	TOTAL	PROCESS ENGINEERIN	Revision : 0	Page No :	
	TEP/DP/EXP/SUR	IND	EX	Date : 2/85	5 0
		- MUHAMP	ed salim sha	IKH.	
1	1. DESIGN CON	DITION5			
	2. VESSELS (vap	our-liquid separators)	•		
	- Horizonta . Vertical	al .			
	3. COLUMNS				
V	. Tray . Packed				
/	4. HEAT EXCH	ANGERS			
	. Shell + tu . Air coole	ube · ers ·	Plate exchangers Furnaces		
2	5. PUMPS				
	. Centrifu . Reciproc	gal cating			
	6. DRIVERS	-			
~	. Gas turb . Electric	drivers .	Steam turbines		
1	7. COMPRESSO	ORS			
1	8. EXPANDERS	5			
\checkmark	9. FLARE SYST	TEMS			
	10. PIPES VALV	ES + FITTINGS		-	
\checkmark	. Line siz . Piping c	ing . lasses .	P through valves a Control valves - sizi	and fittings ing and selection	
	11. PIPELINES		•		
1	. Pressure	e and temperature drops			
	12. PACKAGE U	JNITS			
v	Dehydra . Refrige	ation •	Gas sweetening		
	13. UTILITIES	-			
1	. Water . Nitroge	n .	Air Drainage		
X	14. COMPUTER	PROGRAMS	_		
(\/	15. DATA				
v v	16. PROCESS C	ALCULATION SHEETS			
r	17. PROCESS D	ATA SHEETS			
·					

·

.

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision :	Page No :
TEP/DP/EXP/SUR	NOTES	Date : 2/85	

•

. .

•• ·

.

•

.

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisio	in :	Page No
TEP'DP/EXP/SUR		Date	: 2/85	
	<u>,</u>	•	1	· · · · · · · · · · · · · · · · · · ·
	•			
	1. DESIGN CONDITIONS			
	· ·			

۰

ı.

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision : 0		Page No :
TEP/DP/EXP/SUR	DESIGN CONDITIONS	Date	[:] 2/85	1.1

1. APPLICABILITY

The following design criteria are applicable for both feasibility studies and pre-project studies.

2. PRESSURES

. The design pressure of a vessel shall be taken as of the following;

Operating pressure	Design pressure	Note : $Pmin = 3.5$ bars
barg	barg	
0 - 10	MOP + 1 bar	MOP = Maximum Process Operating
10 - 50	MOP + 10 %	Pressure
50 - 100	MOP + 5 barg	
> 100	• MOP + 5 %	

• Vessels subject to vacuum during operation shall be designed for the maximum external operating pressure plus a margin of 0.15 bar.

If the internal pressure is 0.35 bara or less the vessel will be designed for full vacuum.

. Design pressure for pump discharges shall be calculated by taking 120 % of the normal pump ΔP when operating at design conditions.

3.0 DESIGN TEMPERATURES

. Design vessel temperatures shall be as follows :

Maximum design temperature = max. operating Temp + 15 °C

Minimum design temperature = min. operating Temp - 5 °C

or minimum ambient temperature.

. Consideration for the minimum design temperature must take into account any depressurisation of the vessel that may occur during emergency or shut down situations. (See section on flaring).

4.0 MATERIAL OF CONSTRUCTION

- . Details of the required material of construction for various temperatures are given in Table 1.
- . Details on corrosion allowances and wall thickness are given in the vessel design section.

PROCESS ENGINEERING DESIGN MANUAL

DESIGN CONDITIONS

!

•••

Date

: 2/85

1.2

- 3

TEP/DP/EXP/SUR

	+				1	22 °C				ADOVE
102 °C - 69 °C	69 01		10 10 10 10 10	, 0. 9, .		10 11.C	MAX.	938 °C	593 °C	2. (65
			14 20 20 2	Killed	Carbon	Carbon	0.5 % Mo	1.125 Cr	2.23Cr-1Mo	Stainless
55 18/8 3.5 %	3.5%	,		Carbon	steel	steel	IC-0.3Mo	1.125 CrO, 1 5 Mo	SCr-0.3Mo	stee
240 304 240 304 240 304 A 20 240 316 A 20 240 311 Oct	A 20 Grade	- 9	A 203 - Grade B TC + 60 *CI for walls	A 516 A 516 Grade 35 Grade 60 Grade 60 Tc = - 40 °CI	A 316 Crade 53 Grade 60 Grade 60 Grade 70	A 313 Crade 33 Crade 60 Crade 60 Crade 63	A 204 Grades A or B (0.5 Mo)	A 387 Grade 11 Class 1	A 387 4 Grade 22 1 Grade 5 1 Class 1	Refractory
240 347 Grade	Grade	u l	- 30 mm	Grade 65		A 516	Grade 12			, , ,
N 6	Ž 6	_		for walls 1 vinue			1Cr-0.5Mo			
5C V ,	(C V)	~								
312 304 A 33	Crade	=	A 133 Crade 7	A JJJ Grade 1	A 106 Grade	A 106 Grade	A 335 - PI (0.5 Mo)	119 - 205 A	A 335 - P22 2.25Cr-1Mo	
1 212 316 1 312 316 1 1 212 321 1 1 742 212				or Grade 6	2 o C	6 5 <	A 335 - P12 1Cr - 0.5Mo		A 335 - P5 5Cr - 0.3Mo	
9 Ni 1 A	((V) i	Cra	de 8							

TABLE 1 - MATERIAL SELECTION AS A FUNCTION OF DESIGN TEMPERATURE

	TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision :	Page No :
	TEP/DP/EXP/SUR		Date : 2/85	
,				

t

ì

1

T

у ;.

n

2. VESSELS

TO	TAL

VAPOUR - LIQUID SEPARATORS

2.1

TEP/DP/EXP/SUR

Date :2/85

3.

4.

TEP

1. APPLICABILITY

Virtually all process schemes use phase separation of some description. The design and sizing of a separator with acceptable accuracy is required for both the feasibility and pre-project phases.

Consideration is given in this section to the specification of vertical and horizontal separators for vapour-liquid and vapour-liquid-liquid separation. Details are also given concerning vessel internals.

Separation of solids from gas or liquids is not covered in this design guide. Generally a vendor will be consulted for details of a proprietory designed vessel.

2. SEPARATOR APPLICATIONS AND CONSIDERATIONS

- 2.1. <u>2 PHASE SEPARATORS</u> (usualy vertical unless stated)
 - Compressor and Fuel Gas KO drums

Efficient separation of liquid from vapour required. Always consider a mist eliminator. Provide sufficient surge time (1 to 2 minutes) between the HLL and tripping the compressor.

- Relief System KO drum See section 9.0 Flare Systems
- Unit Feed KO drums

Required upstream of acid gas absorbers, glycol contactors and dessicant b dehydrators. Can be incorporated into base of tower for weight and space saving. Always use demister pads.

Production separators (Vert or horizontal)

Liquid separation from gas not as critical as compressor KO drum unless a compressor is located immediately downstream of separator. Always consider start-up, shut-down and process slugs when designing.

2.2. <u>3 PHASE SEPARATORS</u>

3 phase production separators are generally horizontal. If good liquid-vapour de entrainment is required demisters are usually stated. Oil separation from the water phase must be sufficient so as not to overload water treatment units. Chemical additives (demulsifiers, anti-foam, pour point depressants) may be added to aid separation.

TEP/DP/EXP/SUR

3. HORIZONTAL OR VERTICAL DESIGN

- . Provided sufficient L/D ratio is selected a horizontal separator is more efficient than a vertical for the same flow area.
- . Vapour velocity in a horizontal drum can exceed the liquid settling velocity provided L/D > 1. For vertical drums the velocity cannot.
- . Horizontal drums are more effective and geometrically more practical for a heavy liquid phase removal than vertical drums.
- . A rising liquid level in a vertical drum does not alter the vapour flow area. Consequently vertical drums are preferred for compressor and fuel gas KO drums.
- . Vertical drums utilise a smaller plot area and are easier to instrument with alarms and shutdown controls. For floating installations are preferred as less "sloshing" occurs.
- For high volume flowrates a split flow horizontal drum is preferable as smaller drum diameters can be used. The preferred split flow arrangement is a single centre entry nozzle with two end exists. Head exits can be used where plot space is limited.
- Each design case must be evaluated separately but in general the following can be used as a guideline :

-	Vertical drums	Compressor KO drums	Degassing boots
		Fuel gas KO drums Floating installations	Absorber feed KO drums
-	Horizontal drums	Production separators HP 3-phase separation	Reflux drums Flare KO drums

- Try to avoid vessels with wall thickness greater than 100 mm as these require special fabrication and can prove expensive.
- 4. CALCULATION THEORY AND EQUATIONS (for use in calculation sheets) (Valid only for pure gravity settlers with no internals to enhance separation)

4.1. LIQUID-VAPOUR SETTLING VELOCITY

- $\rho_{\rm L.v}$ liquid or vapour density kg/m³
- Vs settling velocity m/s
- K = correlating parameter m/s
 - D particle diameter -microns
 - C drag coefficient
- m/s vapour viscosity centipoise

2/85

TEP/DP/EXP/SUR

VAPOUR - LIQUID SEPARATORS

ł

Ł

Ł

L

ł

L

I

2.3

- (see pa
- For medium and low pressure with gases of viscosity less than 0.01 cp Figure 1 can be used to estimate Vs.
- For higher pressures (> 50 bar) or viscosities in excess of 0.01 cp it is necessary to calculate Vs. The drag coefficient C is calculated using Figure 2 (curve 2) where :

$$CR_e^2 = \frac{(.3072 \times 10^{-4} . p_v. D^3. (p_v. p_v))}{m^2}$$

Equation 3 is then used to calculate Vs.

LIQUID-LIQUID SETTLING VELOCITY 4.2.

(based on Stokes law of terminal settling)

The following equation can be used for calculating the settling velocity of water in oil or the upward "settling" of oil in water. The important fact is to use the viscosity of the continuous phase i.e : for oil settling upwards through water use the water viscosity, for water settling in oil use the oil viscosity.

		U _t =	terminal velocity	m/s
		g =	gravitation accel	m/s2
Ut =	g. D. (Pm - PL)	/ H =	density heavy fluid	kg/m3
	18. Me	= ۲ م	density light fluid	kg/m3
	·	$\mu c =$	viscosity (continuous)	kg/m.s

Setting the particle size to 125 microns and using more useful units gives :

5.

PH-PL Me Ut = 0.513

) Ut mm/min Ac in centipoise

The above equation is valid for REYNOLDS no of 0.1 - 0.3

If calculated settling velocity is > 250 mm/min use 250 max

VESSEL VOLUMES 4.3.

Partial volumes of a horizontal cylinder can be calculated using the partial volume charts in Figure 3 or estimated using the following equations : (for vessels with a diameter < 1.2 m ignore head volumes)

.

Page No :

4.5. CALCULATION PROCEDURE HORIZONTAL VESSEL (Vapour-liquid)

A guide on how to fill in the attached calculation sheet.

- 1. Calculate settling velocity Vs for partical size 150μ , use Fig. 1 or equ. 3.
- 2. Derate this by F = 0.85 and calculate required vapour velocity V m/s

 $Vm = F \times Vs \times (L/D) m/s$ use L/D of 3 to 4 max (3 initial est)

- 3. Evaluate required vapour cross sectional area, Av
- 4. Assume drum is 70 % full i.e h/D = .7 and evaluate drum Ø to give required Av (to nearest 50 mm). For "dry" vessels use h/D = .35
- 5. For required liquid surge volume, calculate vol at HLL, if insufficient adjust D or L (note if L/D changes significantly recheck Av using new Vm).
- 6. Set position of LLL in drum and confirm required surge vol between HLL-LLL. If volume is insufficient increase Ø, L or h. Include volumes in heads.
- 7. When setting LLL height take into account any LSLL, LSL alarms and vortex breakers which may set minimum value usable. Usually 300-350 mm.
- 8. Rationalise all heights and dimensions to nearest 10 mm.

NOTES :

- For high volumetric flows of gas with small liquid volumes consider using split flow arrangement. Design is as above but with half vapour volume flow.
- . Normal design is with top entry, exit nozzles. However if space is limiting (primarily offshore) head mounted nozzles can be used to increase flowpath.
- L is designated as the flow path length i.e distance between inlet and outlet nozzle. L' is the tangent-tangent lengh. For 1st estimates L' = L + 1.5 β i + 1.5 β_2

Øi = inlet nozzle diameter Ø2 = outlet nozzle diameter

. "Normal" liquid levels are taken as midway between the high and low levels.

