

Presented by: Ali Baghaei

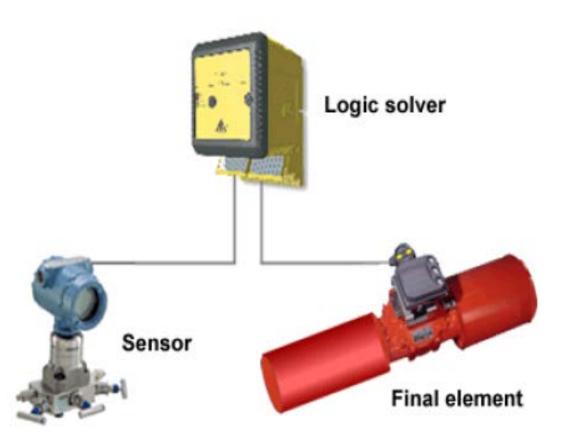
Outlines

• Part 1

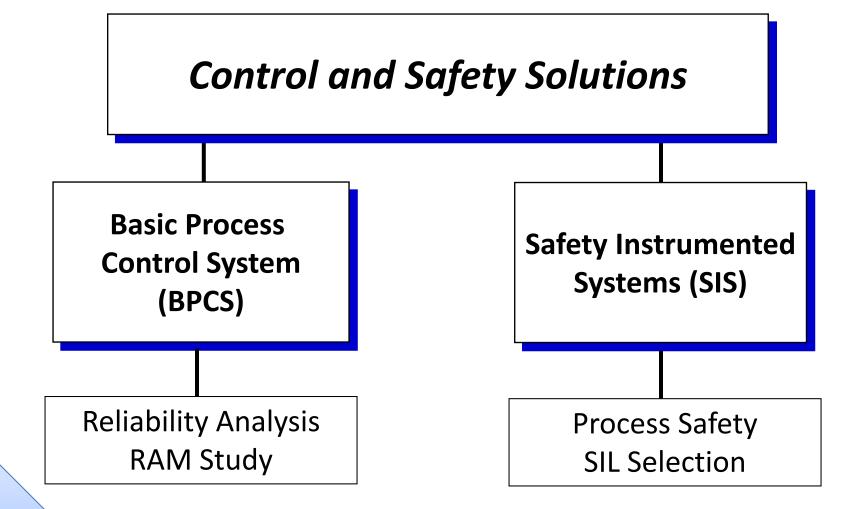
- Introduction to Functional Safety
- Definitions
- Part 2
 - SIL Target Evaluation
 - Risk Graph Method
- Part 3
 - SIL Verification
 - FTA Method
- Part 4
 - Course Review

• Part 1: Definitions

- Safety Related Systems
- Functional Safety
- Safety Lifecycle
- Standards
- Safety Integrity Levels



Safety Related Systems (SRS)


- Mechanical protection system
- Passive protection systems
- Non-SIS instrumented systems (BPCS)
- Alarms
- Safety Instrumented Systems (SIS) trip system, shutdown system, interlock, instrumented protection system (IPS)

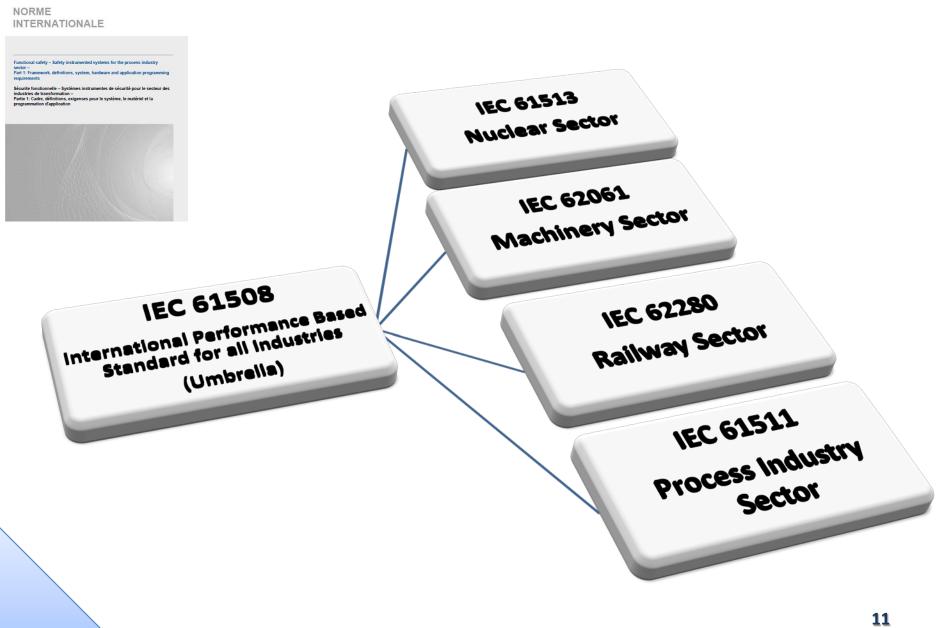
SIS Main Components

- The function of a Safety Instrumented System (SIS) is called a Safety Instrumented Function (SIF).
- More than one SIF may be assigned to a single SIS.

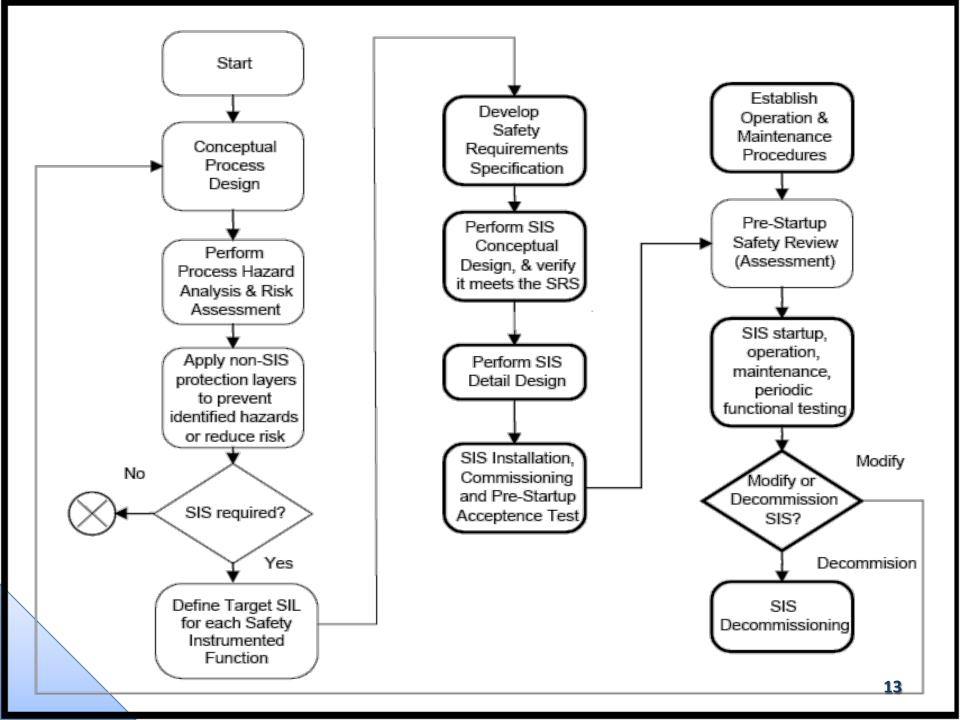
SIL Study vs. RAM Study

Functional Safety

The ability of a safety instrumented system (E/E/PE) or other means of risk reduction to carry out the actions necessary to achieve or to maintain a safe state for the process and its associated equipment.



