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[image: ][image: ]2.Process Input to HTRI
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Bay

One or more tube bundles, serviced by two or more fans, including the structure, plenum and 

other attendant equipment.
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[image: ][image: ]5.Optional Data to HTRI
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Drivers
For electric motor drivers, the minimum required driver rated shaft power (Pdr) shall be
calculated as follows:

Pdr ≥ 1.05 (Pf1/Em)

Pdr ≥ 1.10 (Pf2)

Where

Pdr is driver rated shaft power;
Pf1 is fan shaft power operating at specified minimum design temperature with blade angle set 
for design dry-bulb temperature;

Em is mechanical efficiency of the power transmissions;

Pf2 is fan shaft power operating at design dry-bulb temperature.

 These requirements apply to fixed-pitch, variable-pitch and variable-speed fans unless 
 otherwise specified.



Once installed in the bundle, the tubes must be supported to prohibit intermeshing of the fins, and “bunching” of the tubes, which allows for openings in the tube that allow channeling of the airflow. Several means of tube support are utilized dependent on manufacture.
The most common tube support is provided by a “wiggle strip” that is place between each row, and runs between each tube. This method allow for support of the tube from the fin tip and is susceptible to movement in the bundle during transportation.
Another common method, utilized by some manufacturers, is to wrap aluminum strips around the perimeter of the tube at designated spots along the length. These strips are stapled to prohibit them from loosening. Again, this provides support from the tip of the fin. 
A third method is the scalloped channel. This method provides a strip, normally fabricated from aluminum that cradles each tube and runs the entire width of the bundle. 
The scalloped channel is formed to provide both supports from the fin tip, and to the tube 
wall. Based on the configuration, it is not able to move after inserted, and also provides a means of keeping the tubes spaced properly. 
[image: ]Tube support can also be provided by cast zinc collars. This method requires a zinc collar to be poured at each support spot on the tube. This method, while providing excellent support, is normally cost prohibitive.
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[image: ][image: ]6.Bundle Data to HTRI
[image: ]
[image: ]








[image: ][image: ]7.Tube type Input to HTRI
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Since 1 bay was selected, which is very low for such high flow, the software failed to run. Thus, the number of bays is increased to 2 and the program is run again. The summery of the actions are provided below.







	
Number of bays
	
Pressure drop
	
Driver Power

	
1-5
	
Failed
	
Failed

	
6-10
	
Underdesigned
	
Underdesigned

	
12
	
533855
	
69821215

	
15
	
10797
	
28983

	
18
	
3163
	
4138

	
21
	
1661.5
	
1508

	
24
	
939
	
616

	
27
	
590
	
296

	
30
	
430
	
180

	
33
	
318
	
111

	
36
	
259
	
80

	
39
	
205
	
55

	
40
	
192
	
49

	
41
	
179
	
44.46

	
42
	
165
	
38 (44)




Now we stop here and try to change some parameters to optimise the required driver power.
	
Actions
	
Pressure drops
	
Driver Power

	
Increasing fan efficiency to 

75%
	
164.9


	
33.6 (38.78)

	
Changing fan ring type to 

cone 30
	
133.9
	
28.43 (32.83)



Now one of the parameters that should be taken into account is the flow regime. To find out how it looks like graph tab is clicked and then Flow regime map is selected.



[image: ]How it is interpreted 
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Notes:
Only the last tube-pass in a multipass condenser should be in gravity-controlled flow. Remember that in gravity-controlled flow, the vapor-phase heat transfer coefficient can become very low especially when non-condensible are present. 
The effect of tube inclination contributes to an approximate avarage increase of only 20 percent in the tube-side heat transfer coefficient on the avarage tube side heat transfer. HTRI therefore recommends inclining tubeside condensers in gravity-flow about 3 degrees towards the draining condensate end to prevent condensate back flow.

So, in order to adjust the flow regime, map we perform the following actions:

	
Actions
	
Pressure drop
	
Driver Power

	
Changing from one pass to two passes
	
114.3
	
21.81(25.18)

	
Changing from two pass to
 3 passes (4-1-1) 
	
112
	
21.14(24.41)

	
Changing 3 passes orientation    from (4-1-1) to (3-2-1)
	
112
	
21.15(24.41)

	
Force seperation
	
129
	
26.9(31.05)

	
Get back to (4-1-1)
	
113
	
21.5 (25)






Now let’s see the impacts of the steps on flow regime:
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                                             Two-passes with the orientation of 5-1
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                                             Three passes with the orientation of 4-1-1





[image: ]          
                                               Three passes with the orientation of 3-2-1
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Three passes with the orientation of 3-2-1 in Force
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Three passes with the orientation of 4-1-1 in Force