Date

TEP/DP/EXP/SUR

CALCULATION PROCEDURE HORIZONTAL VESSEL 3 PHASE (See Figure 4) 4.6.

- Sufficient residence time to allow separation of the oil-water mixture as well as the oil surge and vapour flow areas must be provided.
- 1. Proceed with steps 1 to 4 as for a two phase separation. Use L/D = 3 (1st) estimate) and evaluate L.
- 2. Provision now has to be made to accomodate both oil and water surge volumes. Use Tan-Tan length L' and not nozz-nozz distance L.
- 3. Calculate LLL required to give approx 4 mins oil surge capacity (minimum). Inspection will reveal whether sufficient height exists below LLL to include the interface levels. If not, adjust the vessel Øor L to give sufficient room.

If the water cut is very small, consideration may be given to using a Note : water boot instead of a baffle arrangement see step 10.

- 4. Having determined HLL and LLL now set both position and height of baffle. Calculate terminal settling velocity of water droplet (equ 5 sect 4.2) at both HLL and LLL. Volumetric flow of liquid is in both cases the oil plus the water. Calculate fall distance of a droplet across length of the drum. Baffle height and position can now be set noting :
 - the baffle should be at least 75 mm below the LLL
 - the baffle should be at least 2/3 down the length of the drum from the inlet
 - in some cases the water droplets will settle to the floor in a short distance. The baffle should still be set at a minimum of 2/3 along the vessel.
- 5. Set the HIL at baffle height 75 mm. The LIL according to height determined 34 vortex breaker + LSLL use a minimum of 300-350 mm.
- 6. Check if an oil droplet will rise through the water layer (from drum floor) to LIL | before reaching water outlet. Use area at LIL with normal oil + water flowrates. (This criteria is very rarely governing but must be checked).
- 7. Calculate water surge time Vol HIL Vole LIL, and residence time Vol NIL VoI.D outlet. Remember to use only one head volume, and length of drum upto baffle. Minimum acceptable times are 4-5 mins. If calculated times are very long 1 consider using a water boot arrangement.
- 8. Rationalise all dimensions and "tidy" levels to standard values if possible i.e : ¹ 150 mm, 200, 250, 300 etc. This allows use of standard displacers.
- 9. Recalculate all residence times based on "tidied" levels (if required).
 - In calculating the final residence times make sure that the vessel tan-Note: tan length is used and not the nozzle to nozzle distance L.

	T	0	T	Ά	L
Ì					

35

ST 1

s.

).

e

a

١.

L

d

g

TEP/DP/EXP/SUR

10. Boot calculation (See Fig. 5)

- If the water volumetric flow is so small as to not warrant a separate baffled settling compartement as detailed above a water boot should be used instead. To design proceed as follows :
- 1. Proceed as previous upto step 3.
- Calculate settling distance of water droplet when vessel is operating at LLL. Water droplet should reach floor of drum before oil outlet. Remember that the oil exit nozzle will be raised above the floor as a standpipe. Adjust drum Ø or L to achieve settling.
- 3. Check that settling is also possible when operating at HLL, droplet to fall below drawoff nozzle level.
- 4. Size water drawoff boot Ø (try to use standard pipe diameters). Calculate rising velocity of the oil in water, set downward velocity of water in boot at 90 % of this and evaluate boot Ø. Boot length by inspection (use standard displacers).
 - Note : Boot Ø must be less than 35 % of vessel Ø When heavy walled vessels are used a remote boot may be more economical to prevent large cuts in the main vessel.

4.7. NOZZLE SIZING (see section 10.0 also)

Inlet nozzie

- . Size based on normal volumetric flow + 10 % (liquid + vapour flow)
- . Limit inlet velocity to 7 13 m/s
- . Round nozzle diameter up or down to nearest standard size

G	as outlet	Liquid outlet			
•	Size on normal flow	•	Normal flow +	10 %	
•	Velocity limit 15-30 m/s	•	Velocity limit	1-3 m/s HC	
				2-4 m/s water	
•	Manholes: 450 mm or 600	•	Min. diameter =	= 2" (avoid plugging)	

4-8. VESSEL WALL THICKNESS

Calculate vessel wall thickness using the ASME VIII div. 1 formula. The wall thickness should be calculated immediatly after D is known to confirm if $t \leq 100$ mm.

		ан сайтан са Айт	
TOTAL PROCE	SS ENGINEERING DESIGN MANUAL	Revision : 0	Page No :
TEP/DP/EXP/SUR	APOUR - LIQUID SEPARATORS	Date :2/85	2.9
	D = diameter	mm	
	t = wall thickness	mm	
= <u>PD</u> + C	P = design pressure	barg	
2SE - 1.2P	E = joint efficie	ency	
	use 1 for seamless	shells .85 otherwis	se
	S = max. allowable	stress bar	
= corrosion allowance m	m use 1220 bar for	r CS plate	
- use 3 mm unless stat	ed 1000 bar fo	r SS plate	
otherwise by EXP/TR	for t<100 mm : n	o fabrication probl	ems
	100 < t < 150 mm : v	endor advice may	be needed
	t > 150 mm : M	lajor fabrication p	roblems
tandard wall : 1 - 30 m hicknesses 30 - 60 r	000 mm in increments of 100 mm i.e. 2 m in increments of 1 mm i. nm in increments of 2 mm i.	e. 1, 2, 3, 4 e. 30, 32, 34, 36	D
4.9. VESSEL WEIGHT			
Vessel weights eith is for the steel she internals or suppor (m) x wall thicknes	ner horizontal or vertical can be estimed and including manholes, nozzles, fittin t skid. The heads can be estimated by is (mm) x 20 kg.	nated using Fig. 5. gs etc but not the y using weight of 2	This figure removable theads = -7
. VESSEL INTERNALS			
5.1. <u>MIST ELIMINATOR</u>	<u>RS</u>		•
. Mist eliminator			
	rs or mesh pads are located under the	e vapour outlet no	zzies of all
compressor suc	rs or mesh pads are located under the ction drums and fuel gas KO drums. F	e vapour outlet no or production sepa	zzles of all rators it is
compressor suc always good pra	rs or mesh pads are located under the tion drums and fuel gas KO drums. F actice to install an exist mesh pad.	e vapour outlet no or production sepa	zzles of all rators it is

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisio	on: 0	Page No :
	VAPOUR - LIQUID SEPARATORS		0/05	
TEP/DP/EXP/SUR		Date	2/85	2.10

Mesh is usually made from 304 SS. YORK DATA as follows :

Types of pad :	York n°	kg/m3	Thickness mm	Residual* entrainment PPM
General purpose	431	144	100	1.0 - 1.2
High efficiency	421	192	100	.5561
	326	115	100	.17 - 0.19
Dirty service	931	80	1 <i>5</i> 0	1.6 - 1.8
	644		1 <i>5</i> 0	.887

. The engineer should specify type, diameter and thickness of pad required on the vessel data sheet.

For particle sizes of 5 microns or less use two pads spaced 300 mm apart eg: glycol contactor.

5.2. INLET INTERNALS

Inlet internals can be specified to aid feed distribution and promote vapour-liquid separation. Generally for pre-project stage details are not required.

5.3. LIQUID PHASE INTERNALS

- Vortex breakers should be detailed for each oil/condensate and produced water outlet where the oulet flow direction is vertical.
- Vendors will sometimes specify internal packs of tilted plates or baffles or other arrangements to promote phase separation.

Sand jetting facilities should be provided for on services where there is a risk of silting or sediment build up in the vessel. Generally jetting facilities are not required on gas-condensate systems.

6.0 REFERENCES AND USEFUL LITERATURE

all is

ult

)e

- 6.1. LUDWIG VOL I CHAPTER 4
- 6.2. PERRY CHAPTER 6
- 6.3. Program calculates partial volumes Pierre Koch

0GJ Dec. 3 1983

		and a second	
			2.11
FOUNDMENT NO D 1031	Ecose and Bo		. <u>Н</u> е
EQUIPMENT Nº D 1234 D		<u> </u>	£
Operating data:			1
			2
Pressure (operating) bara = 1.04			
Temperature (operating) °C = 34			c
Gas MW = 51-4	Liquid des	cription: CRUDE OIL	+
Gas flow rate Wg kg/hr = 7290	Liquid flow	wrate kg/hr = 1	05 900
Gas density T, P kg/m3 = 2·1	Liquid den	sity (T,P) kg/m3 =	810
Actual volume flow $Qg = m3/s = 1$	Actual vol	ume flow m3/min =	2.23
	Particle si	ze microns =	150 h6
			b7
Mesh pad Yes : Estimate Vs usin	g Figure 1 and 500) micron line	
No : . If $P < 50$ bar and	0.01 use 🔨 🔪	Fig. 1 and 150 microns	h8
. If P > 50 bar or	> 0.01 use مر	calculation for Vs	
1. Vapour-liquid settling velocity : from Fig	<u>, 1</u>	Vs = 1.6 m/s	7. <u>W</u>
			•
or calculated $C =$;	Vs = m/s	
			•
2. <u>Derating</u> % = 85 ma	ximum velocity	Vm = 1.36 m/s	
3. Actual volumetric	Drum flow are	ea = 0.74 m2	
gas flow = 1 m3/s	Calculated dr		*
	a Vapour area	NUT yourrainy &	- 0 <i>4</i> 69-
SEI	LECTED DIAMET	$ER = 25\infty mm$	ارب هم = 4.9
G.	HED ON LIQUID LET	IEN T.ON	₩2 . 9 V
4. Required liquid hold-up times, ' j.		·	o. <u>v</u>
	<i>i</i> 1 – 3	Geo.	· - •
$h_{D}: HLA - HLL = 2 min =$		mm neight	
h6: HLL-LLL = 5 min =	$m^2 = 2$	2250 mm	
n/: LLL - LLA = 2 min =	-+- - m² =	ססר mm	U
5 Mach pad . Noting thistop	- (00	, ,	
. Mesir pad. (Tearline thickness	mm		
-			
			1
		Sheet 1	of 2
PR	OCESS CALCULA	TION SHEET	
TOTAL		ITEM : DEGASSING B	POT TEP/DC
TEP/DOP/DIP/EXP/SUR	UID SEPARATOR	NO: D 1234	BY
BY CHK DATE JOB TITLE :	EXAMPLE	JOB Nº · EXAMILE	REV

· · ·

Height calculation $\theta = 2500$ mm

īī

Sheet 2 of 2

	1				PROCESS CA	ALCULATION SHEET
				`	ITEN: DEGASSING DOOT	
			VERTICA	AL VAPOUR-LIQUID SEPA	ARATOR NO: N 1234	
	BY		СНК	DATE	JOB TITLE EXAMPLE	E JOBN" : EXAMPLE REV

<u>EV</u>

I

-13	(–)								244
	4.	Nozz	zle sizing vel limits	: m/s	inlet 7-13, Exit	15	- 30, 1	iquid 1-3	
	,	Øi :	iniet flow = 0.34 (+ 10 %) 0.35	21 m3/s	Nozzle ID =	8	n	Actual vel = 10.8 m/s	
		Ø2:	Gas exit = 0·2 Liquid outlet = 0	8 m3/s -04 m3/s	Nozzie ID = Nozzie ID =	6 6	n	Actual vel = 15 m/s Actual vel = 2·1 m/s	
				(-5 ×	(+++++++++++++++++++++++++++++++++++++	<u>س</u> ر			

5. Drum sizing

For trial 1 $t_{res} = 4$ mins

vol required =
$$4 \times QL = 10.6 \text{ m}^3$$

-	_					
	 	TRIAL	1	2	3	4
elected h/D	_		5.0	0.6		
Vapour area % Total area (Fig. 3)	Av	m2	0.473	1 1.174		
Total area	Ar	m2	(.89	1.1.142		
Liquid area	AI	m2	1 1.42	1-968 -	<u>↓</u>	
Calculatd drum Ø	_	mm	1550	1		
Selected drum	D	mm	1750 	2000 <		
L/D (3 - 4)	•		3	3		1
riowpain lengin	L	៣៣	5250	6000		1
a) Tan/Tan length	L	mm	5780	6530		1
HLL height		men 🦯	1225	1200 -	Jud average	ا السلام محاد
b) VOL 🗣 HLL LLL height		m3	10.5	14.2	10160X 2+	DIPHIN NED
Volo LLL		m3	2.36	3.13	142x 3-142x	6.53 + 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
VAOL		m3	· 8-14	11.07	and the second	1
Calculated tres		min	3.1	4-2		1
		-	tan short		 	
NOTES :			try D. 24	ok		ł
i de la constante de		-	۱۱			

SELECTED DRUM : DIAMETER \$ 2000 mm x 6530 mm tan/tan

- a) Tan/tan length L' = L + 1.5 x β i + 1.5 β ₂ (ignore this correction if D < 1.2 m and use L for volume calcs. For trial 1 use L and ignore heads).
- b) If VOL HLL is less than required surge increase D, L or h/D or reduce tres (by inspection).