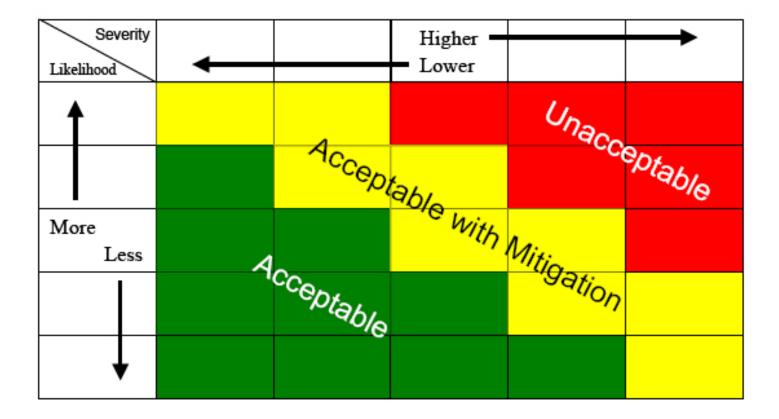
- IEC-61508: Functional Safety of Electrical/Electronic/Programmable Electronic Safety Related Systems
- IEC-61511: Functional safety safety instrumented systems for the process industry sector
- ANSI ISA-84.00.01: Application of Safety Instrumented Systems for the Process Industries

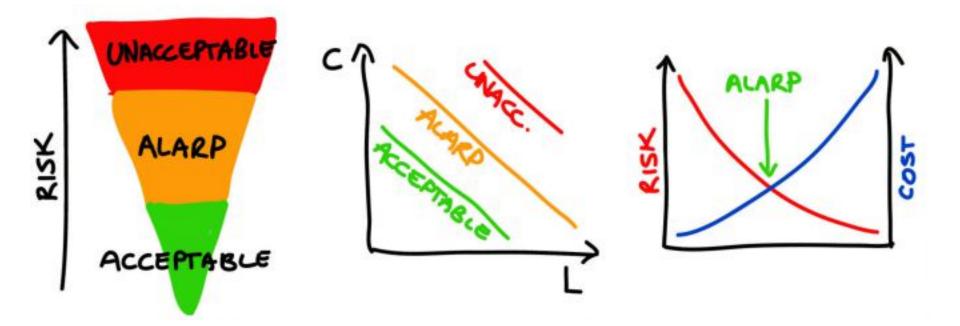


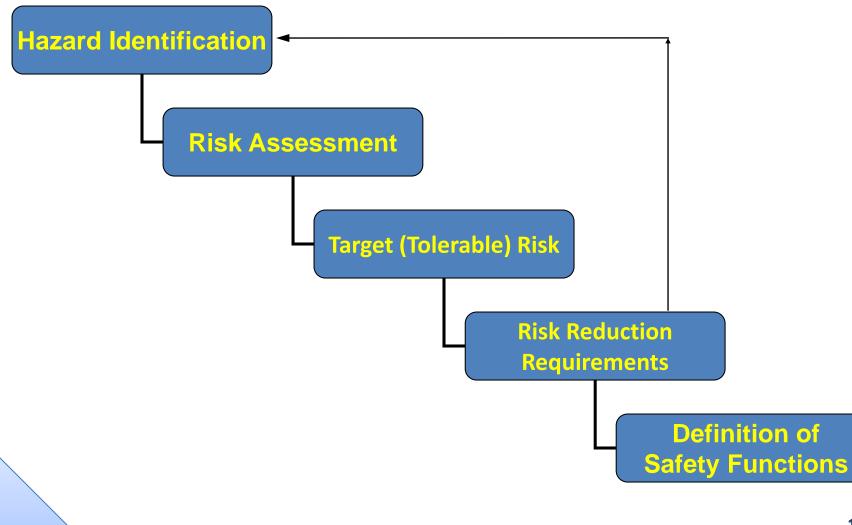
IEC

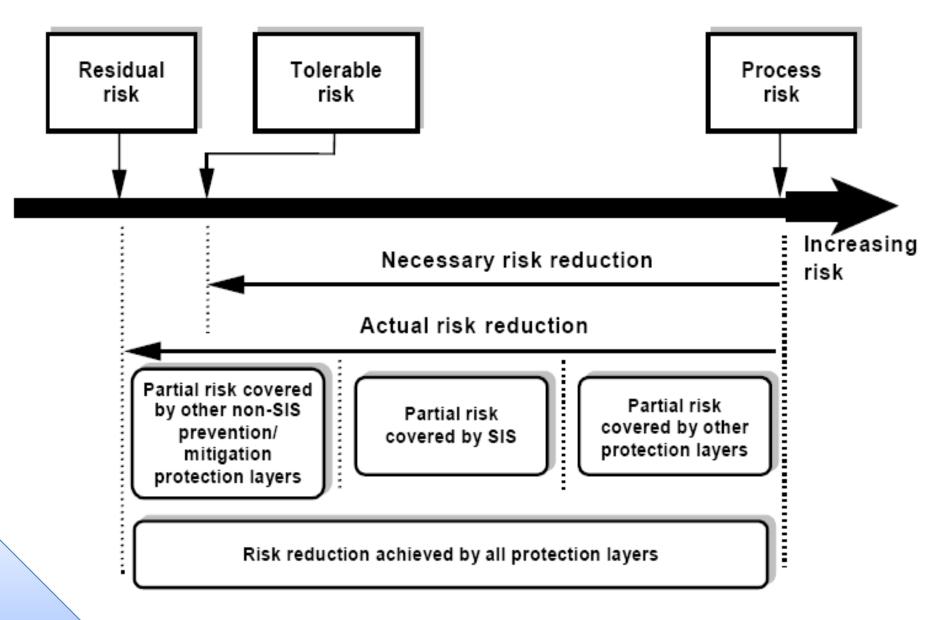
Safety Lifecycle

 The necessary activities involved in the implementation of safety instrumented functions, occurring during a period of time that starts at the concept phase of a project and finishes when all of the safety instrumented functions are no longer available for use.


What is risk?


A Risk is the amount of harm that can be expected to occur during a given time period due to specific harm event.


How much risk is acceptable?



ALARP (As Low As Reasonably Practicable)

Risk Reduction

Safety Integrity Level (SIL)

a relative level of risk-reduction provided by a safety function, or to specify a target level of risk reduction. In simple terms, SIL is a measurement of performance required for a Safety Instrumented Function (SIF).

Safety Integrity Level (high/low demand mode)

SIL Rating	Range of PFD	Range of RRF
4	10 ⁻⁵ ≤PFD<10 ⁻⁴	100,000≥RRF>10,000
3	10 ⁻⁴ ≤PFD<10 ⁻³	10,000≥RRF>1,000
2	10 ⁻³ ≤PFD<10 ⁻²	1,000≥RRF>100
1	10 ⁻² ≤PFD<10 ⁻¹	100≥RRF>10

Mode of operation (of a SIF)

IEC 61511-1: 2016 para 3.2.39

way in which a SIF operates which may be either low demand mode, high demand mode or continuous mode

- a) low demand mode: mode of operation where the SIF is only performed on demand, in order to transfer the process into a specified safe state, and where the frequency of demands is no greater than one per year.
- **b) high demand mode**: mode of operation where the SIF, is only performed on demand, in order to transfer the process into a specified safe state, and where the frequency of demands is greater than one per year.
- c) continuous mode: mode of operation where the SIF retains the process in a safe state as part of normal operation.

