rvices 🗔 Desian 🛛	Session	 Xace 6.00

Equipment & Process Design

Key

- 1 plenum
- 2 induced draught
- 3 centerline of bundle
- 4 fan ring

Figure 7 — Fan Dispersion Angle

side

front

5

6

7

forced draught

Equipment & Process Design

7.Tube type Input to HTRI

Fin Types

Fins can be attached to the tubes in a number of ways:

L-footed Tension wound

The most common fin type utilized in the air-cooled heat exchanger design is the Lfooted tension wound aluminum fin. The fin is produced by wrapping an aluminum strip, that is footed at the base, around the tube. This process is done by holding tension on the fin at all times. The ends of the fins are stapled to prohibit the aluminum fin from unraveling, and loosing the contact between the fin foot and the tube. This contact is critical to the operation of the air cooler, since the heat is transferred from the tube wall, through the fin, to the surrounding ambient air.

The L-footed tension wound fin is normally used in services where the tube wall temperature does not exceed 350 degrees, and air side corrosion is not extremely high. At the higher tube wall temperature, due to the difference in material between the tube and the fin, the fin will not maintain contact with the tube, therefore loosing cooling efficiency of the air cooler. This fin is also susceptible to air side corrosion creating a film

L-FOOTED TENSION

between the tube and fin, creating the same problem. Coatings to the fins, or special in

Knurled L-footed fin:

Again, this process is very similar to the L-footed tension wound fin, but utilizes knurling wheels that actually knurl the fin foot into the tube. This allows for a tighter bond between the tube and the fin, and reduces the likelihood of a corrosion film between the two.

L-footed fins with slits cut into the fin:

By cutting a slit into the fin, more air turbulence can be created, due to the interruption of the air boundary layer. This in turn increases the airside heat transfer coefficient with a modest increase in the airside pressure drop and the fan horsepower.

Equipment & Process Design

Embedded

EMBEDDED

In high temperature applications, an embedded process is employed to attach the fin to the tube wall. In this process, a groove is actually cut into the tube, the fin strip inserted, and the tube material then "plowed" back against the fin to bond it to the tube. Separation of the fin and tube due to corrosion or temperature differentials are not a factor with the fin type.

Since the fin does not employ a "foot", this leaves the tube totally exposed to airside corrosion factors. In addition, due to the groove cut into the tube, a thicker tube wall thickness must be used to avoid over-pressuring the tube.

The embedded fin is normally used for services greater than 350 degrees and less than 750 degrees F.

Extruded

For applications where atmospheric corrosion is critical, the extruded fin tube provides the best protection.

The extruded fin is produced by inserting the tube into an aluminum sleeve and then extruding the fins from the aluminum sleeve. Since the tube is totally covered by the aluminum sleeve, the tube wall is protected from outside corrosion, and the bond between the fin and the tube remains tight.

The extruded fin tube is good for tube wall temperature up to 650 degrees F. This is the most expensive fin tube to produce.

EXTRUDED

TUBESIZE AND PITCH

1. The normal tube diameter is 1.0" od. Consider carefully if using a different diameter

Typical tubepitches are given below

Metric		
Tube Dia (ins)	Fin Dia (ins)	Transverse Pitch (mm)
1.0 1.25 1.5	2.25 2.5 2.75	60 / 63.5 / 67 67 / 70 / 73 73 / 76
<u>British</u>		
Tube Dia (ins)	Fin Dia (ins)	Transverse Pitch (ins) (min / max)
1.0 1.25 1.5	2.25 2.5 2.75	2.375 / 2.625 2.625 / 2.875 2.875 / 3.0

ΤY	PICAL VALUES	S FOR INPUT I 1" TUBES	NTO Xace			
	IMPERIAL UNITS (INCHES)			1		
	L-FIN	G-FIN (embedded)	EXTRU. FIN	L-FIN	G-FIN (embedded) 433	EXTRU. FIN 393.7
No. of fins per unit length	11	11	10	433		
Fin root diameter	1.032	1	1.066	26.213	25.4	27.076
Fin height	0.609	0.625	0.592	15.469	15.875	15.037
Fin thickness at base of fin	0.016	0.016	0.028	0.4064	0.4064	0.711
Fin thickness at tip of fin	0.008	0.008	0.008	0.2032	0.2032	0.203
Overfin diameter	2.25	2.25	2.25	57.15	57.15	57.15
Tube wall thickness 12 BWG 14 BWG	0.1199 0.0913	0.1320 0.1045	0.1199 0.0913	3.046 2.319	3.353 2.654	3.046 2.319

The tubes exposed to the passage of air usually have fins that form an extended surface. This surface compensates for the low film coefficient of air at atmospheric pressure and the usually low velocities across the bundle. The base tube is typically round and composed of material suited for such process considerations as corrosion, pressure, and temperature limitations. Whether helical or plate, the fins are usually made of aluminum to improve thermal conductivity and lessen fabrication costs. Very high temperature applications require steel fins, however.