				PROCESS CALCUL	ATION SHEET		
	TEP/T		CALCULATION FOR HORIZONTAL 2 PHASE		ITEM : NO : EXAMPLE		
-	87	CHK	DATE	JOB TITLE :	J08 Nº :	REV	

2.15

Opt

<u>CA</u> Wg

De: Qg

Par

1.

2.

3.

Í

- 6. Wall thickness
 - DESIGN PRESSUREP = 20.9 bargMax stressCS = 1220 barCORROSION ALLOWANCEC = 3 mmSS = 1000 barS = 1220

Joint efficiency E = 0.85

 $t = \frac{P \times D}{2SE - 1.2P} + C = 2.5 mm$

8. Vessel weight (Fig. 6)

t = 25	mm	Shell weight	= 10 800	kg
L = 6.53	m	Head weight	= 1000	kg
D = 2	m .	(t x D x 20)		

TOTAL WEIGHT = 12 000 kg

NOTES:

PROCESS CALCULATION SHEET				
CALCULATION FOR HORIZONTAL 2 PHASE	ITEM : EXAMPLE NO :	TE BY		
	100 N+ -	REV I		

EV

2.17

4. Nozzle sizing : vel limits

m/s: inlet 7-13, Exit 15-30, liquid 1-3

4 4× QL

٠. '

		m ³ /s :	nozzle id :	actual vel M/S
1.	Inlet flow :			
	(+ 10 %)	0.055	4" (100 ~~)	6.8
2.	Gas exit :	0.036	4.	4.4
3.	HC outlet :	0.012	3" (75)	2.6
4.	Water outlet :	0.0028	3"	0.6

5. Vessel sizing

2.84 m3 For trial I use hold up time oil (HLL-LLL) = 4 mins -

OIL SECTION

n.7361-15 1 1 t TRIAL 1 1 2 3 4 ł 0.64 0.7 Selected h/D L 0.38 0.08 Calculated (Qg/Vm) Av m2 32 21.5 Av as % AT (Fig. 3) 25 1.227 1.767 AT m2 0.32 Total area Liquid area AL m2 0.24 0.834 : 1.387 1 650 Calculated Ø mm 1250 1 1 500 mm 1000 Selected Ø D 廴 3.2 L/D(3-4)3 3000 Flowpath length mm 4800 L 5000 Ľ 3250 'nm a) Tan/Tan length 5 250 5060 600 800 1100 mm hl HLL height 747 1.77 4.67 VOL at HLL m3 h2 mm 700. 400 LLL height 1.9 m3 4.4.4 VOL at LLL 2.8 3.23 m3 **∆**vol 3.9 4.54 Calculated tres min + tight too small ok Notes or comments : LLL top Low Check M20 F for water

tan-tan length L' = L + 1.5 x ($p_1 + p_2$) mm - Ignore if D < 1.2 m a)

		PROCESS CALCU	LATION SHE	ET 2	
TUTAL	CALC	CALCULATION FOR HORIZONTAL		ITEM :	
TEP/DOP/DIP/EDP/SU	A .	3 PHASE	NO :	EXAMPLE	
ev Cur	DATE	JOB TITLE :	108 Nº -		REV

٧

1

1

Ε

I

ł t

١

I

ł

WATER SECTION

ł

I

Trial 1 $B = 2/3 \times L = 3450$ mm (rounded)

	TRIAL	1	2	3	4
Total liquid vol flowrate					
Qw + QL	m3/min	0.88			
Baffle distance B	៣៣	3450	3400		
Liquid area at HLL AL	m2	0.834	1.357	1	
Horizontal vel at HLL VI Ut water (step 3)		177.5	177.5		
Vertical fall from HLL = B x Ut/V	mm	580	952		
Final settled h = HLL - vert fall	mm	220	450		1
Liquid area at LLL AL	m2	0-447	0-125		1 1
Horizontal vel at LLL V2	mm/min	2110			1
Ut water (step 3) Vert fall from LLL	mm/min 	(++.5	(++,>	ł	
= B x U∔/V2	mm	290	565		1
Settled baffle height h3	mm	400	615		}
(adjust h3 and B if necessary)	mm	520	<u> 220</u>		2 1
Check oil rise :	i				ĺ
Horizontal vel at LLL V2	mm/min	2110	1 1067		1
Ut oil (step 3)	mm/min	247	247		i I
$= B \times U + /V2$	mm	400	787		1
= max outlet height					1
h5 selected LIL level	mm	250	250		
h6 selected outlet height	mm	200	200		1
ql water vol at HIL (upto baffle)	m3	1 1-01	2.13		
q2 water vol at LIL (upto baffle)	_m3	0 62	0.69	l †	1
q3 water vol at NIL (upto baffle)	m3	0.81	1.36	1	
04 water vol at outlet (")	m3	0.45	049	l 1	1
		0.39	1 144	 	i I
d surge = vol ($d1 - d2$)	UT CITI			1 	1
surge time q/Qw	mins	2·3 	8·5 	t l	1 i
residence time q3-q4/QW	mins	2-14	5.17	l 1	1
calculated oil residence time (up	to baffle)				ļ
Vol (NLL - NIL)/QL	mins	1-8	4 mins		
		teo small	юк.	<u> </u>	<u> </u>

		PROCESS CALCULATION SHEET 3					
		CALC	ULATION FOR HORIZONTAL 3 PHASE	ITEM : NO :	EXAMPLE		
BY	СНК	DATE	JOB TITLE :	JOB Nº :		REV	

• · · ·	TEP/DI
6 Wall thickness	
6. Wall thickness	
. DESIGN PRESSURE $P = 42.9$ barg Max stress CS = 1220 bar	
. CORROSION ALLOWANCE C = 3 mm SS = 1000 bar $S = 1220$	
Joint efficiency E = .85	
$t = P \times D + C = 35$ mm	
2SE-1.2P	
8. Vessel weight (Fig. 6)	
1000	
$t = 35$ mm Shell weight = $\sqrt{6'890}$ kg L' = 5 m Head weight = 1050 kg	
D = 1.5 m (t x D x 20)	
00050	
tothe weight - kg	
• • • • • • • • • • • • • • • • • • •	
-	
	<u>e</u>
PROCESS CALCULATION SHEET 4	
CALCULATION FOR HORIZONTAL	
TEP/DOP/DIP/EXP/SUR DATE BTITLE: JOB Nº :	REV

2.19

¥.:

TABLE 2

FOR GAUGING HORIZONTAL CYLINDRICAL TANKS - FLAT ENDS

%d - Percentage of Total Diameter of Tank %c - Percentage of Total Capa of Tank

·	7.0	7,c	76 d	%c	<u>9'nd</u>	%c	701	c/oc
	0.1	0.0053	8.8	4.3131	17.6	11.851	28.5	23.49
1	0.2	0.0152	9.0	4.4582	17.8	12.046	29.0	24.07
1	0.4	0 0449	9.2	4.6045	18.0	12.240	29.5	24.65
{	0.4	0 0788	9.4	4.7525	18.2	12.437	30.0	25.23
1 ·	0.0	0 1/1/	9.6	4 9015	18.4	-12.633	30 5	25 81
1	0.0	0.1212	ν.υ υ Ρ	5 05/3	18 6	1/ 831	31 0	16 40
	1.0	· 0.1092	7.0	5.0323	18.0	13 030	31.0	16 00
	1.2	. U. 2223	10.0	5.2040	10.0	13.000	31.5	17 59
i	1.4	0.2800	10.2	5.5560	17.0	13.229	32.0	
1	1.6	0.3419	10.4	5.5166 E 6600	19.2	13.967	36.3	40.10
1	1.8	0.4077	10.0	5.0090	17.4	13.030	33.0	20.10
1	2.0	0.4773	10.8	5.0230	19.0	13.032	33.5	69.30
	2.2	0.5501	11.0	5.9848	19.8	14.035	34.0	29.90
	2.4	0.6263	11.2	0.1445	20.0	19.238	34.5	30.50
1	6.6	0.7061	11.4	6.3060	20.2	14. नेनेन	35.0	31.19
	٤.8	0.7886	11.6	6.4685	20.4	14.649	35.5	31.80
• .	3.0	0.8742	11.8	6.6320	20.6	14.854	. 36.0	32.41
	3.2	0.9625	12.0	6.7970	20.8	15.030	36.5	33.02
1	3.4	1.0533	12.2	6.9630	21.0	15.267	37, 0	33.63
	3.6	1.1470	12.4	7.1305	21.2	15.475	37.5	34.25
)	3.8	1.2432	12.6	7.4990	21.4	15.683	38.0	34.87
	4.0	1.3418	12.8	7.4680	21.6	15.892	38.5	35.49
i	4.2	1.4429	13.0	7.6390	21.8	16.101	· 39.0	36.11
	4.4	1.5461	13.2	7.8110	22.0	16.312	39.5	36.73
	4.6	1.6515	13.4	7.9840	22.6	16.524	40.0-	37.35
	4.8	1.7594	13.6	8.1580	22.4	16.737	40.5	37.98
	5.0	• 1.8693	13.8	8.3330	22.6	16.949	41. 0'	38.60
	5.2	1.8914	14.0	8.5090	22.8	17.161	41.5	39.23
	5.4	2.0956	14.2	8,6360	23 U	17.376	44.0	39.86
÷ 4. j	1 5/6	.4.2116	14.4	8.8645	23.2	+17.590	42.5	40.45
	5.8	6.3697	14.6	9.0440	23.4	17.806	43.0	41.1.
	6.0	2.1197	14.8	9.2240	23.6	18.022	43.5.	41.74
	6.4	2 5715	15.0	9.4050	23.8	18.240	44.0	42.31
	f1 4	2 6952	15.2	9.5880	· 24. 0	18.457	44.5	43.0
	6.6	2.8211	15.4	9.7710	64.6	18.675	45.0	43.64
	6.8	2.9483	15.6	9.9560	24.4	18,892	45.5	44.21
	7 D	3 0771	15 8	10,142	24.6	19,110	46.0	44.9
	7 /	3 2082	16.0	10.327	44.8	19.330	46.5	45.5!
	7.5	3 3108	16.0	10 515	25.0	19.551	47.0	46.11
•	7.4	3. 3720	16.4	10.212	25 5	20 106	47 5	46 8
	1.0.	3.5(47	16.6	10.703	26 8	20 661		17 4
.	(, ð	3,0105	10.0 16 g	11 08/	20.0 26 K	21 222	28 5	8 C
÷	8:0	J. (400 J. 1400	10.0	11 777	/7 0	1 1 2 C C C C C C C C C C C C C C C C C	40.0	48 7
	0.4		17.9	11 355	j7 6	21.105	· 10 5	
	6.4 0 (4.0270	17.4	11.403	61,J 70 G	22,222	50 0	50.0
1	8.0	4.1040	፲ / . ብ 		2C.U			
1.1.2.1	PADE D IN	UAIL	A 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NY DATE	111.00	4500	sj ci	LASSIFIC
1.1.	F. Chaple	122498	<u> </u>	371759		61.95 D	ICo	nijden.

Aker Engineering plc

RELATIONSHIP BETWEEN CHORDAL HEIGHT

AND CIRCULAR SEGMENT AREA

3.1

TEP/DP/EXP/SUR

1. APPLICABILITY

It is not expected that a hand calculation of a tray distillation or absorbtion column be performed by the engineer. For the purpose of a feasibility or pre-project study any required rigorous column sizing would be performed using SSI PROCESS simulator, or similar.

Should, however, a quick estimation of tower diameter and height be required one of the most common methods of hand calculation for valve trays is the "GLITSCH METHOD". An example of the procedure for this method is given in Section 3.

A detailed mechanical design of a tray column is beyond the scope of this guide. For details on glycol towers see package units.

2. DESCRIPTION AND NOTES

2.1. TRAYS

There are basically three types of tray used in distillation columns; sieve, bubble cap and valve trays. Each type has specific applications and flexibilities dependant on the process criteria. Some of the major aspects are detailed as follows :

Bubble caps

Operation	:	Vapour passes through "risers" into the bubble cap then bubbles into				
		the surrounding liquid on the tray. Bubbling action effects liquid-				
		vapour contact. The liquid exits the tray via outlet weir and				
		downcomer arrangement to the tray below.				

Moderately high efficiency (minimum 50 %) is maintained at varying Capacity : rates due to weir maintaining liquid head.

: For many years was the most common type of tray-consequently Efficiency many published tray efficiencies are available from vendor sources. Note : most expensive type of tray.