SIL for continuous operation mode

SIL Rating	Target frequency of dangerous failures to perform the safety instrumented function (per hour) = PFH
4	$10^{-9} \le \lambda_D < 10^{-8}$
3	$10^{-8} \le \lambda_D < 10^{-7}$
2	$10^{-7} \le \lambda_D < 10^{-6}$
1	$10^{-6} \le \lambda_D < 10^{-5}$

Stages of SIL Study

1. Target SIL Evaluation

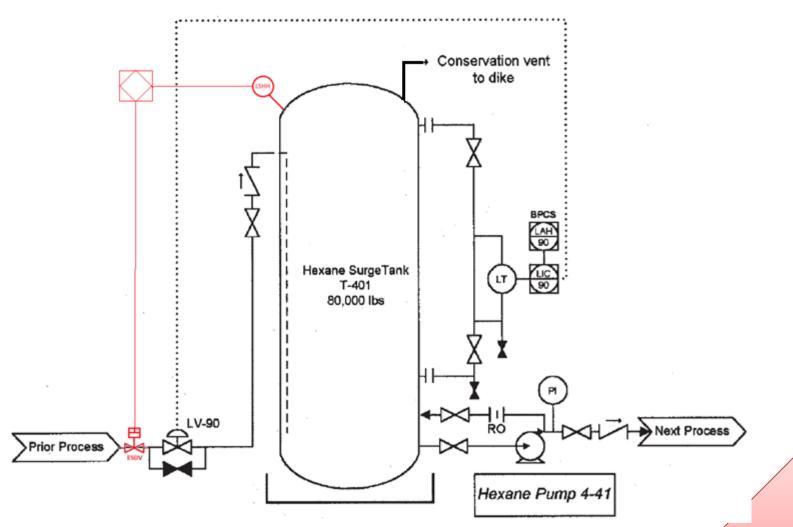
What SIL should be allocated for the SIF?

2. SIL Verification

Does SIS fulfill Target SIL requirements?

Part 2: Target SIL Evaluation Layers of Protection Analysis Risk Matrix Risk Graph Calibrated Risk Graph

What you need...


- P&IDs
- Cause & Effect Charts
- HAZOP Report

Also:

- Process Description
- Logic Diagrams
- ESD Philosophy
- Control Philosophy
- Blowdown Philosophy
- Etc.

Working Example

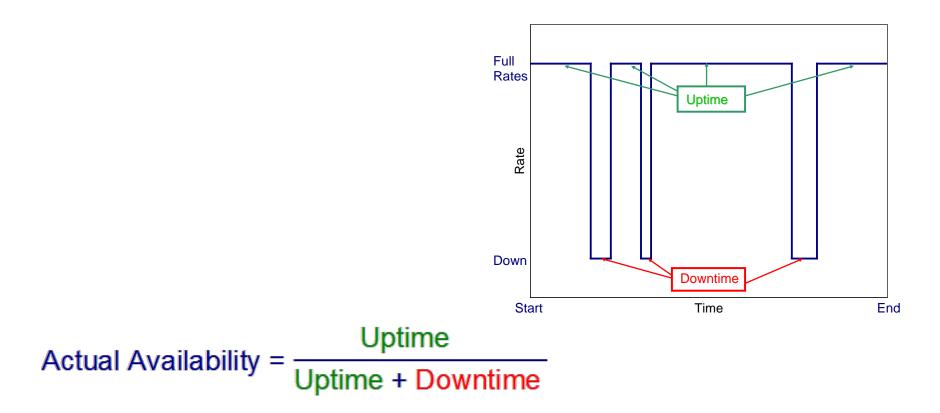
Workshop

- Perform a hazard identification e.g. HAZOP Study
- 2. Allocate Safety Instrumented Functions

What SIL do you expect?

Target SIL Evaluation Techniques 1

Semi-Quantitative Technique LAYERS OF PROTECTION ANALYSIS (LOPA)


Abbreviations

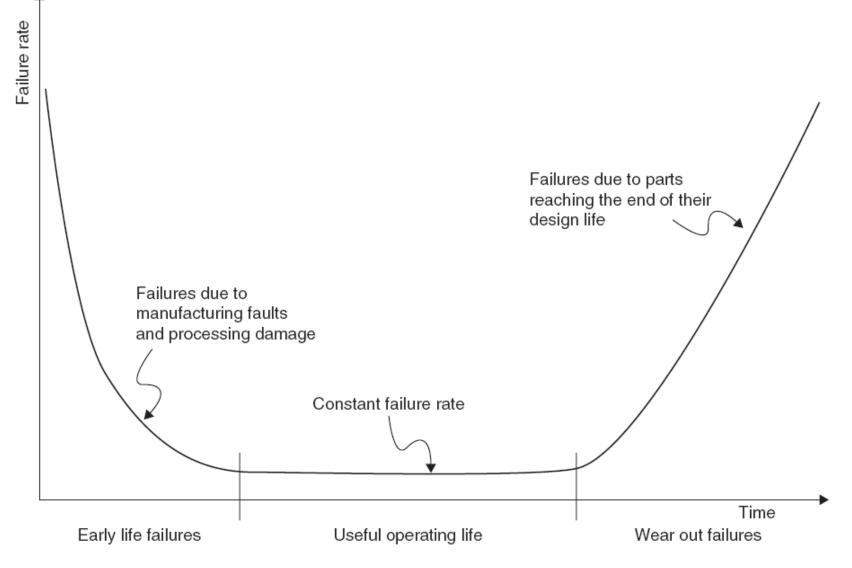
- MTBF: Mean Time Between Failures
- MTTF: Mean Time To Fail
- MTTR: Mean Time To Repair (Repair vs. Restore)
- MDT: Mean Down Time

Failure: Strength vs. Stress

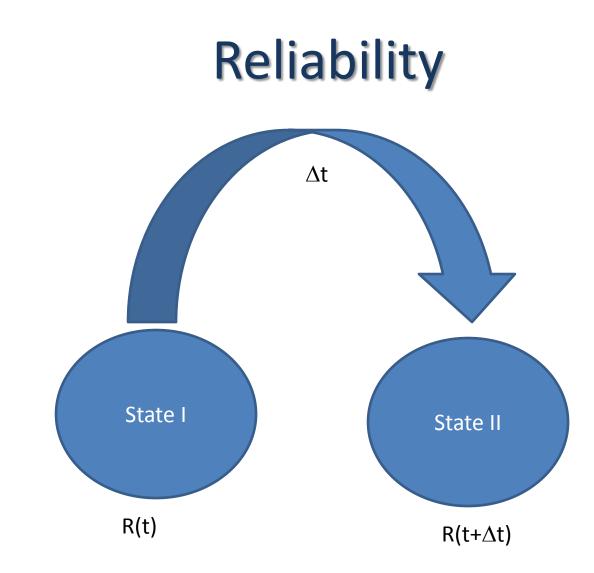
- All failures occur when **stress** exceeds the associated level of **strength**
 - Heat
 - Humidity
 - Shock
 - Vibration
 - Electrical surge
 - Electrostatic discharge
 - Radio frequency interference
 - Mis-calibration
 - Maintenance errors
 - Operational errors

Availability

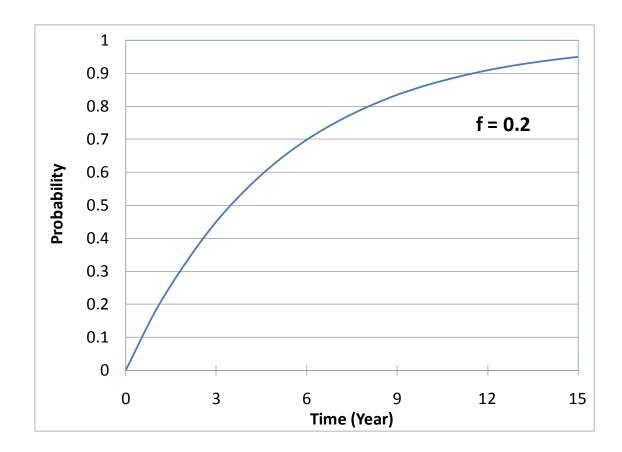
Average Availability = MTBF / (MTBF + MTTR) Operational Availability = MTBM / (MDT+MTBM)