Equipment & Process Design

Xace - [Input] - AE-5005Example38p	power.htri - Input Summary-Geometry-Tube Types-TubeType1-High Fin	×
Input Summary	Tube Geometry High Fin FJ Curves	
	[Least term Databaset] Used Production Park fin and	
Fans		
Optional	Fin Type © Circular fin O Serrated fin O Bectangular fin	
Bundle		
🖃 👾 Tube Types	Circular Fins	
E O TubeType1	Fin density 433 tin/meter Material Aluminum 1060 - H14	
Tube Geom	Fin root diameter mm Thermal conductivity W/m-C	
- O High Fin	Fin height 15.8 mm Fin bond resistance m2-K/W	
FJ Curves		
	Fin base thickness U.43 mm Fin efficiency 3	
Hot Fluid Properties	Fin tip thickness 0.21 mm	
⊡ Design	Outside surface area m2/m	
Control		
	Hectangular Fins	
	Serrated Fins Height	
	Split segment height mm	
	Split segment width mm	
< >		
<< Previous Next >>		
Xace - [Input] - AE-5005Example38power.htri	i - Input Summary-Geometry-Bundle Lavout	×
Input Summary		
Geometry Number of	of tuberows / Internet in the second se	
Geometry Number (User den Unit Ubepass	ined tube pass layout	
Geometry Number of tubepass	ined tube pass layout of tuberows / 6 / 1 en numbered row / /	
Geometry User dem Unit Uberass Geometry Children Geometry Unit Uberass Optional Clearance Bundle Clearance	ined tube pass layout of tuberows / 6 / 1 of tubes in each / 1 on numbered row / / ce, wall to first tube 9.525 mm	
Geometry Unit Unit Fans Optional Clearanc Clearanc Clearanc Unit Unit Clearanc Unit Unit Unit Unit Unit Unit Unit Unit	ined tube pass layout of tuberows / 6 / 1 of tubes in each numbered row / ce, wall to first tube 9.525 mm	
Geometry Unit Unit Fans Optional Gearanc Unit Unit Unit Unit Unit Unit Unit Unit	ined tube pass layout of tuberows / 6 / 1 of tubes in each numbered row / / se, wall to first tube 9.525 mm	
Geometry Unit Unit Unit Fans Optional Geometry Unit Clearanc Unit Unit Unit Unit Unit Unit Unit Unit	ined tube pass layout of tuberows / 6 / 1 of tubes in each / on numbered row / ce, wall to first tube 9.525 mm	
Geometry Unit Unit Unit Unit Unit Unit Unit Unit	ined tube pass layout of tuberows / 6 / 1 of tubes in each / or, wall to first tube 9.525 mm	
Geometry Unit Unit Unit Fans Optional Geometry Unit Unit Unit Clearanc Unit Unit Unit Unit Unit Unit Unit Unit	ined tube pass layout	
Geometry Unit Unit Unit Fans Optional Geometry Unit Unit Unit Unit Unit Unit Unit Unit	ined tube pass layout	+ »
Geometry Unit Unit Fans Optional Clearanc UneTypes Unit Unit Unit Unit Geometry Unit Unit Unit Unit Unit Unit Unit Unit	ined tube pass layout	
Geometry Unit Fans Optional Bundle Tube Types Bundle Layout Process Horison Control	ined tube pass layout	<i>π</i>
Geometry Unit Fans Optional Bundle Design Control	ined tube pass layout of tuberows / ises of tubes in each en numbered row / ce, wall to first tube 3 m	≠
Geometry Unit Fans Optional Bundle Clearanc Design Control	ined tube pass layout	¥
Geometry Unit Fans Optional Bundle Unit Bundle Unit Bundle Unit Bundle Clearanc Process Hot Fluid Properties Design Control	ined tube pass layout of tuberows / 6 / 1 of tube is each en numbered row /	<i>τ</i>
Geometry Unit Unit Fans Optional Clearanc Uberypes Uberyp	ined tube pass layout of tuberows / ses of tubes in each mumbered row on numbered row p. wall to first tube 9.525 mm 000000000000000000000000000000000000	<i>τ</i>
Geometry Unit Unit Fans Optional Geometry Unit Fans Optional Clearanc Clearanc For Coss For Chot Fluid Properties For Control	imed tube pass layout of tubes in each en numbered row y ce, wall to first tube g.525 mm 3 m 3 m 3 m y ce, wall to first tube g.525 mm 3 m y ce, wall to first tube g.525 mm 3 m g.m g.m 	# <u>*</u>
Geometry Unit Unit Fans Optional Geometry Unit Fans Optional Clearanc Clearanc Forcess For Hot Fluid Properties Forcess For Control	ined tube pass layout of tuberows / ese ined tube pass layout of tubers in each en numbered row / of tubes in each en numbered row / / ce, wall to first tube 3.525 mm 3 m 3 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	¥
Geometry Unit Unit Fans Optional Geometry Unit Fans Optional Clearanc Clearanc Clearanc Forcess Forcess Forcess Forcess Forces F	ined tube pass layout □ of tuberows / 6 / 1 of tubes in each en numbered row / ce, wall to first tube 9525 mm 3 m ce, wall to first tube 9525 mm 3 m ce, wall to first tube 9525 mm 3 m ce, wall to first tube 9525 mm 3 m ce, wall to first tube 9525 mm 3 m ce, wall to first tube 9525 mm 3 m ce, wall to first tube 9525 mm 3 m ce, wall to first tube 9525 first	×
Geometry Unit Unit Fans Optional Bundle Unit Bundle Unit Bundle Unit Bundle Unit Bundle Unit Bundle Clearanc Cl	ined tube pass layout of tubes over / 6 / 1 of tubes in each in numbered row /	<i>≭</i> <u>→</u>
Geometry Unit Unit Fans Optional Bundle Unit Tube Types Unit Tube Types Unit For State System Clearance Cl	ined tube pass layout of tubes over / 6 / 1 of tubes in each in numbered row /	<i>t</i>
Geometry Unit Fans Optional Bundle Geometry Unit Fans Optional Clearanc Cle	ined tube pass layout of tuberovs / ses of tubes in each in numbered row ze, wall to first tube 9525 mm > an. 3 m. an. an. an. an. an. an. an.	
Geometry Unit Unit Number of ubepass Optional Bundle Bundle Clearanc Clearanc Bundle Layout Process Hot Fluid Properties Design Control Control Secondary Namber of odd/even Secondary Row Secondary Imput Reports Input Reports Input Reports Input Reports Input Reports Imput Secondary	inde pass layout of tuberows / sets f f<td>7</td>	7