Application : All major services excepts coking, polymer formation or other high fouling conditions. Ideal for use in low flow conditions where tray must remain flooded to maintain a vapour seal.

Tray spacing : 18" is normal. Consider 24" to 36" for vacuum conditions.

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisio	on: 0	Page No :
TEP/DP/EXP/SUR	TRAY COLUMNS	Date	2/85	3.2
Sieve tr	ays			

Vapour rises through 1/8" to 1"

holes and bubbles through liquid. Liquid flows across tray over weir via downcomer to

With downcomers

without downcomers
Vapour rises through holes in
and bubbles through liquid.
Liquid head forces liquid
countercurrent through same
holes to tray below. Flow is
generally random and does not
form continuous streams from
each hole.

1971.1

- Capacity : As high as or higher than bubble cap trays for design rates or down to 60 % of design. At lower rates efficiency falls and performance is poor. Generally unacceptable to operate below 60 % capacity.
- Efficiency : As high as bubble caps at design capacity. Efficiency becomes unacceptable below 60 % design capacity. Not suitable for variable load columns.
- Application : Systems where high capacity near design rates are to be maintained in continuous service. Handles suspended solid particles well, flushing them down to tray below. Can be problem to run with salting-out systems where trays run hot and dry, holes may plug. Not recommended for oil + gas service due to poor flexibility.
- Tray spacing : 15" average, 9" to 12" acceptable. Use 20" to 30" for table. Use 18" to 30" for vacuum. vacuum.

Valve travs/ballast cap

Generally the same aspects as for sieve trays. Most valve trays are specialist proprietry design for specific operation problems and capacities. Specialist vendors include Glitsch, Koch (flexitray), Nutter, Union Carbide. Best choice of tray for distillation application.

Tray layouts

Operation

:

tray below.

Not only may the type of bubble cap/valve/sieve hole be specified for a particular design but also the tray hydraulics to liquid path. Common arrangements are shown in Figure 1.

TO	TAI
I - "	

TEP/DP/EXP/SUR

3 :

1

t

PROCESS ENGINEERING DESIGN MANUAL

TRAY COLUMNS

Date [:] 2/85

n

3.3

Trav efficiencies

General tray efficiencies to use :

Absorbers

Stripping

Hydrocarbon oils + vapour	35-50 %	Hydrocarbon oils + vapour 50-80 %
Amine units	15-20 %	(Amine towers usually have 20 actual
Distillation columns	60-80 %	trays)

2.2. CONDENSERS

- Condensers are usually installed on the overhead of fractionation towers to recover liquid product and provide internal tower reflux. Design of condensers is covered in shell + tube exchanger section.
- Basically two types of overhead condenser exist, partial and total. When using a total condenser the heat load is equal to the latent heat of the saturated overhead vapour. The resultant bubble point liquid is split with some returning as reflux and the remaining portion as distillate product.

For a partial condenser the vapour withdrawn from the accumulator is in equilibrium with the returning reflux and consequently the condenser is acting as an "external" additional tray. The vapour is normally withdrawn under pressure control with all or part of the liquid returning as reflux to the column.

2.3. REBOILERS

Generally three types of reboiler exist for light hydrocarbon fractionators.

thermosyphons internal reboiler external "kettle" type external "heat exchanger" type furnace, electrical

In most cases the "heat exchanger" type is preferred for efficiency.

- The heat exchanger should be located 2-3 m below the exist nozzle from the column so that sufficient head is available for thermal circulation.
- Reboilers may be heated by direct fire, electrical coil, steam, closed heating medium or process fluid exchange.
- Values of U overall (incl. fouling factor) for various types of reboiler and design methods are given in the heat exchanger design guides.

TRAY CALCULATION DATA SHEET

Column item: D 2016

Tray number: 8

No:

3.4

13

НS

Number of passes: 2

1. VAPOR TO TRAY

Fluid	kg/h	₩₩	kmol/h	ţc	Pc	
Hitolocallin : LionD VAPINE	98000 168800	32.8 31.4	2987 5375	308.7 K	48.42	
TOTAL	266 800	•	8362			

ťv	= 13-17 •C	
T_{v}	$= t_v + 273 = .286.17$	C
Τc	$= t_{\rm C} + 273 = 308.7$	ζ
Τr	$= \frac{Tv}{Tc} = 0.927$	

Pc = 48.42 ATM. abs

ATM. abs

$$P_r = \frac{P}{Pc} = 0.57$$

P = 27.6

Then Z = O.6771

Vapor density

$$Dv = \frac{12.03 \times MW \times P(atm)}{z \times Tv({}^{\circ}K)} = \frac{12.03 \times 31.4 \times 27.6}{2.6771 \times 286.(7)} = \frac{53.806}{kg/m^3}$$

Vapor actual rate

 $C_v = \frac{kg/h}{Dv} = \frac{168800}{53.806} = \frac{3137.2}{m^3/h}$

Sheet 1 of 4

		PROCESS C	ALCULATION SHEET	
	SUR	TRAY COLUMNS	ITEM : EXAMPLE NO :	
BY CHK	DATE	JOB TITLE :	PN BOL	REV

2. LIQUID FROM TRAY

3.

4.

$$t_{L} = 13.2 \quad C$$

$$d_{4}^{15} = 0.389 \quad d_{L} \text{ at } t_{L} = 0.441 \quad kg/l: \text{ or } x \ 10^{3} = \frac{441}{11} \quad kg/m^{3}$$
Liquid flowrate = 98 000 kg/h
$$C_{L} = \frac{kg/h}{d_{L} \text{ at } t_{L} (kg/l)} = \frac{98000}{411} \times 10^{-5} = \frac{2384}{2384} \text{ m}^{3}/\text{h} \text{ at } t_{L}$$
DOWNCOMER DESIGN VELOCITY VDdsg
$$TS = 18^{4} = 450 \quad \text{mm} \qquad (kay \ SPacies)G^{2}$$

$$DL - Dv = 357 \quad kg/m^{3}$$

$$VDdsgo = 320 \quad m^{3}/h/m^{2} (Fig.2) (610 \text{ m}^{3}/h/m^{2} \text{ maxi})$$
System factor KI = { ((Table 1))}
$$VDdsg = VDdsgo \ x \ K1 = 320 \quad m^{3}/h/m^{2}$$
VAPOR CAPACITY FACTOR CAF

TS = 450 mmCAF o = 0.38 (Fig.3) System factor K₂ = 1.0 (Table 2) CAF = CAF₀ x K₂ = 1.0 x 0.38 = 0.38

5. VAPOR EFFECTIVE LOAD V Load

V Load =
$$C_v \sqrt{\frac{Dv}{D_L - Dv}} = 3137.2 \times \sqrt{\frac{53.806}{357}} = 3137.2 \times \sqrt{0.1507}$$

= 3137.2 x 0.388 = 1218 m³/h

6. APPROXIMATE COLUMN DIAMETER $D_T = 2.5$ m (Fig. 4)

.

			Sheet 2 c	of 4	
		PROCESS CALCULATION SHEET			
		TRAY COLUMNS	ITEM : EXAMPLE NO :	<u></u>	
Y СНК	DATE	JOB TITLE :	- *N BOL	REV	

3.2. COLUMN HEIGHT ESTIMATION

a. H1: See design details on vertical vapour-liquid separators. Minimum distance for H1 will be one tray spacing. Minimum distance between inlet nozzle and to tray 300 m.

Selected H1 = 600 mm

ь. H2:

H2: tray spacing x (number of actual trays - 1)

No actual trays = theoretical trays/7

for γ see section 2.1 = $5 \circ \%$

Actual trays = 16 ESTIMATE

Note : if the column diameter changes over the length, the transition piece will be

 $h_t = \sqrt{\frac{3}{2}}(\emptyset 1 - \emptyset 2)$ long and H2 will increase by this amount

Selected H2 = 6750 mm

Sheet 3 of 4

		PROCESS' C	ALCULATION SHEET		
		TRAY COLUMNS	ITEM : EXAMPLE NO :		
ВУ СНК	DATE	JOB TITLE :	° N BOL	REV	

c. H3:

H3 = h1 + h2

hl = tray spacing x 2 = 900 mm

h2 - see vertical separator sizing = h6 + h7 + h8

h6 = hold up time volume

For production flowing to :

- another column t = 15 min
- storage 2
- . a furnace 10
- another unit
- . reboiler/heat exch.

h6 = 2000 h7 = 500 h8 = 300

→ h2 = 2800 mm

5

H3 = h1 + h2 = \$700 mm

Selected H3 = 3700 mm

TOTAL COLUMN HEIGHT = H1 + H2 + H3 = 6750 mm

Sheet 4 of 4

3.8

TEI

Ser

Nor

Flu Mo

He

Se

۳o

Se

N F

> N ⊦ S

> > F

	PROCESS CALCU	JLATION SHEET	
TOTAL	TRAY COLUEINS	ITEM : EXAMPLE	
P/DOP/DIP/EXP/BUR		NO :	

	_		
		•	
		_	

TRAY COLUMNS

: 2/85

TEP/DP/EXP/SUR

TABLE I

SYSTEM FACTORS

Service	System Factor
Non foaming, regular systems	. 1.00
Fluorine systems, e.g., BF3, Freon	0.9
Moderate foaming, e.g., oil absorbers, amine and glycol regenerators	85
Heavy foaming, e.g., amine and glycol absorbers	73
Severe foaming, e.g., MEK units	60

TABLE 2

SYSTEM FACTORS

Service	System Factor
	1 40101

Non foaming, regular systems	1.00
Fluorine systems, e.g., BF3, Freon	0.9
Moderate foaming, e.g., oil absorbers, amine and glycol regenerators	.85
Heavy foaming, e.g., amine and glycol absorbers	.73
Severe foaming, e.g., MEK units	.60
Foam-stable systems, e.g., caustic regenerators	.60

TABLE 3

Column diameter mm					Minimum recommended Tray spacing : 75 mm
	ø	<	1 200		4 50
1 200 <	Ø	۲	2 500		600
2 500 <	Ø	<	4 200		700
	ø	>	4 200		950

TOTAL

TEP/DP/EXP/SUR

PACKED TOWERS

: 2/85

3.12

TEP/D

Pac

15col

Go

wit

tov

Lic

and

ln

do

en Fc

pa

Pa Pi

i)

ii.

I. APPLICABILITY

FEASIBILITY STUDY : PRE-PROJECT

Under normal circumstences the design of a packed tower would be detailed by a vendor based on process data supplied by the engineer. The detailed design of packed towers is complex and requires specific information regarding both packing type and size and mass transfer data for the fluids contacted.

For the purpose of this design guide details are given on the general arrangement of packed towers, various types of packing and loading and pressure drop correlations.

The determination of the height of a packed tower should be evaluated by a vendor or determined by the engineer if required using methods outlined in design literature (see references). A detailed description is beyond the scope of this guide and is normally unnecessary for feasibility and pre-project level.

2. PACKED TOWER DESCRIPTION + NOTES

A general arrangement of a packed tower is shown in Figure 1.

Packing

The correct selection of a tower packing will normally be made by the vendor based on the required process, flowrates and pressure drops stated. Details on packing are given in :

Table 1 - Packing service applications.

NOTES AND GUIDELINES

- Carbon steel towers may be lined for corrosive service with rubber, plastic or brick depending on the nature of the fluids being processed and the temperatures encountered.
- Towers are generally loaded by dumping the packing rather than stacking. Stacking is more expensive and gives inferior liquid distribution but smaller pressure drop. Certain packing types will be stacked at vendor request.