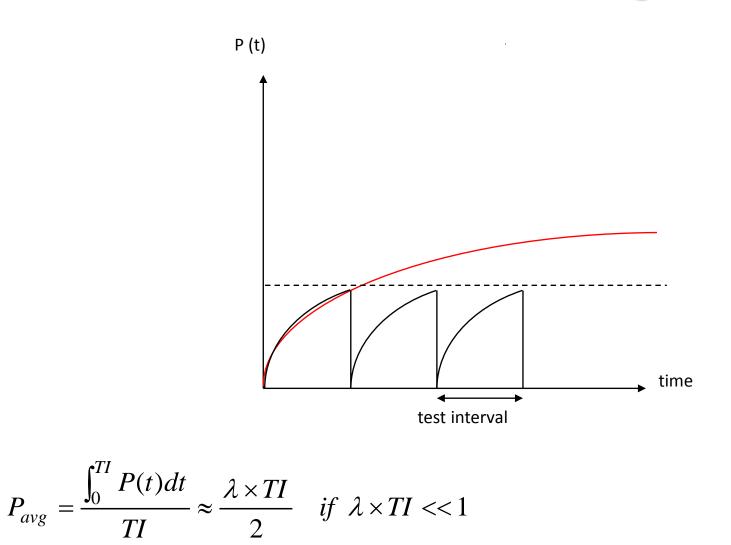

Failure Rate

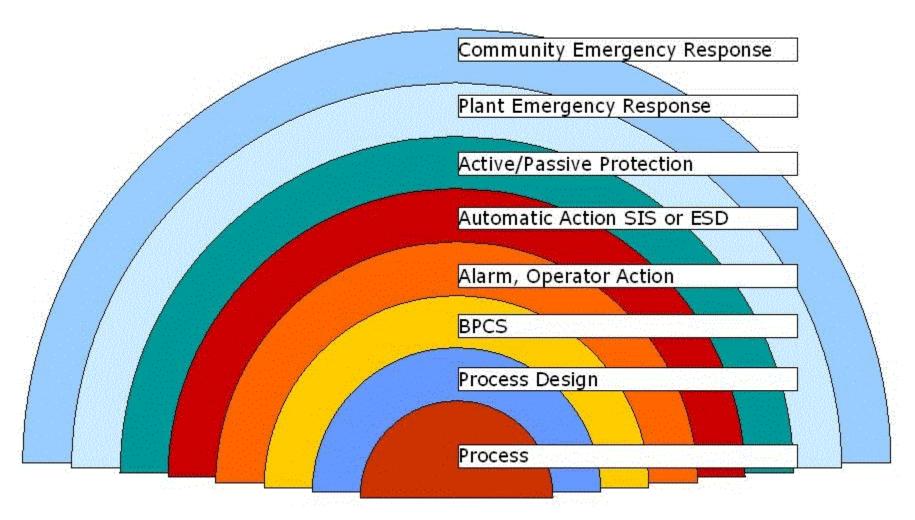
- Definition: The probability that a system fails during a specified period of time.
- Dimensions: Time⁻¹
- How to calculate failure rate from statistical databases? $\lambda = (no. of faults)/(total working time of all items)$

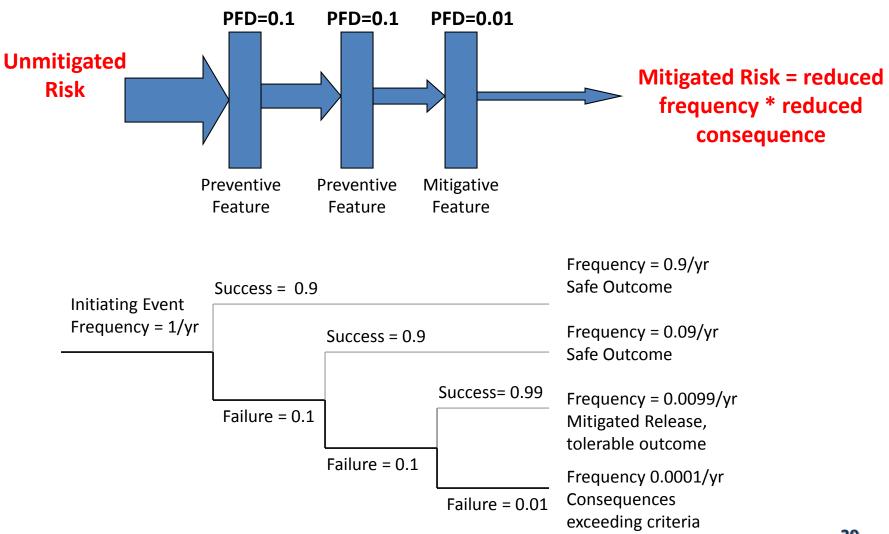

Source:

- Experience, accidents history, etc.
- Generic Data, e.g. OREDA, IEREDA, PERD, SERH, etc.
- Probabilistic Reliability Methods e.g. FTA, ETA, RBD, etc.

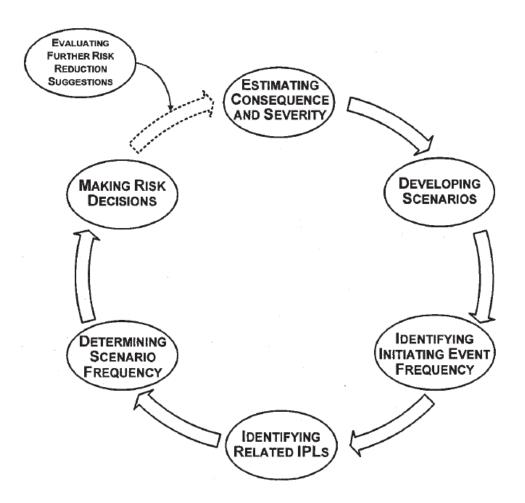

Bathtub Diagram


34

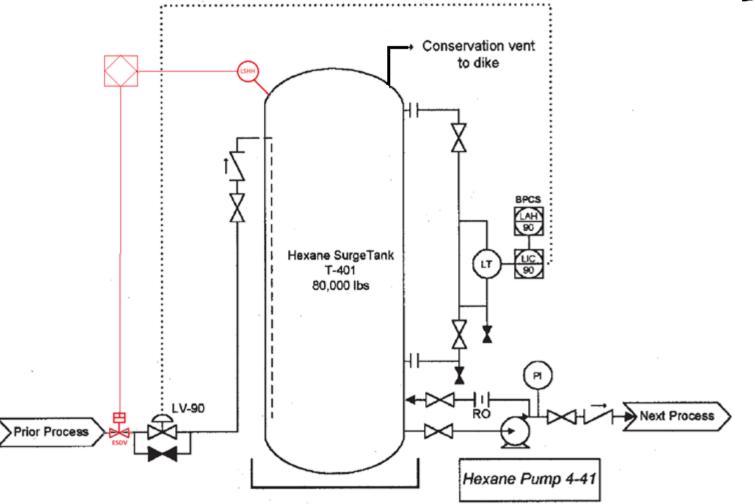

Failure probability $R(t+\Delta t)=R(t)-\lambda \Delta t R(t)$ P=1-R $R(t)=exp(-\lambda t)$ $P(t)=1-exp(-\lambda t)$