Now Let’s choose another path and start with 39 bays, aiming to design air-cooler with maximum driver fan of 45 kw.
The following actions are taken which is summarized below:

	
Actions
	
Pressure drops
	
Driver Power

	
Choosing 39 bays 
	
205
	

	
Changing fan ring type to 
cone 30
	
165
	
46.51

	
Changing fan efficiency from 65% to 75%
	
165
	
40.31(46.54)

	
Increasing the number of passes to 2 passes
	
136.8
	
29.4(34)

	
Increasing the number of passes to 3 passes with
 4-1-1 oriantation
	

133.8
	

28.33 (32.7)

	
Force 
	
132
	
27.95 (32.27)










[image: ]                                                             Flow regime map for one pass
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	Flow regime for two passes
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                                                                  Flow regime for three passes






[image: ]                Flow regime for three passes in Force
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Vendor Thermal Calculation
Differences in assumptions:
	
Parameter
	
Me
	
Vendor

	Temprature
	48
	50

	Inlet Nozzle
	
	193.67

	Outlet Nozzle
	
	87.32

	Tube passes
	4-1-1
	5-1

	Tubes in odd/even rows
	46
	44

	Total unfinned tube length
	0
	78

	
	
	



	Parameter
	Vendor
	PEA
	PEB

	
Bay
	
48
	
38
	
37

	
Power
	
27
	
36.84
	
40.34

	
Total Power
	
96 * 27
	
76 * 37
	
74 * 41

	
Pressure Drop
	
119
	
141
	
149

	
Flow regime 
	
No
	
Yes
	
Yes

	
Bundle Weight
	
1534349
	
1257180
	
1224096

	
Reliability
	First
	
	



[image: ][image: ][image: ]Results:
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Note from API-661:
1. V-belt drive assemblies suspended from the structure may be used with motor drivers rated
not higher than 30 kW (40 hp).
2. High-torque type positive-drive-belt drive assemblies suspended from the structure may be
used with motor drivers rated not higher than 45 kW (60 hp).
3. Electric motors rated higher than 45 kW (60 hp) shall use gear drives; smaller motors may use gear drives.
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(F32-5-3&1D t Forced-draft air-cooled heat exchangers with horizontal bundles have
orced-Draft, i y .
Horizontal Bundle, these advantages over induced-draft ACHEs:

continued . . .
o Less power is needed fo convey air because fans are located in the cool

airstream below the bundle.
* Maintenance is easier because fan drives are located below the unit.

o The construction material is not critical because fans are unlikely to
overheat unless near a very high temperature bundle or in a
recirculation cabin.

o Bundles are located above the plenum chamber. which simplifies
assembly of the structure. Disassembly is usually not required to
remove bundles for cleaning or repair.
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C25.3
Air-Cooled
Heat
Exchanger
Configurations

€2.5.31
Forced-Draft,
Horizontal Bundle

In some situations. the choice of heat exchanger type is critical to proper
plant operation: the project engineer must therefore understand advantages
and drawbacks associated with various configurations.

Horizontal arrangements are the most common forced-draft design. The
size of shop-erected units is limited by transportation restrictions: field-
erected units are larger. their size limited only by practicality.
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This type of design also has several disadvantages:

Unless the unit is grade-mounted. underslung walkways are required
for motor and fan access.

The velocity of air escaping from the bundle's top is low—typically
500-700 ft/min (2.5-3.5 m/s)—making the unit susceptible to
crosswind effects and inducing external recirculation around the
cooler. This problem is accentuated by proximity to tall structures or to
other units that are not part of the same continuous bank. Anti-
recirculation fences may have to be fitted at considerable expense.
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7

Figure C2.5-1. Forced-draft, horizontal configuration.
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€2.5.3.1

Forced-Draft, e Good airflow distribution is more difficult to achieve than with
Horizontal Bundle, induced-draft exchangers.
continued

o The bundles are exposed to solar radiation, which increases the heat
load. For most cases, the increase in heat load is small (< 2%) and can
be neglected. However. for cases where the effective mean
temperature difference is low (< 5.6 °C (10 °F)) and the tubeside heat
transfer coefficient is low (for exanple. in laminar single-phase flow).
the solar radiation can increase the duty more than 5% and should be
included in the performance analysis.
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C2.5.3.2
Induced-Draft,
Horizontal Bundle

Min. Temp. approach
Forced draft Induced draft
12C 8C

units, often designed fm_
are usually multiple-bay installations.