: No :		TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision : 0	Page No :
3.12		TEP/DP/EXP/SUR	PACKED TOWERS	Date : 2/85	3.13
vendor vers is mass acked for or : (see mally		 Packing heights 15-20' (4.5 - 6 a column diameter Good liquid dis within the bed. towers with D Liquid redistrib and 5-10 diame stacked packing In order to red down or floating enough to hold For plastic or packing. 	s per support plate/grid should not exceed 12' m) for other packing types. Individual bed heigh ers or 6 m maximum. tribution over the packing is necessary to pror The streams of liquid should enter the bed on 3" 36". For larger towers the number of streams should be installed after approx. 3 tower eters for other packing types. Redistributors ar g as the downward liquid flow is vertical. uce ceramic and carbon packing breakage occu g bed limiters are installed on top of the packin down the bed and be able to resettle as the bed r metal packing the bed limiter is bolted in place	(3.6 m) for Rasc hts are normally f note adequate ph - 6" square centr hould not be less t diameters for R re not generally t ring during flow t g. The limiter mu noves. ce and does not	hig rings of limited to 8 ase contact es for small than (D/6) ² . aschig rings required for surges hold- ist be heavy rest on the
on the :	n bereinen verkenden versionen etwaren bereinen versionen er einen bereinen bereiten stellen stellen etwaren er	 Packed towers Packed tower s i) small columnii) acids or cor iii) highly foam iv) low hold up v) low pressure 	are not recommended for dirty service fluids hould be considered in preference to tray towers ins with $\emptyset < 2$ ft rosive liquids ing liquids times e drop requirement	i nor for glycol (for :	dehydration.
brick :d. more .cking	- B				

TEP/DP/EXP/SUR	TRAY CO			n :	Page No		
		TRAY COLUMNS					
				/X5	3.14		
4. REFERENCES	AND USEFUL LITERATU	JRE					
Petrochemic	cess Design for chemical ral plants - VOL II no 129	+ LUI -239	DWIG				
		-235					
4.2 Design Infor	mation for Packed Tower	s NOI	RTON C	.			
Bulletin DC	-11						
4.3 Tower Packi	ngs	Bulletin TP-78	18				
Packed Tow	er Internals	TA-80R	e .				
Hy-Pack		MY-40	**				
Interlox sade	iles	CI-78					
4.4 Design Tech	niques for sizing	- John Scecker	RT				
Packed Town	ers	Chem. Eng. Proce	ss Sept.	1961 VOI	57		
4.5 No mystery	in nacked bed Design	John S. ECKEL	эт				
	in packed bed besign	Oil and Gas Journal A	Nug. 24 1	970			
4.6 Calculator P	rogram for Designing	V.I. PANCUSK	A 				
I dened Town		Chem. Eng. May J	1780				
4.7 Packed colur	nn Design on a Pocket	T.J. HIXSO	N				
Calculator		Chem. Eng. Feb. 6	5 1984				
4.8 Packed Colu	mns	Perry Chemical E	ng. Hand	book			
		pp 18.19 → 1	8.47				

Packing Factors (DUMPED PACKING)

		Nominal Packing Size (Inches)										
Packing Type	Mat'l.	1/4	⅔	1/2	5⁄8	3⁄4	1 or #1	11/4	11/2	2 or #2	3	3½ or #3
Hy-Pak™	Metal		•				43			18		15
Super Intalox* Saddles	Ceramic						60			30		
Super Intalox Saddles	Plastic					-	33			21		16
Pall Rings	Plastic				97		52		40	24		16
Pall Rings	Metal				70		48		33	20		16
Intalox Saddles	Ceramic	725	330	200		145	92		52	40	22	
Raschig Rings	Ceramic	1600	1000	580	380	255	155	125	95	65	37	
Raschig Rings	⅓₂″ metal	700	390	300	170	155	115					
Raschig Rings	¹ /16" metal			410	290	220	137	110	83	57	32	
Berl Saddles*	Ceramic	900		240		170	110		65	45		
Packing factors deter	mined with an	air-water	system in	30" I.D.	tower.							

*Data by Leva

 TOTAL
 PROCESS ENGINEERING DESIGN MANUAL
 Revision : 0
 Page No :

 PACKED TOWERS
 Date : 2/85
 3.17

 To design a packed tower, first it is necessary to know the amount of liquid or gas to be handled and from this determine the liquid-gas ratio (L/G). The densities of both liquid and gas should be known and the term

10 :

16

) 60

)r #3

5

6

6

6

$$\frac{\int \underline{\mathcal{R}}}{\int \underline{\mathcal{R}}}$$
 is calculated, then the abscissa, $x = \frac{L}{G} \sqrt{\frac{\mathcal{R}}{\mathcal{R}}}$

2. After calculating the value of X consult the generalized pressure drop correlation above. It will be noted that there are a senes of marked parameters ranging from 0.05 to 1.5 inches of water pressure drop per foot of packed depth (4 to 125 mm of water pressure drop per meter of packed depth).

Normally, a packed tower should be designed to operate at a maximum economical pressure drop. The design engineer must determine the best balance between higher capital investment vs. lower operating costs for low pressure drop towers, and low capital investment vs. higher operating costs for towers operating at higher pressure drop. Ordinarily, packed towers are not operated above 1.0 inch of water pressure drop per foot of packed depth (83 mm of water pressure drop per meter of packed depth). Higher pressure drops are possible when instrumentation is such as to maintain a constant pressure drop. Most absorbers and regenerators are designed for low pressure drop operation, i.e., somewhere between 0.20 and 0.60 inches of water pressure drop per foot of packed depth (17 and 50 mm of water pressure drop per meter of packed depth). Atmospheric or pressure distillations are designed for pressure drops of 0.50 to 1.0 inches of water pressure drop per foot of packed depth (42 mm to 83 mm of water pressure drop per meter of packed depth). Vacuum distillations run the complete range of pressure drop and are-dependent on what is to be accomplished and whether the vacuum is solely for improved separation or whether it is to reduce temperature of separation to improve product quality.

The designer should keep in mind that the pressure drop parameters shown on the generalized pressure drop correlation are in inches of water (mm of water). Therefore, when designing columns operating with other liquids, special consideration should be given, especially when the specific gravity of the liquid is substantially less than that of water. For example, an absorber handling a hydrocarbon with a specific gravity of 0.5 will exhibit the properties of a tower with a hold-up volume corresponding to a pressure drop approximately 80% greater than that for which it was designed.

3. After having determined the value of X as the abscissa in Step 1, and selected an operating pressure drop in Step 2, the value of the ordinate, Y, may be determined by the use of the generalized pressure drop correlation. Locate the value of the abscissa on this chart; move vertically until the proper pressure drop parameter is contacted; then move honzontally from this point to the left hand edge of the chart and read the value of the ordinate. Make the value equal to this group of vanables:

$$Y = \frac{C G^{2} F \mathcal{V}^{0.1}}{\mathcal{R} (\mathcal{R} - \mathcal{R})}$$

Then G = $\left(\frac{Y \mathcal{R} (\mathcal{R} - \mathcal{R})}{C F \mathcal{V}^{0.1}}\right)^{0.5}$

A

The value of all variables is known except for the viscosity of the liquid, the packing factor F and the gas rate G. The viscosity of the liquid can be determined from literature, expenment or approximation. The packing factors of all sizes of packing are given in the table on page 4. Broadly speaking, packings smaller than 1 inch size are intended for towers one foot or smaller in diameter, packings 1 inch or $1\frac{1}{2}$ inch in size for towers over one foot to three feet (0.3 to 0.9 meters) in diameter and 2 or 3 inch packings are used for towers three or more feet (0.9 meters) in diameter. The designer should select the proper size of packing, and therefore the proper packing factor in this first calculation.

Now that all variables have assigned values, G may be calculated and the diameter of the tower determined by using the equation:

D

$$= \left(\frac{4A}{r}\right)^{0.5} = 1.13A^{0.5}$$

where $A = \frac{G' \text{ total lbs./sec.}}{G \text{ lbs./sq. ft./sec.}}$ as determined from Step 4.

This establishes the diameter of the tower which, when filled with the packing selected and operated at design liquid and gas rates, will develop the selected pressure drop.

6. The depth of the bed required will be dependent upon their approach to total mass transfer required with 100% massitransfer theoretically requiring a bed of infinite depth. Therefore towers are always designed to operate at less: than total mass transfer. In gas absorption problems, their bed is usually calculated from the mass transfer coefficient:

$$\kappa_{ua} = \frac{N}{HAP\Delta Y_{LM}}$$

because the drive is from the gas to the liquid phase. Or if a stripping operation is involved then the mass transfer co-efficient becomes:

$$K_{LB} = \frac{N}{HA \Delta X_{LM}}$$

because the drive is from the liquid to the gas phase. The definitions of the terms for the above equations for Kna and KLa are as follows:

- $K_{ea} \equiv Mass transfer co-efficient, lb. moles/ft.³ Hr. Atm.$
- $K_{La} = Mass transfer co-efficient, lb. moles/ft.³ Hr.$
- N = Lb. moles transferred/Hr.
- H = Packed depth of tower packing, ft.
- A \equiv Tower cross sectional area, ft.²
- P = System pressure, atmospheres
- $Y_i \equiv Gas phase mole fraction, component i$
- Y,* = Gas phase mole fraction of component i in equilibrium with liquid bulk phase mole fraction of component i. X.
- $X_i = Liquid phase mole fraction, component i$
- X,* = Liquid phase mole fraction of component i in equilibrium with gas bulk phase mole fraction of component i, Y;

For counter-current gas-liquid flow:

Δ`

$$Y_{LM} = \frac{(Y_i \cdot Y_i^{\bullet})_2 - (Y_i \cdot Y_i^{\bullet})_1}{L_n \left[(Y_i \cdot Y_i^{\bullet})_2 / (Y_i \cdot Y_i^{\bullet})_1 \right]}$$

where the subscripts 1 and 2 refer to the top and bottom of the column respectively. The equation of ΔX_{LH} is analogous to the equation for ΔY_{LH} given above.

Kea and Kea data are available for most absorption and strpping operations. Because the data on absorption of CO, with caustic soda solution are so complete for the various packings, it is not at all unusual to use the data as a ratio information source for design with other packings and other rates than those for which direct information exists.

Distillation units are generally designed on the basis of HETP (height equivalent to a theoretical plate). Hundreds of distillation experimental studies have caused us to conclude that the properties of a system have little to do with the HETP value, provided that good distribution is maintained and the packed bed is operated with pressure drops of at least 0.20 inches of water pressure drop per foot of packed depth). Mass transfer taking place in packed beds, where any substantial amount of pressure drop exists, will occur predominately as a result of turbulent contact of gas and liquid rather than as a diffusional operation governed by film resistances at the interface.

Once the total bed depth has been determined, the depth of individual beds must be established. Generally, individual bed depth is held to eight column diameters or 20 ft., although under certain conditions 30 ft. beds are permissible.

Proper tower internals are required to realize the full potential of the packing in any application. (See engineering manual TA-80R.)

1

	TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisio	эп:	Page 1
	TEP/DP/EXP/SUR		Date	: 2/85	
		•			
	·	4. HEAT EXCHANGERS			
t					

PROCESS ENGINEERING DESIGN MANUAL

Page No :

TEP/DP/EXP/SUR

4.1

TE

1. APPLICABILITY

It is not expected that a hand calculation of shell and tube exchangers be performed by the engineer. For the purpose of a feasibility or pre-project study any required rigorous calculation would be performed using computer programs HTRI or HTFS.

A quick estimation of heat exchange area, shell diameter and tube length should be done by hand calculation. An example of the procedure is given in Section 3.

A detailed mechanical design is beyond the scope of this guide.

2. DESCRIPTION AND NOTES

2.1. DESCRIPTION

The flow of fluids inside the exchanger varies according to requirements and can be single or multi-pass on either tube or shell side. Figure 1 shows the types of tubu... heat exchanger manufactured to TEMA standards;

The following types are frequently found :

- Exchangers (Heaters)

Condensers

- Reboilers (Thermosyphon or forced circulation)
- Evaporators (Kettle)

- Chillers (using refrigerants)

, really?

- Cooling water, steam

2.2. SELECTION OF SHELL OR TUBE SIDE FOR THE FLUIDS

- a. <u>Tube side</u>:
 - Most of time highest pressure fluid
 - Fouling or corrosive fluid
 - Sea water (it is always recommanded to install the sea water on tube side)
- b. Shell side:
 - Fluid with the highest viscosity Condensation
 - Evaporation (refrigerants in chiller) Least fouling fluid
 - Most of time lowest pressure fluid

2.3. <u>SELECTION OF TUBES</u>

- . Standard length : 12', 16', 20' but longer tube lengths are possible (upto 40')
- . Diameter commonly used : 3/4", 1"
- . Pitch commonly used : triangular or square. External tube cleaning is possible with square-pitch only.

2.4. TUBE SIDE VELOCITIES

- . The tube side velocity for most materials and services should be held between about 1.3 to 2.5 m/s.
- . Below 1 to 1.2 m/s fouling will be excessive, much above 2.5 m/s erosior. can become a problem.

No	TOTAL	PROCESS
···· ·		SHEL

PROCESS ENGINEERING DESIGN MANUAL

: 2/85

Date

4.2

TEP/DP/EXP/SUR

2.5.