Reliability and Maintenance Proof Test Coverage

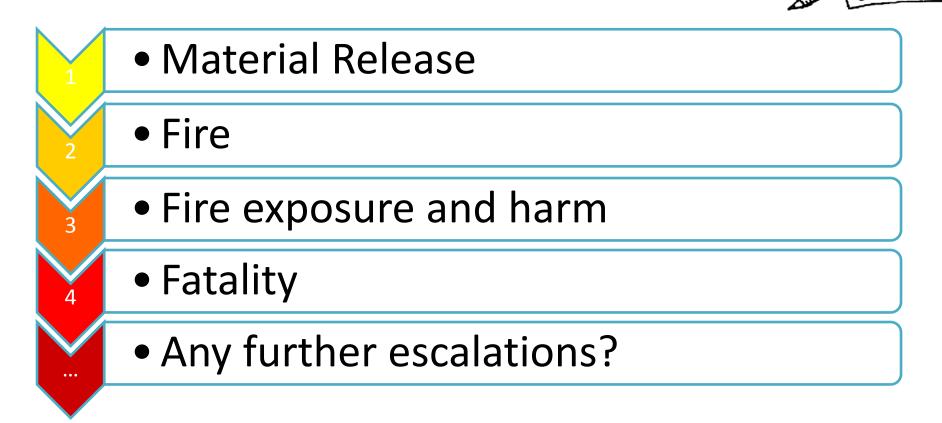


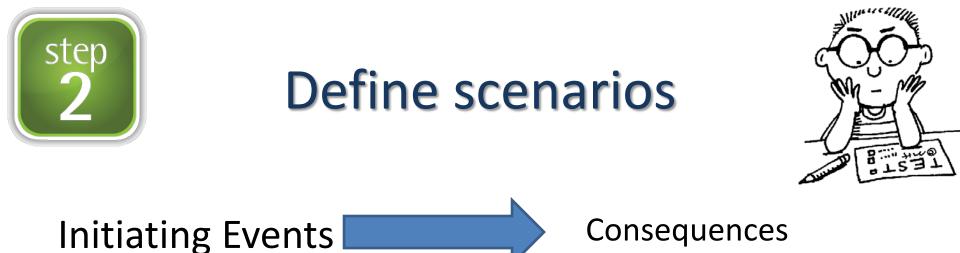
Layers of Protection Analysis



Stages of LOPA

Working example...





Methods for Consequence Estimation

- 1. Category Approach without Direct Reference to Human Harm
- 2. Qualitative Estimates with Human Harm
- 3. Qualitative Estimates with Human Harm with Adjustments for Postrelease Probabilities
- 4. Quantitative Estimates with Human Harm

failure of Pump failure of BPCS

Material Release Fire Fire Exposure Fatality

Identifying Initiating Event Frequency

External Events

- Earthquakes, tornadoes, hurricanes, or floods
- Airline crashes
- Major accidents in adjacent facilities
- Sabotage or terrorism

Equipment Failures

Control Systems

- Software bugs
- Component failures

Mechanical Systems

- Wear
- Corrosion
- Vibration
- Defects
- Use outside design limits

- Potential Undesired Consequences Human Failure (Commission and Omission) Operational error Maintenance error Critical response error
 - · Programming error

Initiating Event	Frequency Range from Literature (per year)	Example of a Value Chosen by a Company for Use in LOPA (per year)
Pressure vessel residual failure	10 ⁻⁵ to 10 ⁻⁷	1×10^{-6}
Piping residual failure -100 m $-$ Full Breach	10-5 to 10-6	1×10^{-5}
Piping leak (10% section) – 100 m	10 ⁻³ to 10 ⁻⁴	1×10^{-3}
Atmospheric tank failure	10 ⁻³ to 10 ⁻⁵	1×10^{-3}
Gasket/packing blowout	10-2 to 10-6	1×10^{-2}
Turbine/diesel engine overspeed with casing breach	10- ³ to 10- ⁴	1×10^{-4}
Third party intervention (external impact by backhoe, vehicle, etc.)	10-2 to 10-4	1×10^{-2}
Crane load drop	10^{-3} to 10^{-4} per lift	1×10^{-4} per lift
Lightning strike	10 ⁻³ to 10 ⁻⁴	1×10^{-3}
Safety valve opens spuriously	10 ⁻² to 10 ⁻⁴	1×10^{-2}
Cooling water failure	1 to 10 ⁻²	1×10^{-1}
Pump seal failure	10 ⁻¹ to 10 ⁻²	1×10^{-1}
Unloading/loading hose failure	1 to 10 ⁻²	1×10^{-1}
BPCS instrument loop failure <i>Note:</i> IEC 61511 limit is more than 1×10^{-5} /hr or 8.76×10^{-2} /yr (IEC, 2001)	1 to 10-2	1×10^{-1}
Regulator failure	1 to 10 ⁻¹	1×10^{-1}
Small external fire (aggregate causes)	10 ⁻¹ to 10 ⁻²	1×10^{-1}
Large external fire (aggregate causes)	10 ⁻² to 10 ⁻³	1×10^{-2}
LOTO (lock-out tag-out) procedure* failure *overall failure of a multiple-element process	10- ³ to 10- ⁴ per opportunity	1 × 10 ⁻³ per opportunity
Operator failure (to execute routine procedure, assuming well trained, unstressed, not fatigued)	10 ⁻¹ to 10 ⁻³ per opportunity	1 × 10 ⁻² per 46 opportunity

What is an IPL?

IPL must be:

- **specific** and designed to prevent that specific scenario
- effective in preventing the consequence when it functions as designed (provides a Risk Reduction Factor of 10 or greater),
- independent of the initiating event and the components of any other IPL already claimed for the same scenario,
- **auditable**; the assumed effectiveness in terms of consequence prevention and PFD must be capable of validation in some manner (by documentation, review, testing, etc.)

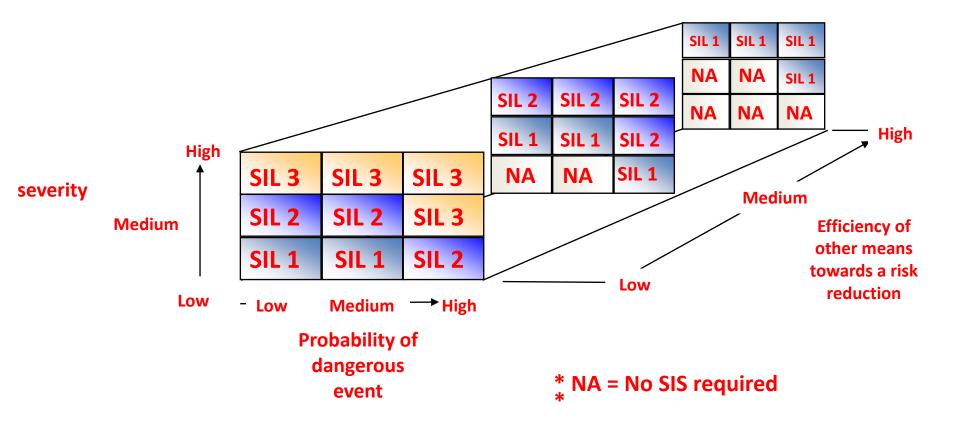
Find IPL's for your scenario

- Inspection & Maintenance procedures
- BPCS
- LAH that needs operator intervention
- LSHH that activates ESD
- Conservative vent
- Dike
- Emergency response procedures