Equipment & Process Design

Results

Since 1 bay was selected, which is very low for such high flow, the software failed to run. Thus, the number of bays is increased to 2 and the program is run again. The summery of the actions are provided below.

Equipment & Process Design

Number of bays	Pressure drop	Driver Power
1-5	Failed	Failed
6-10	Underdesigned	Underdesigned
12	533855	69821215
15	10797	28983
18	3163	4138
21	1661.5	1508
24	939	616
27	590	296
30	430	180
33	318	111
36	259	80
39	205	55
40	192	49
41	179	44.46
42	165	38 (44)

Actions	Pressure drops	Driver Power
Increasing fan efficiency to 75%	164.9	33.6 (38.78)
Changing fan ring type to cone 30	133.9	28.43 (32.83)

Now we stop here and try to change some parameters to optimise the required driver power.

Now one of the parameters that should be taken into account is the flow regime. To find out how it looks like graph tab is clicked and then Flow regime map is selected.

How it is interpreted

Figure B6.2-2. Horizontal tubeside flow patterns in the gravity-controlled and transition flow regimes

Equipment & Process Design

Flow Regime Map

🔶 Tubeside Condensing 🦳 Regime Boundaries

Equipment & Process Design

Notes:

Only the last tube-pass in a multipass condenser should be in gravity-controlled flow. Remember that in gravity-controlled flow, the vapor-phase heat transfer coefficient can become very low especially when non-condensible are present.

The effect of tube inclination contributes to an approximate avarage increase of only 20 percent in the tube-side heat transfer coefficient on the avarage tube side heat transfer. HTRI therefore recommends inclining tubeside condensers in gravity-flow about 3 degrees towards the draining condensate end to prevent condensate back flow.