1ge

4.1

CHARACTERISTICS OF TUBES

BWG = BIRMINGHAM WIRE GAGE

d by the AREA (m^2/m) Internal External SECTION rigorous THICKNESS WEIGH[®] BWG diameter diameter (cm^2) (mm) (kg/m)|| External Internal (in et mm) (cm) done by 1/2 in 14 2.10 0.848 0.565 0.0399 0.0266 0.600 (12.7 mm) 16 1.65 0.940 0.694 0.0295 ł 0.490 18 1.24 1.021 0.819 0.0321 0.384 0.0598 0.0384 3/4 in 10 3.40 1.224 1.177 1.436 1.434 0.0424 1.216 (19.05 mm) 12 2.77 1.351 0.0466 14 2.10 1.483 1.727 0.963 1.575 1.948 0.0495 0.774 16 1.65 1 1.656 2.154 0.0520 0.597 18 1.24 1 1 can be tubu.... 1.859 2.714 0.0798 0.0584 1 in 10 3.40 2.024 (25.4 mm) 12 2.77 1.986 3.098 0.0624 1.696 2.118 3.523 0.0665 1.324 14 2.10 0.0694 1.057 2.210 3:836 16 1.65 0.0720 18 1.24 2.291 4.122 0.811 0.0997 11/4 in 10 3.40 2.494 4.885 0.0783 2.604 (31.75 mm) 5.375 0.0822 12 2.77 2.616 2.158 ;) 14 2.10 2.743 5.909 0.862 1.682 16 2.845 0.0894 1.340 1.65 6.357 6.701 0.0918 18 1.24 2.921 1.024 0.1197 11/2 in 10 3.40 3.124 7.665 0.0981 3.185 (38.1 mm) 12 3.251 8.300 0.1021 2.634 2.77 2.039 14 2.10 3.378 8.962 0.1061 16 1.65 3.480 9.512 0.1093 1 1.622 9.931 0.1171 1.237 18 1.24 3.556 Ł de)

possible

between

sior, can

2.6. TEMPERATURE APPROACH AND PINCH

. minimum temperature approach 5 °C.

. minimum pinch for condenser or chiller 3 °C.

2.7. DESIGN MARGIN

10 % on area is recommended.

2.8. PRESSURE DROP

- . Allowable ΔP varies with the total system pressure and the phase of fluid.
- . Liquid pressure drops of 0.7 to 1.0 bar per exchanger are common. The equivalent gas drop is about 0.2 to 0.5 bar.
- Some exchangers have low pressure losses and as reboiler and condenser (less than 0.1 bar) especially those in vacuum system.

Page No :

LL AND TUBE EXCHANGERS

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision :	Page No :
	SHELL AND TUBE EXCHANGERS		
I EP/UP/EXP/SUR		Date : 2/85	4.3
2.9. <u>CHOICE</u>	OF HEAT EXCHANGER TYPE (Figure 1)		
a. <u>Front</u>	end stationary head types		
. Ту	pe A : Used for frequent tube side cleaning d the cover.	ue to the ease of	dismantling
. Ту	pe B : Cheaper than Type A but the disman difficult. To be used for clean products	ntling of the bon	net is more
. Ту	pe C: Cheaper than Type A for low pressure with the pressure. This type is practical	. The price incre Ily never used.	ases quickly
. Ту	pe D : Special for high pressure P > 200 bar.		
b. <u>Shell</u>	types		
. Ту	pe E : In general the most commonly used.		
. Ту	pe F : . Advantage : Fluids flow at perfect	counter current (F = 1).
	 Disadvantage : - leakage between the -decreases in value. 	ne longitudial baf	fle and shell
	- mechanical problem	ns from expansion	.
	- low pressure drop	eg: < 1 bar (risk	< of damage
	of the longitudinal	baffle).	
This t	ype will be used only to avoid a great number of	f Type E shells in	series.
. Ту	pe G & H : Used for low $\Delta P \approx 50$ mbar as for the	hermosyphon rebo	iler.
	vertical battles are not installed to	r these types and	due to that
τ,	the length of the shell must be mint	vne Fland also so	metimes on
. 1)	condensates to avoid the use of valor b	pe L and also so	Anermes on
. Ty	The K: Used for vapor separation is required in	chiller, some reb	oilers
c Rear	end, head types		
C. <u>I(cur</u>	mer I. Mand N + Fixed tube sheet, used for Cl	ean fluid on shell	side and for
lo	w $\triangle T < 30$ °C. If $\triangle T > 30$ °C use other head	types or install a	an expansion
jo	int on the shell.		
T	rpe L and N will be used for dirty fluid on tube	side. For the oth	er cases the
ty	pe M will be used it is the cheapest.		
· T	pe P: Generally not used.		
	pe >: Used very frequently, no restrictions.	nell diameter larg	er than tune !
	S for same number of tubes generally n	ot used.	cr man type
т	vpe U : For clean fluids on tubeside no other re	strictions. low co	st.
. т	ype W : Generally not used.		
d Corr	lusion		
The r	nost frequently used types are : BES, BEW, AES	, BEM, divided flo	ow, BEU.

BEU.

TEM :		v v	ALUE	NOTES :
OUTY Q (2)	kcal/hr	0.5	* 106	I I Indicate temperatures
HOT FLUID nlet temperature T1 1 Dutlet temperature T2 1	•C •C	S+ 25		126
COLD FLUID nlet temperature ti Dutlet temperature t2	°C °C	 18 26		
Γ1 - t2	°C	8		
[2 - τ]	°C	 -		
.MTD (1)	°C	7.5		
2 - tl	•	8		
Γ1 - T2	•C	9		
$P = \frac{t^2 - tl}{Tl - tl}$		0.5		
$R = \frac{T1 - T2}{\tau 2 - \tau 1}$		1-125		
F = LMTD correction factor (2)	Fig. 2	0.95	0.74	
Number of shell passes (3)	Fig. 2	2	1	
Number of tube passes	Fig. 2	4	2	
HEAT TRANSFER COEFF. U	kcal/hr m2 °C	~ 400	<u> </u>	including fouling factor
HEAT TRANSFER AREA $A = \frac{Q}{U.F.LMTD}$	m²	(75		F=0.95
ESTIMATED TUBE LENGTH	FT ins	20 29" (740)	3/4 I tube pitch is swa = 480 tubes
ESTIMATED WEIGHT Bundle Shell I • Total	tonnes tonnes tonnes	2.76 5.18 8.0	·	Excrement type + BEU

	PHOCESS CALCUL	ATION SHEET
TOTAL		ITEM : FEED /PREDUCT EXCHNIR .
	SHELL AND TUBE HEAT EXCHANGER	NO: E (234
BY CHE	DATE 4 (85 JOB TITLE : DESGN MANLAL	JOB Nº : EXAMPLE REV

- <u>Remark</u>: If the heat exchange curves are not linear the LMTD should be determined step by step with the linearisation of the curves and with the ponderation of the partial LMTD by the partial duty on each linear step.
- (2) For total condensing

In this case calculate the heat transfer area for each zone, the sum of these areas is the surface for the exchanger.

(3) See LMTD correction factor (Figures 2)

the number of shell and tubes passes should be chosen in order to have $1 \le F \le 0.8$

If F < 0.8 add shells (2 exchangers in series)

(4) See Section 5 shell and tube heat transfer.

4. ESTIMATION OF SHELL DIAMETER

With the heat transfer area, selected tubes size, pitch, tubes length it is possible to determine the number of tubes and with table 1 or 2 hereafter the approximate shell diameter.

Take maximum shell diameter about 60 inches.

TOTAL

PROCESS ENGINEERING DESIGN MANUAL

Revision: 0 Page No

: 2/85

TABLE 1

MAXIMUM TUBES NUMBER PER SHELL

Date

TEP/DP/EXP/SUR

SHELL AND TUBE EXCHANGERS

1	TUBES de 3/4"								
SHELL		PITCH D I	-	- PITCH & I"					
Bi in inches	NUMBER	OF PASSES	TUBE SIDE	NUMBE	R OF PASSES	TUBE SIDE			
I	L .,	2	•	1	2	4			
8	32	26	20	36	32	21			
10	52	52	40	60	56	47			
12	\$2	76	63	90	12	76			
13 1/4	95	90	\$2	109	104	90			
15 1/4	137	124	116	164	150	137			
17 1/4	188	166	158	211	200	183			
19 1/4	236	220	204	274	254	241			
21 1/4	274	270	246	320	306	279			
23 1/4	323	313	308	383	375	350			
25	407	394	370	471	+32	+19			
27	465	460	+32	556	534	487			
29	551	526	+80 -	630 .	603	556			
31	633	616	589	745	726	677			
33	740	712	685	855	830	772			
35	\$25	812	770	967	937	882			
76	928	901	380	1074	1047	1014			
39	1024	1014	983	1206	- 1173	1129			
42	1202	1161	1147	1406	1315	1310			
45	1435	1411	1367	1639	1611	1543			
48	1620	1598	1553	1872	1845	1766			
52	1918	1890	1848	2212	2183	2092			
56	2241	2214	2167	2568	2545	2446			
60	2587	2556	2510	2987	2945	2827			

	TUBES 1"							
SHELL	P	ITCH о I" I	/4	PITCH 4 1- 1/4				
Øi in inches	NUMBER	OF PASSES T	UBE SIDE	NUMBEF	OF PASSES 1	UBE SIDE		
T	1	2	4	1	2	4		
8	20	16	16	20	16	16		
10	30	30	26	37	30	26		
12	67	45	41	57	51	47		
13 1/4	61	55	51	67	65	57		
15 1/4	11	12	76	96	92	86		
17 1/4	113	105	102	129	127	117		
19 1/4	142	139	137	170	160	150		
21 1/4	170	166	158	199	189	179		
23 1/4	207	197	197	246	232	215		
25	248	246	222	294	281	257		
27	287	287	267	349	335	30Z		
29	349	339	320	396	376	539		
31	390	390	365	472	4 56	431		
33	4.58	452	431	538 -	520	487		
35	526	313	483	610	592	561		
37	577	557	>>>	674	664	633		
39	643	637	618	766	735	698		
42	746	729	709	900	-	-		
45	894	175	853	1038	1013	982		
48	1029	1010	975	1188	1163	1098		
52	1216	:196	1167	1405	1375	1323		
56	1420	1400	1371	1638	1605	1349		
60	1639	1615	1587	1889	1851	1797		

MAXIMUM TUBES NUMBER PER SHELL

ţ

4.9 TEI

(in: .

Apt

5. SHI

kcal

TOTAL	PROCESS ENGINEERING DESIGN MANUAL			Revision : 0		
	SHELL AND	TUBE EXCHANGERS	D			
TEP/UP/EXP/SUR			Date	: 2/85	1,4	
				A	u	
		Water/gas 1 - 35 bars		1	70 - 230	
SHELL AND TUBE OVERA	LL HEAT TRANSFER	Water/gas 35 - 70 bars		2:	50 - 39C	
		Water/gas 70 - 100 bars		5	90 - 300 00 - 700	
Approximate overall heat t	ransler coefficients.	Water/natural gasoline	٩	34	40 - 440	
K cal/br m ² *C		Water/MEA		6	30 - 730	
(including foulin	g factors)	Water/air		7	0 - 120	
a. Heating/cooling	-	Water/Water		\$0	0 - 1 000	
		Gas/gas (< 3) bars) Cas/gas (about 70 bars)		2	70 - 360	
		Gas/C3 chiller		2	90 - 440	
		Water/light H.C. viscosity < 0.5 Cpo		25	90 - 730	
-		Water/average H.C 0.5 Cpo < Viscosity <	(I Cpo	2:	50 - 610	
kcal/hrm ² °C x 0.20	047 = BTU/hrft ² °F	Water/heavy H.C. viscosity > 1 Cpo		5	0 - 500	
x 1.1	$52 = W/m^2 K$				JU - 430	
		Dowtherm/heavy oil		3	0 - 300	
		Steam/water		54	0 - 1 100	
		Steam/gas		2	5 - 230	
		Steam/light H.C. Viscosity < 0.5 Cpo		50	0 - 1 000	
	_	Steam/average H.C. 0.5 Cpo < viscosity	< 1 Cpo	2	30 - 30 0	
		Steam/neavy n.c. viscosity / Cpo	<u> </u>			
		· · · · · · · · · · · · · · · · · · ·				
		Steam/water		70	0 - 1 700	
		Light H.C./water			20 - 660	
b. Condensi	ng	Fractionator overhead/water		, ,	40 - 390	
		Gasoline/water		3	20 - 630	
		Heavy H.C./water		1	90 - 370	
c. Vaporizatio	n (reboilers)	Hydrocarbons light/steam		•	40 - 900	
		Hydrocarbons C4-C3/steam		3	60 - 720	
		Vith hot oil			40 - 590	
6. VE	IGHT ESTIMATES					
See	figures 3 and 4 hereafter.					
- 7. RE	FERENCES AND USEFUL LI	TERATURE				
4.1	TEMA (standards of tubul	ar exchanger manufacturers association)				
4.2	KERN					
4.3	LUDWIG VOLUME 3 seco	nd edition				
4.4	CAMPBELL VOLUME I					
4.5	NGPSA Chapter 1					
	PERRY					
	HTRI Program					
٩./						
4.8	. HITS Program					
4.9	. QUICK CALCULATION (DF HEAT EXCHANGER WEIGHT Proces	s Engineeri	ng		

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision : 0	Page No :	T
TEP/DP/EXP/SUR	AIR COOLERS	Date : 2/85	4.13 '	TEP/I

1. APPLICABILITY

For both the feasibility and preproject study it would generally be required to state the required duty of the air cooler, the overall dimensions and weight and an estimate or required fan power.