Determining the Frequency of Scenarios

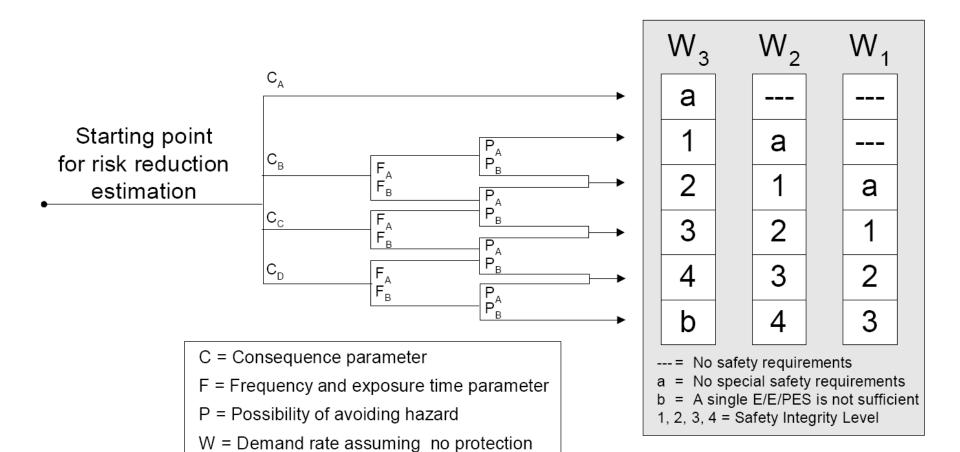
$$\begin{split} f_{i}^{\text{ fire }} &= f_{i}^{\text{ I}} \times \left(\prod_{j=1}^{I} \text{PFD}_{ij}\right) \times P^{\text{ ignition}} \\ f_{i}^{\text{ fire exposure }} &= f_{i}^{\text{ I}} \times \left(\prod_{j=1}^{I} \text{PFD}_{ij}\right) \times P^{\text{ ignition }} \times P^{\text{ person present}} \\ f_{i}^{\text{ fire injury }} &= f_{i}^{\text{ I}} \times \left(\prod_{i=1}^{I} \text{PFD}_{ij}\right) \times P^{\text{ ignition }} \times P^{\text{ person present }} \times P^{\text{ injury }} \quad \text{(fire)} \\ f_{i}^{\text{ toxic }} &= f_{i}^{\text{ I}} \times \left(\prod_{j=1}^{I} \text{PFD}_{ij}\right) \times P^{\text{ person present }} \times P^{\text{ injury }} \quad \text{(toxic)} \end{split}$$

Calculate scenario rate



Making Risk Decisions

- compare the calculated risk with a predetermined risk tolerance criteria
- 2. expert judgment by a qualified risk analyst
- 3. relative comparison among competing alternatives for risk reduction


Target SIL Evaluation Techniques 2

Qualitative Technique Risk Matrix

Target SIL Evaluation Techniques 3

Qualitative Technique Risk Graph

Consequence Parameter

Risk Parameter		Classification	Remarks
Consequence (C) Number of fatalities	C _A	Minor injury	 1 The classification system has been developed to deal with injury and death to people. 2 For the interpretation of C_A, C_B; C_C and C_D, the consequences of the accident and normal
	C _B	Serious injury or one death	
	C _C	Multiple deaths	
	C _D	Catastrophic	healing should be taken into account.

Consequence Parameter (Environmental)

Risk parameter		Classification	Comments
Consequence	CA	A release with minor damage that is	A moderate leak from a flange or valve
(C)		not very severe but is large enough to be reported to plant management	Small scale liquid spill
			Small scale soil pollution without affecting ground water
	CB	Release within the fence with significant damage	A cloud of obnoxious vapour travelling beyond the unit following flange gasket blow-out or compressor seal failure
	Cc	Release outside the fence with major damage which can be cleaned up quickly without significant lasting consequences	A vapour or aerosol release with or without liquid fallout that causes temporary damage to plants or fauna
	CD	Release outside the fence with	Liquid spill into a river or sea
		major damage which cannot be cleaned up quickly or with lasting consequences	A vapour or aerosol release with or without liquid fallout that causes lasting damage to plants or fauna
			Solids fallout (dust, catalyst, soot, ash)
			Liquid release that could affect groundwater

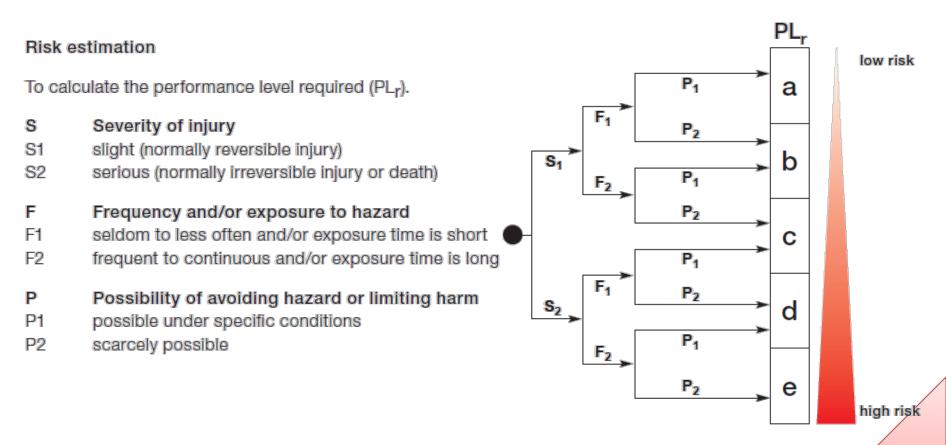
Exposure/Occupancy Parameter

Prevention Capability Parameter

Risk Parameter		Classification	Remarks	
Probability of avoiding the hazardous event (P) if the protection system fails to	eventnconditions inthe following are trectionremark 4 are- facilities are provided	 4 P_A should only be selected if all the following are true: - facilities are provided to alert the operator that the safety related 		
operate.	P _B	Adopted if all the conditions are not satisfied	 operator that the safety relate loop has failed; independent facilities are provided to shut down such that the hazard can be avoide or which enable all persons to escape to a safe area; the time between the operator being alerted and a hazardous event occurring exceeds 1 hour or is definitely sufficien for the necessary actions. 	

Demand Rate Parameter

Risk Parameter		Classification	Remarks
Demand rate (W) The number of times per year that the hazardous event would occur in absence of safety- related loop under consideration.	W ₁ W ₂	Very low demand rate Low demand rate	5 The purpose of the W factor is to estimate the frequency of the hazard taking place without the addition of the safety- related loop
	W ₃	Relatively high demand rate	


Target SIL Evaluation Techniques 4

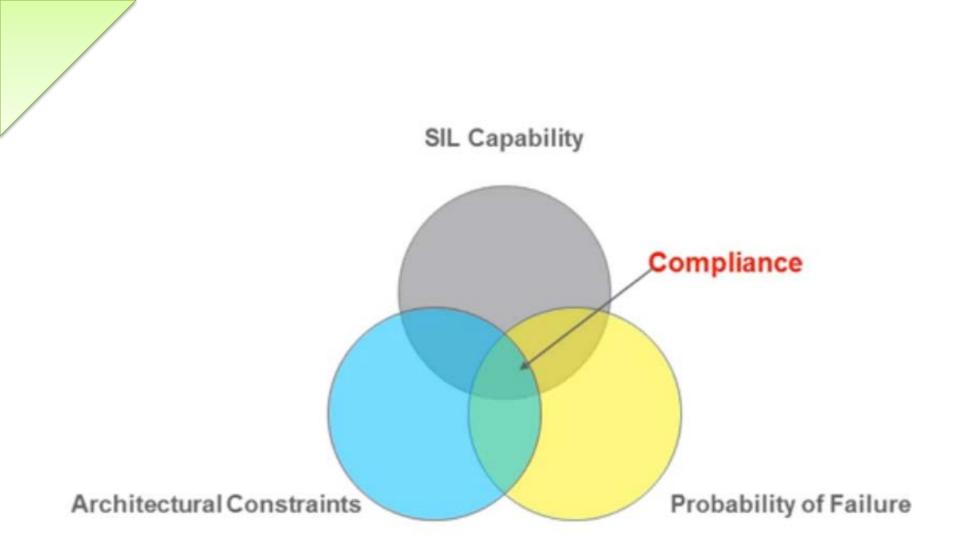
Semi-Qualitative Technique Calibrated Risk Graph