_typical of this design follow:

¢ The unit is becaus:

The plenum chamber. whether a hood or a flat deck._
it alsc

making horizontal induced-

rovide a

For close temperature control; i.e. induced draft when +/-3 C
control is required.




image14.png
C2.5.3.2
Induced-Draft,
Horizontal Bundle,
continued

[

il

Figure C2.5-2. Induced-draft, horizontal configuration
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A few disadvantages are also ascribed to this configuration:

Except for very low process temperatures (below 158 °F (70 °C)). the
gearbox or belt drive system cannot be mounted in the hot airstream.

Except for those with remote actuation. all autovariable fans have low
maximum operating temperatures and are unsuitable for mounting in
hot airstreams.

All fans made of or containing combustible materials (e.g.. plastic.
rubber) have low temperature limits. The unit must be rated at the
maximum process temperature with the motor off to ensure the fan's
suitability for service.

‘With the fan operating in a warm airstream. the unit's power
consumption will be higher for a given thermal performance.
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Removible cover plate header

This is similar to an N-type stationary head, or channel, of-a shell-and-
tube exchanger, shown in Figs. 1.2 and 1.18(c), in which the header is
welded to the tubesheet at one end and flanged and bolted to a flat cover
at the other end. Removal of the flat cover provides access to the
exposed tube ends for cleaning and repair, without breaking the nozzle/
external pipe joints. This type of construction is used if cleaning is
expected to be frequent, but flanged rectangular shaped openings are
prone to leakage at the corners.
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The wide tube pitch, and ligament between adjacent tubes, used in
air-cooled heat exchanger design provides thinner tubesheets than those
in shell-and-tube exchangers. In an air-cooled heat exchanger using
25.4 mm (1 in) diameter base tubes, for example, the gap between
adjacent tubes is about 35 mm (1.375 in), compared with 6.35 mm
(025 in) in a shell-and-tube exchanger. Minimum thicknesses of ferrous
parts are usually 19.05 mm (0.75 in) for tubesheets and plug sheets,

25 mm (1 in) for cover plates and 13 mm (0.5 in) for other plates.

All box-type headers comprise tubesheet, top and bottom plates to
which the nozzles are attached, and end plates. As in a shell-and-tube
exchanger, pass partition plates are installed if there are two or more
tube-side passes. The four sides of the box may be constructed from four
plates, or two U-shapes, welded together. Opposite the tubesheet is a
removable cover, removable bonnet or a plug sheet, the functions of
which are described below and illustrated in Fig. 3.5.
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3.6.3 Headers

Most applications involve straight tubes attached to front and rear
box-shaped headers. The front header is akin to the stationary end of a
shell-and-tube exchanger to which the inlet nozzles, and outlet nozzles if
there are two or more even number of passes, are attached. The rear
header is akin to the floating head of a shell-and-tube exchanger and
nozzles will only be attached to it if there are one or more odd number of
passes. Similar to a shell-and-tube exchanger, pass partition plates,
welded-in, divide the headers into passes.
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Removable bonnet header

This is similar to a B-type stationary head, or channel, of a shell-and-tube
exchanger, shown in Figs. 1.2 and 1.18(d), in which the complete bonnet
header is bolted to the tubesheet. Removal of the complete bonnet
provides access to the exposed tube ends for cleaning and repair, but
nozzle/external pipe joints must be broken first. Although cheaper than
the removable cover plate header, the flange is similarly prone to leakage
at the corners.

Plug header

The side opposite the tubesheet is fitted with screwed shoulder plugs
which coincide with each tube end. The diameter of the plug hole is
about 0.8 mm (0.031 in) greater than the tube outside diameter and all
operations involving the tube ends, such as cleaning and tube-tubesheet
attachment, must be carried out through the plug hole. The plugs have
hexagonal heads and the seal between plug shoulder and plug sheet
achieved by a solid metal, or metal-jacketed, gasket. Despite the fact that
the tube ends cannot be exposed, the plug header is the most common
and used for pressures up to at least 300 bar.

Manifold header

At high pressures, where the plug header is unsuitable, manifold headers
are used, in which the base tubes are welded into cylindrical headers at
the inlet and outlet. Welded-on U-bends are used to connect one pass
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Legend (c}

1. Tubesheet

2. Plug sheet

3. Top and bottom plates
4. End plate

Figure 3.5 Typical

headers (a) removable  (d)
cover (b) removable

bonnet (c) plug (d)

manifold (courtesy of
American Petroleum
Institute, API 661)