Actions	Pressure drop	Driver Power		
Changing from one pass to two passes	114.3	21.81(25.18)		
Changing from two pass to 3 passes (4-1-1)	112	21.14(24.41)		
Changing 3 passes orientation from (4-1-1) to (3-2-1)	112	21.15(24.41)		
Force seperation	129	26.9(31.05)		
Get back to (4-1-1)	113	21.5 (25)		

So, in order to adjust the flow regime, map we perform the following actions:

Equipment & Process Design

Now let's see the impacts of the steps on flow regime:

Flow Regime Map

Two-passes with the orientation of 5-1

Equipment & Process Design

Flow Regime Map

Three passes with the orientation of 4-1-1

Equipment & Process Design

Flow Regime Map

Three passes with the orientation of 3-2-1

Equipment & Process Design

Three passes with the orientation of 3-2-1 in Force

Equipment & Process Design

Flow Regime Map

Three passes with the orientation of 4-1-1 in Force

Equipment & Process Design

Now Let's choose another path and start with 39 bays, aiming to design air-cooler with maximum driver fan of 45 kw.

The following actions are taken which is summarized below:

Actions	Pressure drops	Driver Power
Choosing 39 bays	205	
Changing fan ring type to cone 30	165	46.51
Changing fan efficiency from 65% to 75%	165	40.31(46.54)
Increasing the number of passes to 2 passes	136.8	29.4(34)
Increasing the number of passes to 3 passes with 4-1-1 oriantation	133.8	28.33 (32.7)
Force	132	27.95 (32.27)

Equipment & Process Design

Flow Regime Map

Flow regime map for one pass

Equipment & Process Design

Flow Regime Map

Flow regime for two passes

Equipment & Process Design

Flow Regime Map

Flow regime for three passes

Equipment & Process Design

Flow Regime Map

Flow regime for three passes in Force

Equipment & Process Design

Flow Regime Map

🔶 Tubeside Condensing 🦳 Regime Boundaries

Equipment & Process Design

Vendor Thermal Calculation

Differences in assumptions:

Parameter	Ме	Vendor
Temprature	48	50
Inlet Nozzle		193.67
Outlet Nozzle		87.32
Tube passes	4-1-1	5-1
Tubes in odd/even rows	46	44
Total unfinned tube length	0	78

Results:

Process	Conditions		Outs	side			Tubesid	е	
Fluid name						Methano	l Vapor		
Fluid condition				Se	ns. Gas		(Cond. Vapor	
Total flow rate	(kg/hr)		400	627	694.590		:	501874.239	*
Weight fraction vapor, In/Ou	ıt		1.000		1.000	0.9	991	0.000	
Temperature, In/Out	(Deg C)		50.00		63.35	67	.00	65.00	
Skin temperature, Min/Max	(Deg C)		58.79		65.77	60	.67	66.52	
Pressure, Inlet/Outlet	(bar-G)		-2.96e-3	-	-4.19e-3	0.1	100	-0.103	
Pressure drop, Total/Allow	(Pa)	(bar)	122.76		0.00	0.2	203	0.050	
Midpoint velocity	(m/s)				6.11			10.35	
- In/Out	(m/s)					14	.39	0.12	
Heat transfer safety factor	()				1			1	
Fouling	(m2-K/W)			0.	000000			0.000170	
			Exchange	r Pe	rformance	e	10000		
Outside film coef	(W/m2-K)		45.17		Actual U		(W/m2-K)	30.661	
Tubeside film coef	(W/m2-K)		5836.97		Required	U	(W/m2-K)	30.390	
Clean coef	(W/m2-K)		35.905		Area		(m2)	576702	
Hot regime		C	ond. Vapor	L	Overdesi	gn	(%)	0.89	
Cold regime			Sens. Gas	Г		Tut	be Geomet	try	
EMTD	(Deg C)		8.7		Tube type	9		High-finned	
Duty	(MegaWatts)		151.705		Tube OD		(mm)	25.400	
	Unit Geo	metry		-	Tube ID		(mm)	21.184	
Bays in parallel per unit			48		Length		(m)	12.500	
Bundles parallel per bay			2		Area ratio	(out/in)	()	28.0168	
Extended area	(m2)		576702		Layout			Staggered	
Bare area	(m2)		24680.7		Trans pite	ch	(mm)	63.500	
Bundle width	(m)		2.838		Long pitc	h	(mm)	54,991	
Nozzle	1000 120	Inlet	Outlet		Number	ofpasses	()	2	
Number	()	2	2		Number	ofrows	(-)	6	
Diameter	(mm)	193 675	87 325		Tubecour	nt	(-)	264	
Velocity	(m/s)	18 94	0.16		Tubecour	nt Odd/Even	(-)	44/	44
R-V-SO	(ka/m-s2)	466 70	19.60		Tube mat	terial	í.	arbon steel	
Pressure drop	(har)	2 567e-3	6 860e-5	H	Tube ma	Fi	n Geometr	v	_
Theodale grop	Fan Ger	metry	0.00000	-	Type		in oconneti	Plain round	
No/bay	()	incury	2		Fins/leng	th	fin/meter	433.0	
Fan ring type			30 deg		Fin root		mm	25 400	
Diameter	(m)		4 265		Height		mm	15 800	
Ratio Ean/hundle face area	(11)		4.205		Rase thic	knoce	mm	0.430	
Driver nower	(KAAO)		23.24		Over fin	11633	mm	57 000	
Tin clearance	(mm)		19 050		Efficiency	,	(%)	79.4	
Efficiency	(%)		75		Area ratio	(fin/bare)	(-)	23 3665	
Airside Velocities	(12)	Actual	Standard	-	Material	(Aluminum	1060 - H14	
Face	(m/s)	3.04	2.76	Ē		Therm	al Resista	nce, %	_
Maximum	(m/s)	5.96	5.40		Air			67.88	
Flow	(100 m3/min)	6216.69	5636.14		Tube			14.72	
Velocity pressure	(Pa)	32.47			Fouling			14.60	
Bundle flow fraction	(Pa)	120.82			Bond			2.80	
Bundle	98.41	1.000	Airside Pres	sure	e Drop, %	Louvers		0.00	0.00
Ground clearance	0.00	Fan guard			0.00	Hail scree	n		0.00
Fan ring	1.59	Fan area blo	ockage		0.00	Steam coil			0.00