UKOOA Calibrated Risk Graph

Consequence					
CA	Minor injury				
Св	0.01 to 0.1 probable fatalities per event				
Cc	>0.1 to 1.0 probable fatalities per event				
CD	>1.0 probable fatalities per event				
	Exposure				
FA	<10% of Time				
FB	≥10% of Time				
	Avoidability/Unavoidability				
PA	>90% probability of avoiding hazard	<10% probability hazard cannot be avoided			
PB	≤90% probability of avoiding hazard	≥10% probability hazard cannot be avoided			
Demand Rate					
W1	<1 in 30 years				
W ₂	1 in >3 to 30 years				
W3	1 in >0.3 to 3 years				

Performance Levels based on **EN/ISO 13849-1** Safety of machinery - Safety-related parts of control systems

Software


- exSILentia by exida, www.exida.com
- SILSolver by SIS-Tech, www.sis-tech.com
- SILCore by ACM (Canada), www.silcore.com
- AEShield by AE Solutions, www.aesolns.com

• Part 3: SIL Verification Techniques

- Definitions
- Reliability Data
- Simplified Equations
- -FTA Technique
- Markov Method

SIL Design Verification

- Random failure
- Architectural constraints
- Systematic integrity: Safety lifecycle
 - Proven in use or IEC 61508 compliant equipment
 - Functional safety management
 - Software requirements

SIF Failure Modes

- Based on cause
 - Systematic Failures
 - Random Hardware Failures
- Based on consequence
 - Safe
 - Dangerous
- Based on diagnostic
 - Detected (overt)
 - Undetected (covert, hidden)

specification, design, implementation (wiring/tubing errors, inadequate electrical/pneumatic power supply, improper or blocked-in connections to the process, installation of wrong sensor or final control component), Software errors, operation and modification

Failure Partitioning

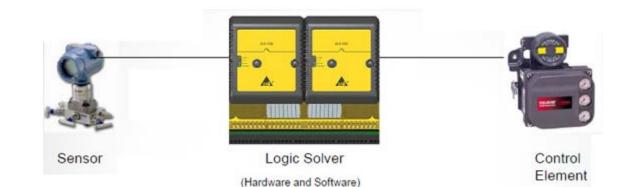
- Safe/Detected: λ^{SD}
- Safe/Undetected: λ^{SU}
- Dangerous/Detected: λ^{DD}
- Dangerous/Undetected: λ^{DU}

Failure Rate Data

- OREDA SINTEF
- PERD CCPS
- TECDOC & EIREDA– IAEA
- SERH Exida
- GS EP EXP 405 TOTAL
- www.sael-online.com

Redundancy

Use of multiple elements or systems to perform the same function. It can be


- identical redundancy
- diverse redundancy

HFT (Hardware Fault Tolerance): maximum number of failures that can be tolerated in a SIS component

SFF (Safe Failure Fraction): fraction of safe failures!

What is HFT for the following systems?

- lool
- 1002
- 1003
- 2002
- 2003
- 2004

Architectural Constraints (Route 1_H) (IEC 61508 part 2 – table 2)

Safe Failure Fraction (SFF)	Type A elements			Type B elements		
	Hardware Fault Tolerance (HFT)			Hardware Fault Tolerance (HFT)		
	0	1	2	0	1	2
<60%	SIL1	SIL2	SIL3	Not Allowed	SIL1	SIL2
60% - <90%	SIL2	SIL3	SIL4	SIL1	SIL2	SIL3
90% - <99%	SIL3	SIL4	SIL4	SIL2	SIL3	SIL4
≥99%	SIL3	SIL4	SIL4	SIL3	SIL4	SIL4

Architectural Constraints (Route 2_H) (IEC 61511 part 1 – table 6)

Type A elements					
Hardware Fault Tolerance (HFT)					
0	1	2			
SIL1	SIL2	SIL3			

Note 1: for demand mode

Note 2: provided that the dominant failure mode is to the safe state, or dangerous failures are detected

Note 3: If the dominant failure is to dangerous state, and if there isn't effective diagnostics but it can be demonstrated 'limited adjustment' and 'prior use' (with extensive evidence)

Definitions

- Proof Test Intervals (TI) (directly affects PFD)
- De-energize to trip (DTT)
- Energize to trip (ETT)
- Diagnostic Coverage (DC)
- Common Cause Failure (β)

1

Simplified Equations

Reference:

"Reliability, Maintainability and Risk" by David J. Smith, 4th Edition, 1993, Butterworth-Heinemann, ISBN 82-515-0188-1.

Assumptions

- Component failure and repair rates are assumed to be constant over the life of the SIF.
- Once a component has failed in one of the possible failure modes it cannot fail again in one of the remaining failure modes.
- The equations assume similar failure rates for redundant components.
- The Test Interval (TI) is assumed to be much shorter than the Mean Time Between Failures (MTBF).

PFD_{avg}

• Converting MTTF to failure rate: $\lambda^{DU} = \frac{1}{MTTF^{DU}}$

•
$$\mathsf{PFD}_{\mathsf{avg}}$$
: $\mathsf{PFD}_{\mathsf{avg}} = \left[\lambda^{DU} \times \frac{\mathsf{TI}}{2}\right]$

- PFD_{avg} (including systematic failures): $\operatorname{PFD}_{avg} = \left| \lambda^{DU} \times \frac{\mathrm{TI}}{2} \right| + \left| \lambda^{D}_{F} \times \frac{\mathrm{TI}}{2} \right|$
- SIS PFD_{avg}: PFD_{SIS}=PFD_S+PFD_L+PFD_{FE}+PFD_{PS}

Voting Systems

• 1002

$$PFD_{avg} = \left[\left((1 - \beta) \times \lambda^{DU} \right)^2 \times \frac{TI^2}{3} \right] + \left[(1 - \beta) \times \lambda^{DU} \times \lambda^{DD} \times MTTR \times TI \right] + \left[\beta \times \lambda^{DU} \times \frac{TI}{2} \right] + \left[\lambda_F^D \times \frac{TI}{2} \right]$$

• 1003

$$PFD_{avg} = \left[\left(\lambda^{DU} \right)^3 \times \frac{TI^3}{4} \right] + \left[\left(\lambda^{DU} \right)^2 \times \lambda^{DD} \times MTTR \times TI^2 \right] + \left[\beta \times \left(\lambda^{DU} \times \frac{TI}{2} \right) \right] + \left[\lambda^D_F \times \frac{TI}{2} \right] + \left[\lambda^D_F \times \frac{T$$

• 2002

$$PFD_{avg} = \left[\lambda^{DU} \times TI\right] + \left[\beta \times \lambda^{DU} \times TI\right] + \left[\lambda^{D}_{F} \times \frac{TI}{2}\right]$$

Voting Systems (contd.)