5. Tube

6. Pass partition
7. Stiffener

8. Plug

9. Nozzle
10. Side frame
11. Tube spacer
12. Tube support cross-member

13. Tube keeper

14. Vent

15. Drain

16. Instrument connection
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Legend (a) and (b)
1. Tubesheet 4. Top and bottom plates 8. Nozzle 12. Tube keeper
2. Removable cover plate 6. Tube 9. Side frame 13. Vent
3. Removable bonnet 6. Pass partition 10. Tube spacer 14. Drain
7. Gasket 1. Tube support 15. Instrument

cross-member connection
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Figure C2.5-7. Fan ring geometries
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€2.5.8.1.1
Fan Rings

Air cooler fans are typically enclosed in rings because proper ring design
can greatly enhance fan performance. The correlation used to calculate the
pressure drop due to fan rings is [1]

K0V

AR, == (C2.5:9)

Experimentally measured K-factor values are tabulated in Table C2.5-1
[1]. with ring geometries defined in Figure C2.5-7.
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Table C2.5-1. Fan Ring K-Factors (K)

Fan ring type K-factor
Unflanged pipe 0.90
Flanged pipe 0.50
15-degree cone 0.13
30-degree cone 0.06
Smooth, well-rounded bell 0.05
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C2.5.8.1.2 100

Fan Screens or K=K, [87} —1[:0<K<1 (C2.5-11)
Guards, nf

continued

Values of K, depend on the fan ring and are listed in Table C2.5-2 [4].

Table C2.5-2. Fan Screen or Guard Intermediate K-Factors (K;,,)

Fan ring type Intermediate K-factor
Unflanged pipe. forced draft 0.23
Unflanged pipe. induced draft 0.33
Unflanged cone. 15° taper 0.15
Unflanged cone. 30° taper 0.15
Unflanged dual cone. 45° into 15° taper 0.15
Smooth, well-rounded bell 0.13
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C€2.58.1.2 Like fan rings. fan screens/guards are nearly ubiquitous in air cooler
(F;lr;rsd(;reens OF  design because they protect both personnel and fans from damage. The
equation used to predict pressure drop due to fan screens or guards is

KpV
4P, = % (€2.5-10)
However., the experimental determination of the fan screen/guard
K-factors was based on velocities at the screen/guard. Xace uses the
velocities at the fan. as demonstrated by Equation (C2.5-10). Thus. the
two velocities are related through an intermediate K-factor. K
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C€2.58.1.6 Hail screens are positioned at the top of an air cooler and act as the first

Hail Screens line of defense against structural damage. particularly hail. They are used
with both forced and induced draft geometries. In the forced draft
configuration. hail screens protect the bundle. whereas in induced draft,
they shield the fan. Hail screen pressure drop is calculated with

KT

4B, B

(C2.5-26)

K =0.752879-0.00789865S,,: 0 <K <1 (C2.5-27)
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C2.5.6 Plenums. either box- or transition-type. are constructed of ribbed 14 gauge

Plenum, Fan steel sheets, 0.083-in. (2.1-mm) minimum thickness.
Deck, and Fan

Ring

. A large deck or one made from welded plates requires bracing. A
Construction

fabricated fan deck should support 50 1b/f* (245 kg/m?) and be
constructed of 12 gauge steel. 0.109-in. (2.77-mm) minimum thickness.
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3.64 Bundle framework

The bundle has stout longitudinal side plates, or channels, one on each
side, to contain the tubes. In addition they give the complete bundle
sufficient rigidity to enable it to be lifted and transported without
damage. Bolted to the top of the side frames, at the same intervals as the
bottom tube supports, are cross-members termed tube keepers, whose
function is to hold down the tubes within the bundle. As the finned tube
bundle is similar to a floating-head or U-tube bundle of a shell-and-tube
exchanger, the tubes must be free to expand independently of the
framework and supporting structure. To achieve this the front header is
‘fixed’ and the rear header allowed to ‘float’. Should large temperature
differences between passes arise the full header must be split into two or
more separate headers to prevent loosening of the tube-tubesheet
attachment.

In order to prevent the air from by-passing the bundle, leading to a
loss in performance, gaps are sealed off with thin metal strips. API 661
considers any gap greater than 10 mm (0.375 in) to be excessive.
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Transition plenums. used primarily in induced-draft designs. are more
rigid than the box-type and require no additional fan deck.
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Panel plenum Transition plenum
(a) Forced draft

Panel plenum Transition plenum
(b) Induced draft
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The plenum chamber is constructed of steel sheet with minimum
thicknesses of 2 mm (0.075 in) if flat, or 1.6 mm (0.06 in) if ribbed. As
shown in Fig. 3.6, panel plenums are box-shaped, which provides a sharp
change of section between the plenum entry or exit and the fan ring. As
the name implies, transition plenums shown in Fig. 3.6 provide a gradual
instead of a sharp change in cross-section between entry or exit and the
fan ring.