A calculation procedure sufficient for a preliminary estimate is given in section 3.0.

2. DESCRIPTION AND GUIDELINE NOTES

Water or Air Cooling ?

Air cooling offshore is sometimes prohibited due to the modular layout of the platf This may require installation of the air cooler too remote from the associated equipment. Use closed loop water cooling. F

- . Air cooling is cheaper, simple and flexible when compared to water cooling. The cost and nuisance of water treating is eliminated if air coolers are used.
- . In warm climates air cooling will not be as effective as water which will produce a cooler product stream. Air cooling is approx 50-70 % as effective as water.

Forced on induced draft?

- . Forced draft pushes the air at lowest available temperature (highest ρ) hence lower power requirement.
- . Accessability to motor and driver are better on forced. Structural and main-tain. costs lower.
- . Possibility with forced draft of hot air recirculating into suction of fan thereby reducing efficiency.
- . Induced draft gives better air distribution due to lower inlet velocity with less chance of recirculating of hot air.
- . Induced draft coolers can be easily installed above piperacks or other equipment. Protection is given by induced draft coolers from effects of rain, wind snow on finned tubes. Important if fluid in tubes is sensitive to sudden temp change also freezing of tubes can occur in cold climates or heavy snowfall.

SHELL AND TUBE EXCHANGERS

4.14

Finned tube elements (see Table 2)

- . 1" OD tubing is most common with 0.5" to 0.625" fins. Fin spacing 7 to 11 per inch. Extended surface area is 7 to 20 times bare area.
- . Standard tube lengths from 6 ft to 50 ft (2 m to 15 m). Longer tube designs are less costly than short ones.
- . Bundle depth may vary from 3 rows to 30 rows of tubes. 4 or 6 rows is common for smaller units. Use 4 as first estimate.
- . Fin material most commonly AL. Adequate upto 400 °C operating. Use steel for higher temperatures.

Fans and motors

- . Fans are axial-flow large volume low DP devices. Use total fan efficiency 65 %. Driver efficiency 95 %.
- . Fan \emptyset equal to or slightly less than bundle width. Normally 2 fans preferred. Fans have 4 to 6 blades. Max fan diameter 14'-16'.
- Distance between fan + bundle 0.4-0.5 of fan diameter. Ratio of fan ring area to bundle area must not be less than 0.4.
- . Fans may be electric, steam, hydraulic or gasoline driven. Individual driver size usually limited to 50 hp, (40 kw), 380 V.
- . Face velocity of air across a bundle is 300-700 ft/min (1.5-3.6 ms⁻¹).
- . A 10 % change in air flow rate results in \sim 35 % change in power used.

Temperature control

- . For close control of process outlet temperature auto-variable pitch fans, top louvers or variable speed motors are required.
- . Variable pitch fans more efficient than louvers.
- . Louvers can be manually adjusted for winter or night time operation.
- . For process fluids that freeze or gel at temperatures above the winter ambient a recirculation system is necessary to maintain air temp entering the tube bundle.
- . General approach temp to ambient air is 20-28 °C. Absolute min is 10-12 °C.
- Note: Air coolers are noisy. Keep fan speed as low as possible and consider relative layout carefully.

TOTAL	PROCESS ENGINE	ERING DESIGN N	IANUAL	Revision : 0	Page No :
TEP/DP/EVP/SIIP	AIF	R COOLERS		•	Du
TEPDEPEAFISON				Date : 2/85	4.15 Flu
		•			Flu
					Flu
4.0 REFERENCES A	ND USEFUL LITER	ATURE			Ov
					(Se
4.1. Air coole	d heat exchangers	PERRY	pp 11.23 >	11.25	(Ba
4.2. Air coole	d heat exchangers	LUDWIG	pp 177 > 1	93	511
4.3. Air coole	d heat exchangers	GPSA c	hapter 9		1.0
	6				
4.4. Aerial co	olers	CAMPBELL P	p 207-209		1
					4. 1
4.5. Design of	air coolers – A	R. BOWN			5.2
Procedure fo	r estimation	Chem. Eng, Ma	r 27 1978, p	109	6.E
1.6 Estimate	air cooler size	N SHAIKH			7. /
HP 41CV pro	an cooler size	Chem. Eng. De	c 12 1983. p	65-70	. 4
	5. 2				8. E
	•	·			9. E
					10.
					11.
					1-
					14.
					15
					17
					1
					No
	•				
					internet and a set of a
					1
					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
					•
					and the second se
					¥

4.16

OPERATING CONDITIONS ANI	NATURE OF FLI		HIDROCARBON GAS COOLER
Duty	$iQ = i 2 \times 10^6$	kcal/hr	
Fluid inlet temperature	T1= 100.	•c	
Fluid outlet temperature	T2= 50	•C FI	$-UID T_{f} = T_{1} - T_{2} = 50$
Fluid inlet pressure	P = 10	bar abs	
Air ambiant temperature	t = 30	•C IN	LET $Ti = Ti - ti = 70$ •C
Overall heat transfer coeff.	iU= kcal/hr	m ² •C	
(See Table 2 and/or attached	. 200		
(Based on bare tube area)		1	NOTES
STEP			
1. Optimum number of tube rows	IN= 8	ł	(Curve N° 4)
$? P = \triangle t air / \triangle t m$	R = 0.8	ł	(curve N° 4)
$f_{1} - T_{2}/T_{1} - t_{1}$	0.714	•C	
4. $Y = \Delta t \operatorname{air}/T1 - t1$	Y = 0.35	1	(curve N° 5)
$5.\Delta$ tair = Y x (Tl - tl)	14 tair 24.5	•C	
6.Exit air temp t2 =∆tair + t1	t2 = 54·5 -	•C	
7. Average differential temp.	1	1	
$\Delta tm = \Delta tair$	1 tm = 30.6	•C	
. R	1 I	1	
8. Bare tube surface A = _Q Ux∆tm	A = 326 	m ² 1	
9. Bare tube area/row Fa=A/N	Fa = 4	m ² 1	
10. Tube length	L = 7.5	M 3.	4, 5, 6, 7.5 or 9 m are common
11. Tubes/row TR = Fa/Lx0.08	TR = 68	. ,	(1" OD tubing)
Cooler width W=TRx0.0635	W 4.3	m l	
1 Total fan power =Fax0.795	Fp 32.4	kW	
14. Number of fans	NF 2	1	max. fan diam = 4.6 m
15. Fan diameter	Fn 3.5	M	
16. Power/fan Fp/NF	PF 16.2	kW i	
17. Estimated weight	M 17500	kg	(including motors)
4.88 (36.4X9.35 N)xWxL	4 4		6
Notes : Curve numbers refer to Process Design Manual	o Chap. 4.		•
	PROCESS	CALCULAT	TION SHEET
			ITEM : EXAMPLE NO :
3Y CHK DATE	JOB TITLE :		JOB Nº : REV

1

4-17

1

1.	LIQUID	COOLING
----	--------	---------

1.	LIQU	ID COOLING			
	LIQU	ID VISCOSITY AT TI +	<u>T2</u>	=	Ср
	GLOE (Read	AL HEAT TRANSFER	COEFFICIENT : U	J =	kcal/hr m ² °C
2.	GAS	COOLING			
	MOLE	ECULAR MASS : MW =			
	GLOE (Read	AL HEAT TRANSFER curve n° 2)	COEFFICIENT : (J =	kcal/hr m ² °C
3.	ΤΟΤΑ	L CONDENSATION			
	T1 - T	2 = °C			
	GLOB (Reat	AL HEAT TRANSFER curve n° 3)	COEFFICIENT : U	=	kcal/hr m ² °C
4.	PART	IAL CONDENSATION			
	4.1.	WITHOUT LIQUID AT	INLET		
		inlet gas flowrate W	′G1	=	kg/hr
		outlet gas flowrate W	′G2	=	kg/hr
		outlet liq flowrate W	'L2	=	kg/hr
		T1 - T2		=	°C
		GAS MOLECULAR WE	EIGHT AT <u>T1 + T2</u> 2	=	
		HEAT TRANSFER CO (Read curve n° 3)	EFF. Uc	=	kcal/hr m ² °C
		HEAT TRANSFER CO (Read curve n° 2)	EFF.Ug =		kcal/hr m ² °C
		GLOBAL HEAT TRAN	SFER COEFF.		
		$U = \frac{WL2}{WG1} \times Uc = \frac{WG2}{WG1} \times Uc$	(Ug	=	kcal/hr m ² °C
		SELECTED GLOBAL H TRANSFER COEFF. :	HEAT U	=	kcal/hr m ² °C
Cu	rves re	fer to PDM Chptr. 4.			

. PROCESS CALCULATION SHEET AIR COOLERS ITEM : HEAT TRANSFER COEFFICIENT NO : P/DOP/DIP/ EXP/ SUR 8Y JOB Nº : REV DATE JOB TITLE Снк

ļ

4.2. WITH LIQUID AT INLET

inlet liquid flow rate	WL1	=	kg/hr
outlet liquid flow rate	WL2	=	kg/hr
LIQUID MOLECULAR WE	IGHT AT I	$\frac{1+T2}{2} =$	•
LIQUID SPECIFIC HEAT A	$T \frac{T1 + T2}{2}$	CPI =	kcal/kg •C
$QL = \frac{(WL1 + WL2)}{2} \times CP1 \times CP1$	(T1 – T2)	=	kcal/hr
inlet gas flow rate WG1		=	kg/hr
outlet gas flow rate WG2		: =	kg/hr
GAS MOLECULAR WEIGH	T AT <u>TI +</u>	$\frac{T2}{2} =$	
GAS SPECIFIC HEAT AT	$\frac{1+T^2}{2}$ C	Pg =	kcal/kg °C
$QG = (\frac{WG1 + WG2}{2}) \times CPg > 2$	(T1 – T2)	• =	kcal/hr
CONDENSATION HEAT			
Qc = Q - QL - QG		=	kcal/hr
LIQUID VISCOSITY AT TI	+ T2 2	÷	СРд
LIQUID HEAT TRANSFER (Read curve n° 2)	COEFF.	U =	kcal/hr m ² °C
GAS HEAT TRANSFER CC (Read curve n° 2)	DEFF.	Ug =	kcal/hr m ² °C
CONDENSATION HEAT TE COEFF. (Read curve n° 3)	RANSFER	Uc = ·	kcal/hr m ² °C
GLOBAL HEAT TRANSFER	R COEFF.		
$U = \frac{Q}{\frac{QL}{u_1} + \frac{QG}{u_2} + \frac{QC}{u_4}}$		U =	kcal/hr m ² °C
SELECTED GLOBAL HEAT TRANSFER COEFF. :	г	U =	kcal/hr m ² °C

			PROCESS CALC	JLATION SHEET	
		AIR COOLERS		ITEM :	
		HEAT	TRANSFER COEFFICIENT	NO :	
BY	Снк	DATE	JOB TITLE :	JOB Nº :	REV

TEP/DP/EXP/SUR

PLATE TYPE EXCHANGERS

4.23

1. APPLICABILITY

FEASIBILITY STUDY : PRE-PROJECT

Under normal circumstances, the design of plate type exchangers would be detailed by a vendor based on process data supplied by the engineer.

Two types of plate exchangers could be used :

- . Plate fin exchangers;
- . Plate exchangers.

For the purpose of this design guide, only a quick description and some characteristics are given.

For plate fin exchangers, the size could be done only by a vendor.

For plate exchangers, the size could be estimated if some vendor (ALFA-LAVAL, APV, VICARB) information are available.

An estimation of the heat transfer area could be done if the heat transfer coefficient is known using the same formula as for shell and tube heat exchanger with a LMTD correction factor = 1. The heat transfer coefficient is difficult to estimate; it depends on many factors as flow rate of different fluids, pressure drop, plate spacing, ect...

2. DESCRIPTION AND NOTES

2.1 PLATE FIN EXCHANGERS

These exchangers consist of stacked corrugated sheets (fins) separated by flat plates and an outer frame with openings for the inlet and outlet of fluids. This core is immersed in a liquid salt bath to braze all the separate parts together.