• 2003

 $PFD_{avg} = \left[(\lambda^{DU})^2 \times (TI)^2 \right] + \left[3\lambda^{DU} \times \lambda^{DD} \times MTTR \times TI \right] + \left[\beta \times \lambda^{DU} \times \frac{TI}{2} \right] + \left[\lambda_F^D \times \frac{TI}{2} \right]$

• 2004

$$PFD_{avg} = \left[\left(\lambda^{DU} \right)^3 \times \left(TI \right)^3 \right] + \left[4 \left(\lambda^{DU} \right)^2 \times \lambda^{DD} \times MTTR \times \left(TI \right)^2 \right] + \left[\beta \times \lambda^{DU} \times \frac{TI}{2} \right] + \left[\lambda^D_F \times \frac{TI}{2} \right]$$

Simplified Equations

• 1001 $PFD_{avg} = \lambda^{DU} \times \frac{TI}{2}$ • 2002

$$PFD_{avg} = \lambda^{DU} \times TI$$

- 1002 $PFD_{avg} = \frac{\left[\left(\lambda^{DU}\right)^2 \times TI^2\right]}{3}$
- 1003 $PFD_{avg} = \frac{\left[\left(\lambda^{DU}\right)^3 \times TI^3\right]}{4}$

• 2003

$$PFD_{avg} = \left(\lambda^{DU}\right)^2 \times TI^2$$

• 2004

$$PFD_{avg} = (\lambda^{DU})^3 \times (TI)^3$$

Spurious Trip Rate (STR)

 $\lambda^{S} = \lambda^{SD} + \lambda^{SU} + \lambda^{DD} + \lambda^{S}_{F}$

- $\lambda^{\text{SD}} + \lambda^{\text{SU}}$ is the safe or spurious failure rate for the component,
- λ^{DD} is the dangerous detected failure rate for the component,

Simplified Equations

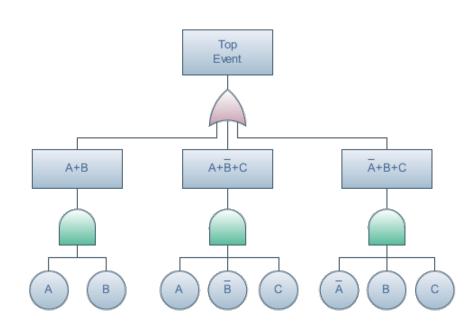
$$STR (MooN) = \frac{n!}{(n-m)!} \lambda \times (\lambda \times MTTR)^{m-1}$$
1 • 2002

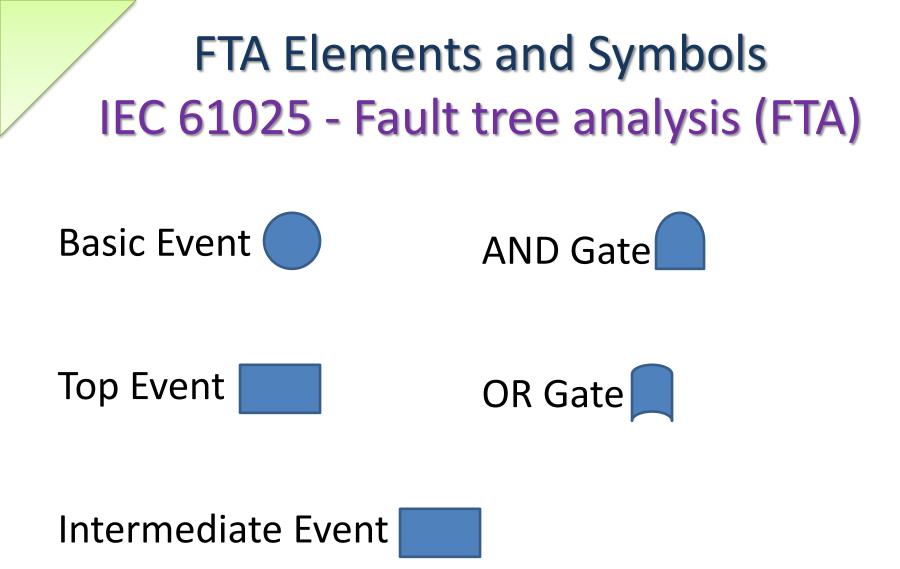
1001

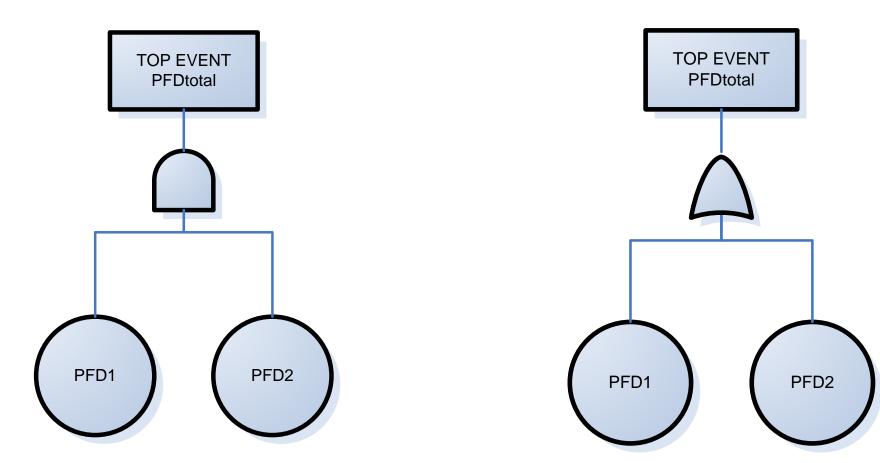
 $STR = \lambda^{S}$ $STR = 2 \times (\lambda^s)^2 \times MTTR$

1002 $STR = 2 \times \lambda^s$ 2003

$$STR = 6 \times (\lambda^s)^2 \times MTTR$$


1003 $STR = 3 \times \lambda^s$


2004 $STR = 12 \times (\lambda^{s})^{3} \times MTTR^{2}$


Fault Tree Analysis

FTA Logic

AND GATE: $P(A.B) = P(A) \times P(B)$

OR GATE: $P(A+B) = P(A) + P(B) - P(A) \times P(B)$

Procedure

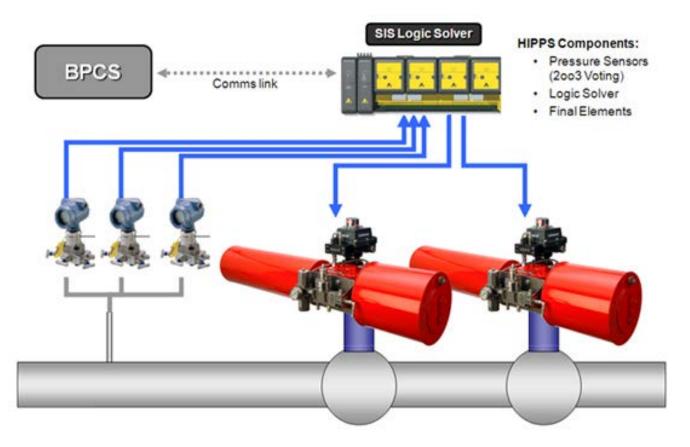
- 1. SIF Description and Application Information
- 2. Top Event Identification
- 3. Construction of the FTA
- 4. Qualitative Examination of the Fault Tree Structure
- 5. Quantitative FTA Evaluation

Top events

- For SIL determination, the Top Event is the probability of the SIF to fail on process demand for a given safety function.
- For availability purposes, the top event is spurious trip of SIF.

Software

- CAFTA http://www.epri.com/
- OpenFTA http://www.openfta.com/
- BlockSim


http://www.reliasoft.com/

• Many more...

Working Example