Although simplé in appearance, the design of plenum chambers has
been the subject of considerable research. The objective has been to
produce a uniform air flow across the bundle to achieve maximum fan
efficiency and pressure recovery at minimum fan power requirements.
Although there are no standard proportions, typical plenum proportions
are given below, where A, = bundle exposed cross-sectional area normal
to air flow (i.e. face area), A, = fan ring cross-sectional area,

Dy = nominal fan diameter, H, = distance between the plane of the fan
and the bundle, H, = fan ring height, and 8 = maximum air dispersion
angle (from API 661), defined in Fig. 3.7.
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As expected, better performance is achieved if the air discharges into a
plenum of square, rather than rectangular, cross-section. A further
improvement is obtained if the plenum corners are rounded off by curved
plates.
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3.7 Temperature control

Several methods are used to control the performance of air-cooled heat
exchangers to meet variations in weather and process requirements.
Air-cooled heat exchangers operating in extremely cold climates require
particular attention. Each case must be considered on its merits to decide
on the best method of control. Rubin (1982) and Monroe (1983) state the
case for variable pitch fan blades to achieve significant fan power
reduction. »

3.7.1 By-pass

Control devices are installed which enable part of the process fluid to
by-pass the unit. This method has the advantages of low initial cost and
close, continuous, control but does not reduce fan power consumption.
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rapidly, the control is of a coarse, stepwise nature.
Automatic variable-pitch blades provide close, continuous, control but
at greater capital cost.

3.7.5 Control for low air temperature

In extremely cold environments, overcooling of the process fluid may
cause it to freeze. This may lead to tube rupture, which in turn may
necessitate an expensive shutdown for repair. Air-cooled heat exchangers
have operated at temperatures of —50 °C and several methods are used to
prevent overcooling of the process stream.

Steam coils .

These may be mounted at the cooler base to warm up the inlet air, but
must be a separate unit and not part of the process tube bundle. Steam
coils are usually employed at start-up to reduce the viscosity of highly
viscous fluids.
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3.7.4 Variable-pitch fans

The pitch of each fan blade may be altered manually to suit the prevailing
operating conditions, which will reduce fan power consumption. Although
fan design permits the alteration of fan-blade pitch to be carried out
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Air recirculation
In this method, which is used with forced-draft units, some of the hot
exhaust air is ducted back to warm up the incoming cold air. The
principle of this method is shown in Fig. 3.9.

As an alternative, one fan in a bay is arranged to supply air in the
opposite direction to the remainder. It draws in hot exhaust air to mix
with the inlet cold air.

Hot exhaust air Control
, . 4 louvres
t
Process oo e oennnn | HOU recirculated air
fluid in l :
1
: Control
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1 Bundle R
Process ¢ ; :
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7.2.3 Fans and Fan Hubs

7.2.3.1 Two or more fans aligned in the direction of tube length shall be provided for each bay, except
that single-fan arrangements may be used if agreed by the Purchaser.

7.2.3.2 Fans shall be of the axial flow type.

7.2.3.3 Each fan shall be sized such that th
(the bundle face area being the nominal width of the bundle or bundles
multiplied by the nominal tube length).

7.23.4 Each fan shall be located such that its_at the

bundle centerline, as shown in Figure 7.

7.2.3.5 The fan tip speed shall not exceed the maximum value specified by the fan manufacturer for
the selected fan type.—IZ,OOO ft/min) unless approved by the
Purchaser. In no case shall the fan tip speed exceed 80 m/s (16,000 ft/min). Noise limitations can require
lower speeds.
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Figure 7 — Fan Dispersion Angle
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Knurled L-footed fin:

Again. this process is very similar to the L-footed tension wound fin. but utilizes knurling
wheels that actually knurl the fin foot into the tube. This allows for a tighter bond
between the tube and the fin. and reduces the likelihood of a corrosion film between the
two.

L-footed fins with slits cut into the fin:
By cutting a slit into the fin. more air turbulence can be created. due to the interruption of

the air boundary layer. This in turn increases the airside heat transfer coefficient with a
modest increase in the airside pressure drop and the fan horsepower.
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Fin Types
Fins can be attached to the tubes in a number of ways:
L-footed Tension wound

The most common fin type utilized in the air-cooled heat exchanger design is the L-
footed tension wound aluminum fin. The fin is produced by wrapping an aluminum strip.
that is footed at the base. around the tube. This process is done by holding tension on the
fin at all times. The ends of the fins are stapled to prohibit the aluminum fin from
unraveling. and loosing the contact between the fin foot and the tube. This contact is
critical to the operation of the air cooler. since the heat is transferred from the tube wall.
through the fin. to the surrounding ambient air.