Equipment & Process Design

		Unit an	d Bundle Co	nst	ruction Information		
Bays in parallel/unit	()		48		Bundles in parallel/bay		2
Extended area/unit	(m2)		576702		Bare area/unit	(m2)	24680.7
Extended area/bundle	(m2)		6007.31		Bare area/bundle	(m2)	257.091
Tubepasses/Tuberows	()	2/	6		Number of tubes/bundle	()	264
Tubecount, Odd rows/Even rows	()	44/	44		Edge seals	()	Yes
Bundle width	(m)		2.838		Fan guard	()	No
Clearance	(mm)		9.525		Louvers	()	No
Header depth	(mm)		101.600		Steam coil	()	No
Header Box					Hail screen	()	No
- Plate thickness	(mm)		22.225		Tube support information		
- Tubesheet thickness	(mm)		31.750		- Number	()	6
Plenum type			Box		- Width	(mm)	25.400
Weight/Bundle	(kg)		10569		Orientation (from horiz.)	(deg)	0.00
Structure weight	(kg)		330800		Tubeside volume	(L)	1397.0
Total weight, Dry / Wet	(kg)		1561335	1	1695348		
Ladder/walkway weight	(kg)		215923		Cost Factor	()	4602.64
			Tube I	nfor	mation		
Straight length	(m)		12.500		Tube type	()	High-finned
Unfinned length	(mm)		80.000		Unheated length	(mm)	215.900
Layout	()		Staggered		Area ratio (fin/bare)	()	23.3665
Transverse pitch	(mm)		63.500		Fins per unit length	(fin/meter)	433.0
Longitudinal pitch	(mm)		54.991		Fin root diameter	(mm)	25.400
Tube form	()		Straight		Fin height	(mm)	15.800
Outside diameter	(mm)		25.400		Fin thickness at base	(mm)	0.430
Inside diameter	(mm)		21.184		Fin thickness at tip	(mm)	0.210
Area ratio (out/in)	()		28.0168		Fin type	()	Plain round
Over fin diameter	(mm)		57.000		Fin efficiency	(%)	79.4
Tube material		С	arbon steel		Internal tube type		None
Fin material		Aluminum	1060 - H14				