The L-footed tension wound fin is
normally used in services where the
tube wall temperature does not

exceed 350 degrees. and air side
corrosion is not extremely high.

At the higher tube wall temperature.
due to the difference in material
between the tube and the fin. the fin
will not maintain contact with the tube.
therefore loosing cooling efficiency of L-FOOTED TENSION

the air cooler. This fin is also susceptible

to air side corrosion creating a film

between the tube and fin. creating the same problem. Coatings to the fins. or special in
material can be utilized to slow this process.
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Extruded

For applications where atmospheric corrosion is critical. the extruded fin tube provides
the best protection.

The extruded fin is produced by inserting the tube into an
aluminum sleeve and then extruding the fins from the
aluminum sleeve. Since the tube is totally covered by the
aluminum sleeve, the tube wall is protected from outside
corrosion, and the bond between the fin and the tube remains
tight.

The extruded fin tube is good for tube wall temperature up to

650 degrees F. This is the most expensive fin tube to
produce.

EXTRUDED
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Embedded

EMBEDDED

In high temperature applications. an embedded
process is employed to attach the fin to the tube
wall. In this process. a groove is actually cut into
the tube. the fin strip inserted. and the tube material
then “plowed” back against the fin to bond it to the
tube. Separation of the fin and tube due to corrosion
or temperature differentials are not a factor with the
fin type.

Since the fin does not employ a “foot”. this leaves
the tube totally exposed to airside corrosion factors.
In addition. due to the groove cut into the tube. a
thicker tube wall thickness must be used to avoid
over-pressuring the tube.

The embedded fin is normally used for services
greater than 350 degrees and less than 750 degrees
F.
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TUBESIZE AND PITCH

[

The normal tube diameter is 1.0” od. Consider carefully if using a different
diameter

Typical tubepitches are given below

Metric

Tube Dia (ins) Fin Dia (ins) Transverse Pitch (mm)

1.0 2.25 60/63.5/67

1.25 2.5 67/70/73

1.5 2.75 73/76

British

Tube Dia (ins) Fin Dia (ins) Transverse Pitch (ins)
(min / max )

1.0 2.25 2.375/2.625

1.25 2.5 2.625/2.875

1.5 2.75 2.875/3.0
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The tubes exposed to the passage of air usually have fins that form an
extended surface. This surface compensates for the low film coefficient of
air at atmospheric pressure and the usually low velocities across the
bundle. The base tube is typically round and composed of material suited
for such process consideralﬁons as corrosion. pressure, and temperature
limitations. Whether helical or plate. the fins are usually made of
aluminum to improve thermal conductivity and lessen fabrication costs.
Very high temperature applications require steel fins, however.
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TYPICAL VALUES FOR INPUT INTO Xace

FOR 1" TUBES
IMPERIAL UNITS METRIC UNITS
(INCHES) (mm)
L-FIN G-FIN | EXTRU. | L-FIN G-FIN | EXTRU.

(embedded) FIN (embedded) FIN
No. of fins per unit length 11 1 10 433 433 393.7
Fin roct dismetar 1.032 1 1.066 | 26.213 | 26.4 | 27.076
Fin height 0.609 0.625 | 0.592 | 15.469 | 15.875 | 15.037
Fin thickness at base of fin 0.016 0.016 0.028 0.4064 0.4064 0.711
Fin‘thickness attip:0f ity 0.008 0.008 | 0.008 | 0.2032 | 0.2032 | 0.203
Overfin diameter 2.25 2.25 2.25 |57.15 ‘ 57.15 | 57.15
Tube wall thickness 12 BWG 0.1199 | 0.1320 | 0.1199 | 3.046 3.353 | 3.046

14 BWG 0.0913 | 0.1045 | 0.0913 | 2.319 2654 | 2.319
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Tubeside mist Lubeside annular Lubeside high velocity
(C< 0.1, Ry < 0.01) or mist annular bubble flow
1< Cu<03 Ryu<01) (C< 0.3, Ry >01)

Figure B6.2-1. Horizontal tubeside flow patterns in the shear-controlled flow regime
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Figure B6.2-2. Horizontal tubeside flow patterns in the gravity-controlled and transition
Naow reeimes
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Fluids Methanol Vapour

Quantity: total 418225 kg/h
liquid 418225 kg/h
gas 418225 kg/h

Operating temperature 67 65 °C

Operating pressure 0.1 bar g

Total molecular weight kg/kmol

Liquid: molecular weight kg/kmol
density kg/m*
viscosity cP
specific heat capacity kd/kg/°C
thermal conductivity W/m/°C
boiling temperature °C
molecular weight kg/kmol
density kg/m*
viscosity cP
specific heat capacity kd/kg/°C
thermal conductivity W/m/°C
dew point °C

kcal/kg

Performance
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Face (mis) 304 276 Thermal Resistance, %
Maximum (mis) 596 540 | Ar 67.88
Flow (100 m3imin) 621669 563614 | Tube 1472
Velocity pressure (Pa) 3247 Fouling 1460
Bundle pressure drop (Pa) 120.82 Metal 280
Bundie flow fraction ©) 1.000 Bond 000
Bundie 9641 Airside Pressure Drop, % _ Louvers 000
Ground clearance 000 Fan guard 000  Hail screen 0.00)
Fan ring 159  Fan area blockage 0.00  Steam coil 0.00}
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Heating / Cooling Table
- O OO0 Tubeside 000000000

Tube side

Liquid heat Liquid thermal

Temperature Gas fraction Duty profile Liquid density | Liquid viscosity capacity conductivity | Surface tension
°C wt % MW kg/m? cP kJ/kg/°C Wim/°C
67 99.11 0.0 748 0.323 2.853 0.1855
67 88.03 14.1 748 0.323 2.853 0.1855
67 76.95 28.1 748 0.323 2.853 0.1855
67 65.87 422 748 0.323 2.853 0.1855
67 54.78 56.2 748 0.323 2.853 0.1855
67 43.70 70.3 748 0.323 2.853 0.1855
67 32.62 84.3 748 0.323 2.853 0.1855
67 21.54 98.4 748 0.323 2.853 0.1855
67 10.45 112.4 748 0.323 2.853 0.1855
67 0.00 125.7 748 0.323 2.853 0.1855
65 0.00 126.5 750 0.332 2.831 0.1865

Gas heat Gas thermal

Temperature Gas fraction Duty profile Gas density Gas viscosity capacity conductivity
°C wt % MW kg/m? cP kJ/kg/°C Wim/°C
67 99.11 0.0 1.29 0.011 1.537 0.0208
67 88.03 14.1 1.29 0.011 1.537 0.0208
67 76.95 28.1 1.29 0.011 1.537 0.0208
67 65.87 422 1.29 0.011 1.537 0.0208
67 54.78 56.2 1.29 0.011 1.537 0.0208
67 43.70 70.3 1.29 0.011 1.537 0.0208
67 32.62 84.3 1.29 0.011 1.537 0.0208
67 21.54 98.4 1.29 0.011 1.537 0.0208
67 10.45 112.4 1.29 0.011 1.537 0.0208
67 0.00 125.7
65 0.00 126.5
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Exchanger Performance

Outside film coef (Wim2-K) 4517
| Tubeside film coef (Wim2-K) 5836.97
Clean coef (Wim2-K) 35.905
Hot regime Cond. Vapor
Cold regime Sens. Gas
[EMTD (Deg C) 87
Duty (Megawatts) 151.705
‘Unit Geometry

Bays in parallel per unit 48
Bundles parallel per bay 2
Extended area (m2) 576702
Bare area (m2) 24680.7
Bundle width (m) 2838
Nozzle Inlet Outlet

Number ) 2 2

Diameter (mm) 193675 87.325

Velocity (mis) 18.94 0.16

R-v-sQ (kg/m-s2) 466.70 19.60

Pressure drop (bar)  2567e-3  6.860e-5

Fan Geometry

No/bay =) 2
Fan ring type 30 deg
Diameter (m) 4265
Ratio, Fan/bundle face area =) 0.40
Driver power (kW) 2324
Tip clearance (mm) 19.050
Efficiency (%) 75
Airside Velocities Actual Standard

Actual U (Wim2-K) 30661
Required U (Wim2-K) 30.390
Area (m2) 576702
Overdesign (%) 0.89
Tube Geometry
Tube type High-finned
Tube OD (mm) 25.400
Tube ID (mm) 21184
Length (m) 12500
Area ratio(outlin) (=) 280168
Layout Staggered
Trans pitch (mm) 63500
Long pitch (mm) 54991
Number of passes =) 2
Number of rows ) 6
Tubecount -) 264
Tubecount Odd/Even =) 441
Tube material Carbon steel
Fin Geometry
Type Plain round
Finsflength finfmeter 4330
Fin root mm 25.400
Height mm 15.800
Base thickness mm 0.430
Over fin mm 57.000
Efficiency (%) 794
Area ratio (fin/bare) ) 233665
Material Aluminum 1060 - H14
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Process Conditions Outside’ Tubeside