Fan Description and Fan Power								
Number of fans per bay		()		2				
Diameter	(m)		4.265					
Tip clearance	(mm)		19.050					
Ratio, fan area to bay face area		()		0.40				
Fan ring type		()		30 deg				
Percent open area - in fan guard		(%)		0				
- in hail screen		(%)		0				
Ratio, ground clearance to fan diameter		()						
Percent blockage, other obstruction		(%)		0				
Bundle pressure drop/ Velocity pressure		(Pa)	120.82 /	32.47				
Fan and drive efficiency		(%)		75				
Motor power per fan-design air temperature		(KW)		23.24				
Motor power per fan-minimum air temperatu	Ire	(kW)		27.00				
Ambient temperature, maximum / minimum		(Deg C)	-17.78 /	5.00				
Two-Phase Parameters								
Method Inlet	Center	Outlet	Mix F					
RPM Shear	Trans	Shear	0.98971					
Bundle flow fraction	() 1.000							
Heat Transfer and Pressure Dr	op Parameters		Tubeside	Outside				
Midpoint j-factor		()		0.0068				
Heat transfer	Wall Correction	()	1.0000	0.9927				
	Row Correction	()		1.0000				
Midpoint f-factor		()	0.0000	0.2492				
Pressure drop	Wall Correction	()	0.0000	1.0067				
	Row Correction	()		1.0029				
Reynolds number	Inlet	()	35743	8453				
	Midpoint	()	37109	8299				
	Outlet	()	5973	8199				
Fouling layer thickness		(mm)	0.000	0.000				
Input minimum velocity		(m/s)						
Input maximum velocity		(m/s)						
Input minimum wall temperature		(Deg C)						
Upput maximum wall temperature								

Equipment & Process Design

6865	0	CLAMPING PLATE 卡板 280X68X40				
6860	0	CLAMPING PLATE FOR MOTOR SUPPORT 电机架卡板 400X55X40				
6857	0	STRAIGHT COUPLING FOR TUBE 6/8 直连接头 <s s="" 不锈钢=""></s>				
6855	0	MALE STUD COUPLING FOR TUBE 6/8 外螺纹连接头 THREAD 螺纹:1/8" NPT <s.s 不锈钢=""></s.s>				
6852	2	TUBE 管子 6/8 <s.s 不锈钢=""> LENGTH 长度:3 M</s.s>				
6852	1	TUBE 管子 6/8 <s.s 不锈钢=""> LENGTH 长度:2 M</s.s>				
6851	0	WALL PENETRATION FEMALE 1/8" NPT WITH RING FOR TUBE 6/8 <s.s> 1/8"NPT内螺纹接头 配密封圈 <不锈钢></s.s>				
6840	0	TENSIONING 调整螺杆				
6822	0	SUPPORT FOR VIBRATION SWITCH 振动开关支架				
6821	0	VIBRATION SWITCH 振动开关:3171EX MR DPCO SILVER				
6700	0	TRANSMISSION UNIT 传动单元				
6610	0	MOTOR 电机 TYPE 型号: YB2E-225S-4WF1-37KW DOL 50HZ				
6510	0	FAN UNIT 风机 TYPE 型号: Y-TF42.7L6-N37				
6424	0	STIFFENER FASTENING 加强撑连接件				
6423	0	LOWER STIFFENER 下加强撑				
6422	0	UPPER STIFFENER 上加强撑				
6421	0	BEARING SUPPORT 轴承支架				
6310	0	SUPPORT FOR FLANGE MOTOR 法兰式安装电机支架				
6213	0	DRIVE BELTS GUARD 驱动皮带护板				
6211	0	ACCOUSTIC COVER 隔音罩				
6210	0	DRIVEN PULLEY GUARD 从动皮带轮防护罩				
6121	0	FAN AND DRIVE SUPPORT 风机及驱动支架				
6106	0	MOTOR SUPPORT STRUCTURE 电机支撑架				
6104	0	LUBRICATION PIPING SUPPORT 润滑油管支架				
PART	REP	DESCRIPTION				
件号	序号	描述				

Equipment & Process Design

a) Direct right-angle gear drive

c) Direct motor drive

e) Suspended belt drive, motor shaft down

Key

1	fan	6	belt drive
2	gear box	7	motor
3	coupling	8	fan ring
4	bearing	9	base plate
5	sheave	10	fan support

8

b) Belt drive

d) Right-angle gear drive with fan support

f) Suspended belt drive, motor shaft up

Equipment & Process Design

Note from API-661:

1. V-belt drive assemblies suspended from the structure may be used with motor drivers rated not higher than 30 kW (40 hp).

2. High-torque type positive-drive-belt drive assemblies suspended from the structure may be used with motor drivers rated not higher than 45 kW (60 hp).

3. Electric motors rated higher than 45 kW (60 hp) shall use gear drives; smaller motors may use gear drives.

Equipment & Process Design

Equipment & Process Design