Fluid name Methanol Vapor
Fluid condition Sens. Gas Cond. Vapor
Total flow rate. (kghr) 40627694.590 501874.239 *
Weight fraction vapor, In/Out 1000 1.000 0991 0.000
Temperature, InOut (Deg C) 50.00 6335 67.00 65.00
Skin temperature, MinMax (Deg C) 58.79 85.77 60.67 86.52
Pressure, InletOutlet (bar-G) 2963  -4.19e3 0.100 0103
Pressure drop, Total/Allow ®a)|(van) 12276| 0.00 0203 0.050
Midpoint velocity (mis) 611 1035

- In/out (mis) 1439 0.12
Heat transfer safety factor ) 1 1
Fouling (M2-KIW) 0.000000 0.000170
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Fan Description and Fan Power

[Number of fans per bay =) 2
Diameter (m) 4265
Tip clearance (mm) 19.050
Ratio, fan area to bay face area =) 0.40
Fan ring type =) 30 deg
Percent open area -in fan guard ) 0
-in hail screen (%) 0
Ratio, ground clearance to fan diameter =)
Percent blockage, other obstruction (%) 0
Bundle pressure drop/ Velocity pressure. (Pa) 12082/ 3247
Fan and drive efficiency %) 75
Motor power per fan-design air temperature (kW) 2324
Motor power per fan-minimum air temperature (kW) 27.00
|Ambient temperature, maximum / minimum (DegC) 17781 5.00
Two-Phase Parameters
Method Inlet Center Outlet Mix F
RPM Shear Trans Shear 0.98971
Bundie flow fraction 1.000
Heat Transfer and Pressure Drop Parameters Tubeside Outside
Midpoint j-factor ) 0.0088
Heat transfer Wall Correction “) 1.0000 0.9927
Row Correction “) 1.0000
Midpoint ffactor ) 0.0000 02492
Pressure drop Wall Correction ) 0.0000 1.0067
Row Correction ) 1.0029
Reynolds number Inlet ) 35743 8453
Midpoint ) 37109 8299
Outlet ) 5973 8199
Fouling layer thickness (mm) 0.000 0.000
Input minimum velocity (mis)
Input maximum velocity (mis)
Input minimum wall temperature (DegC)

Input maximum wall temperature.

(Deg C)
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Unit and Bundle Construction Information

[Bays in parallel/unit =) 48 Bundles in parallel/bay 2
Extended area/unit (m2) 576702 Bare arealunit (m2) 246807
Extended area/bundle (m2) 600731 Bare arealbundle (m2) 257.091
 Tubepasses/Tuberows =) 21 6 Number of tubes/bundle =) 264
Tubecount, Odd rows/Even rows - 44/ 44 Edge seals - Yes
Bundle width (m) 2838  Fanguard “ No
Clearance (mm) 9525  Louvers ) No
Header depth (mm) 101.600 Steam coil =) No
| Header Box Hail screen «) No
- Plate thickness (mm) 22225 Tube support information

- Tubesheet thickness (mm) 31750 -~ Number ) 6
Plenum type Box - Width (mm) 25.400
Weight/Bundle (kg) 10569 Orientation (from horiz) (deg) 0.00
Structure weight (kg) 330800  Tubeside volume (8] 1397.0
Total weight, Dry / Wet (kg) 1561335 1 1695348

Ladder/walkway weight (kg) 215923 Cost Factor &) 460264

Tube Information

Straight length (m) 12500 Tubetype (=) Highfinned
Unfinned length (mm) 80.000 Unheated length (mm) 215.900
Layout ) Staggered Area ratio (fin/bare) ) 23.3665
Transverse pitch (mm) 63500  Fins per unitlength (fin/meter) 4330
Longitudinal pitch (mm) 54991  Finroot diameter (mm) 25.400
Tube form =) Straight Fin height (mm) 15.800
Outside diameter (mm) 25.400 Fin thickness at base (mm) 0.430
Inside diameter (mm) 21184 Fin thickness at tip (mm) 0210
Area ratio (outin) ) 280168 Fintype (=) Plainround
Over fin diameter (mm) 57.000 Fin efficiency (%) 794
| Tube material Carbon steel Internal tube type None

|Fin material

Aluminum 1060 - H14
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6310 [0 [SUPPORT FOR FLANGE MOTOR 1. % %, % 3% Hi HL ¥ ¢
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a) Direct right-angle gear drive b) Belt drive

©) Direct motor drive d) Right-angle gear drive with fan support

€) Suspended belt drive, motor shaftdown 1) Suspended belt drive, motor shaft up

Key
1 fan & beltdrive

2 gearbox 7 motor
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4 bearing S baseplate
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Figure 8 — Typical Drive Arrangements
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