Flow in adjacent fluid passages can be cocurrent, counter current, or crossflow and several fluids can be exchanging heat at the same time.

In case of the inlet fluid is a two phases flow a drum is required to separate the two phases in order to have a good distribution. Not recessarily according to Martitan Falmer. They remain flux in an aluminum for valed place to ensure good gay distribution. These plate fin exchangers are used only with clean fluids.

OTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisio	on: 0	Page No :
	PLATE TYPE EXCHANGERS			
DP/EXP/SUR		Date	: ^{2/85}	4.24

Figure 1 shows the principle of construction of a platefin exchanger. A large amount of surface can be accomodated in a small volume (1,000 m2/m3).

Maximum design pressure	:	54 barg (some recent models claim 80 barg)
Temperature range	:	- 195 °C to + 65 °C
Size max.	:	1,220 mm x 6 096 mm x 1 340 mm
Temperature approach	:	2 °C
Applicability	:	LNG, LPG recovery,

Pressure drop as for shell and tube heat exchangers.

2.2 PLATE EXCHANGERS

Plate exchangers are an assembly of metal plates separated by gaskets to give a small clearance between each plate. The two fluids pass in opposite directions each through every alternate plate. Refer to figure 2.

The exchanger is easily dismantled for cleaning if required. A good overall heat transfer coefficient is obtained and small temperature differences can be used.

The plates can be made from exotic materials such as titanium which are resistant to corrosion and are used for sea water coolers. They are very compact exchangers and occupy a small floor area.

Maximum pressure	:	10 - 20 bars
Maximum temperature	:	250 °C
(Need special gaskets)		
Overall heat transfer coeff	ficie	ent
Water/water	:	2 000 - 5 000 Kcal/hr m ² °C
Maximum surface	:	about 1 500 m ²
Maximum flow	:	2 500 m ³ /hr

Applicability : Sea water - service water, water-TEG, TEG-TEG, ...

- Pressure drops : allowable pressure drops vary according to the total system pressure and the service of the fluids.
 - for sea water service water : 0.5 to 2 bar (high ΔP increase the overall heat transfer coefficient),
 - for water-TEG or TEG-TEG the ΔP could be very low such as 10 to 20 mbar.

REFERENCES AND USEFUL LITERATURE

Vendors information.

TEP/DP/EXP/SUR

PROCESS ENGINEERING DESIGN MANUAL

PLATE EXCHANGERS

Date

4.25

2/85

PLATE FIN EXCHANGERS

.

PRINCIPLE OF CONSTRUCTION

- 1. Assembly
- 2. Manifold
- 3. Core
- 4. Header
- 5. Nozzie
- 6. Width
- 7. Stacking height
- 8. Length
- 9. Passage outlet
- 10. Extenor sheet
- 11. Parting sheet 12. Heat transfer fin
- 12. Meat transfer
- 13. Distribution fin. 14. Side bar
- S. End bar

OTAL	PROCESS ENGI	IEERING DESI	SN MANUAL	Revision: 0	Page No :
P/DP/EXP/SUR	PL	ATE EXCHANGER	S	Date : 2/85	4,26
				DETAILS OF TYPE EXCHAN	PLATE GER
Approx. overa Frame Length L 5ize mm II 1 2940 9 7 2 3515 11 6 3 4055 13 3 4 4485 14 8 5 6860 22	Dim A Ho n mm fi in mm i 2525 8 3 i 3605 j 3100 10 2 3605 j 3640 11 11 i 3605 j 4070 13 4 i 3605 6 6445 21 2 3960	Night H Plate 11 in capacity 11 10 100-185 11 10 180-265 11 10 260-340 11 10 335-400 13 0 400-700			- -
Plate materials Stainless steel 316 Incoloy" Commercially pure titani "Registered trade name Gaskets are supplied in synthetic rubbers to suit processing requirements range of liquids	Weights Frame witho connections size 1 6211 size 4 6944 alternative size 5 7620 the Plate of a stainless stee trianium	ut plates or liquid 8 kg (6 1 ions) 5 kg (6 8 ions) 9 kg (7 5 ions) 4 13 6 kg (30 ib) 8 2 kg (18 ib)	Note All dimensions gir guidance only. Sp be amended at an prior notice	ren are for recilications may y time without	

Heating surface per plate 2.2 m² (23.5 ft²)

-

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisión : 0			Page No :	
	FURNACES					
TEP/DP/EXP/SUR		Date	:	2/85	4.27	

1. APPLICABILITY

It is not expected that a hand calculation of furnaces be performed by the engineer. It is normally done by a manufacturer based on process data supplied by the engineer.

Furnaces are used to transfer heat directly to the process fluid and generally have a large duty and produce high process temperatures.

2. DESCRIPTION

2.1. A furnace consists of the following :

- . A combustion chamber lined with refractory and burners
- . Tubes which are located within the combustion chamber and where heat is transferred to the process fluid by radiation
- . Tubes which are located externals to the combusion chamber in a convection zone which is also lined with refractory.
- . Stack for disposal of flare gas.
- . Air supply system by fan or induced draft.
- . Instruments and controls.

2.2. TYPES OF FURNACE

2.2.1. Cabin furnace

- . This is a rectangular furnace and contains tubes which can be horizontal or vertical. The burners are situated in the walls or floor, and the convection zone is located above the furnace.
- . Flue gases discharge to a stack either directly or are driven by an induced draft fan.
- Burners are normally arranged in rows on two walls and are spaced so as to provide a radiation zone of constant temperature and avoid flame impingement on the tubes. An alternative arrangement is burners located in the floor of the furnace as shown in Figure 1.
- . The connection bank contains rows of tubes across which the flue gas leaving the furnace is obliged to pass.
- . A small negative pressure is maintained to prevent hot gas leakage.
- . There is a pressure loss in the flue gas system and this has to be made up either by use of a fan discharging to a short stack or by natural bouyancy creating draft in a tall stack.

2/85

Date

4.28

2.2.2. Cylindrical furnace (see Figure 1)

- . These furnaces are vertical and contain radiation and convection zones or solely a radiation zone.
- . The burners are located in the bottom and the radiation zone tubes can be vertical or helicoidal. The convection bank is located above the radiation zone and contains rows of horizontal tubes.
- . Generally the stack is vertically above the convection bank with no fan.

2.3. BURNERS

. Two types of burner are used in furnaces, induced air or natural draft burners and forced draft burners.

2.3.1. Induced air burners

These can burn gas or fuel oil simultaneously or independently. Excess air required is 15 % to 20 % for gas and 30 % to 40 % for liquids. If fuel oil is burned 0.3 kg/kg oil of steam is required for atomising. (Excess air indicates that above the stiochiometric ratio)

2.3.2. Pressure burners

The air for pressure burners is supplied by fan. It is therefore capable of control and the burner can operated with less excess air 5 to 15 %.

EXCESS AIR

- Determine the excess air recommended by the burner manufacturer and the type of burner air system proposed. See § 2.3.
- From this determine the kg of flue gas per kg of fuel fired remembering that air contains 21 % Vol of oxygen.

STACK GAS TEMPERATURE

This is controlled by 2 factors :

- . The process fluid inlet temperature will determine the temperature of the gas leaving the convection bank.
- Condensation is to be avoided. If sulphur is present in the fuel the stack temperature is raised to avoid the possibility of production of corrosive sulphurous acid. This would result in a minimum exit temperature of about 120 °C.

FURNACES

Date

TEP/DP/EXP/SUR

5. EFFICIENCY

 $\gamma = \frac{100 - \text{losses}}{100} \times \frac{\text{Hf} - \text{Hc}}{\text{Hf}}$

- If Hc = flue gas enthalpy at exit
 - Hf = enthalpy of combustion (net calorific value + sensible heat in fuel and air) + heat being by atomisation steam if required.
- . Losses include radiation and unaccounted, e.g. unburned fuel (2 % is a good figure).
- . For a furnace which is all radiant duty the efficiency is of the order of 50 to 55 %.
- . A furnace with a convection bank will be from 75 to 85 % efficient.

6. PRESSURE LOSSES

Pressure is lost in :

•	Burner air regulation	:	3 - 15 mm ⁻ water	•	Ducting	:	variable
	Convection bank	:	5 - 15 mm water	-	Stack	:	variable

Pressure is gained by natural buoyancy of hot stack gas.

For a system using natural draft burners a low pressure loss is required across the burner and the furnace operates under negative pressure.

7. FLUE GASES VELOCITY

The flue gases should leave the stack at 10 - 20 m/s velocity to ensure safe dispersal.

8. CHOICE OF TYPE OF FURNACE

- Above a capacity of 60 x 10⁶ Kcal/hr the cylindral furnace gives construction problems as the maximum diameter is about 10 11 m.
- . A cabin furnace requires much more floor area than a cylindrical furnace the length can be as much as 27 m. If the tubes are horizontal then a withdrawal space for tube replacement will also be required. However for offshore applications the space requirement tends not to favour the cabin furnace.
- . With a cabin furnace it is possible to obtain a uniform heat release across the radiation zone. The height can be about 15 m.
- . With a cylindrical furnace it is not possible to obtain a uniform heat above release across the radiation zone. The height can be about 25 m.

TOTAL	PROCESS ENGINEERING DESIGN MANUAL FURNACES	Revision Date	n: 0 : 2/85	Page No : 4.30
				L <u>e entre prese</u>
9. ESTIMATION	OF SIZE OF CYLINDRICAL FURNACE			
The following	is for a very preliminary sizing			
$D = \sqrt{2x}$ D in m Qa = absorbe Ø = D + 1 H = 2.5 D	Qa ed heat in 10 ⁶ Kcal/hr m m util radiation bank		D	+
	- ·			
		P	STACK	
		N		
CONVECTION	CONVECTION			- EXPLOSION DOOR
RADIATION ZONE	ADIATION ZONE			
HIV	R8 FLOOR		PEEP	MOLES
VEATI	BURNERS BURNER FLOOR HORIZONTAL TUR CAL CTLINORICAL FURMACE	BE CABIN FURN	ACE]
l				

	TOTAL	OTAL PROCESS ENGINEERING DESIGN MANUAL		n:	Page No :	
	TEP/DP/EXP/SUR		Date	: 2/85		
•						
.1		•				
			·		1	
1 1 1						
-						
		5. PLIMPS				
:						
i						
					1	
	1					

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision : 0	Page No :
TEP/DP/EXP/SUR	PUMPS	Date_2/85	5.1 TEP
	·		

1.0 APPLICABILITY

For both the feasibility study and a pre-project study the engineer will be required to evaluate a pump selection and fill in a data sheet with the basic information.

In order to provide the basis of a good cost and layout estimate it is important to understand the type and number of pumps for the service in consideration, and the associated power requirements.

2.0 DESCRIPTION AND GUIDELINE NOTES

TYPES OF PUMPS

Generally there are three classes of pumps :

	Centrifugal	Rotary	Reciprocating		
1.	Centrifugal	I. Cam	1. Piston		
2.	Propeller	2. Screw	2. Plunger		
3.	Mixed flow	3. Gear	3. Diaphram		
4.	Peripheral	4. Vane			

5. Lobe

A pump selection chart is shown in Figure 1. •

GENERAL USAGE

5. Turbine

Centrifugal pumps (Process Pumps)

- Medium to high capacity for low to medium head requirements.
- Higher head requirements can be met by using multistage impellers.
- General service for all liquids, hydrocarbons, products, water, boiler feed.
- Simple, low cost, even flow, small floor space, quiet, easy maintainance.

L

Ì

1

I

1

İ.

		AL P/SUR	PROCESS EN	GINEERING DE PUMPS	SIGN MANUAL	Revisio	on: 0 2/85	Page No :
1-								
	Rotary	pumps						
1	. Man	y proprie	tery designs a	vailable for spe	cific services.	•		
i,	- Esse	ntially ca	an handle clea	an fluids only	with small suspe	nded sol	ids if any	. Can pump
- -	liqui	ds with d	issolved gases	or vapour phas	e.			
	• Can	handle w	ide range of v	iscosities - upt	o 500 000 SSU at	high pre	ssures.	
	- Typic	cal fluids	pumped : min	neral, vegetabl	e, animal oils, gro	ease, giu	icose, visc	ose, paints,
	mola	asses, alco	ohol, mayonais	se, soap, vinega	ir and tomato ket	chup !		
1	. Gene	erally spe	cialist pumps	for specific red	quirements.			
	Reciproc	cating pu	mps	•				
j. I								
1	- Pump	ps produc	e virtually an	ny discharge he	ad upto limit of	driver p	ower and	strength of
¹ 1	pisto	ons and ca	sings.			•		
	. Over	all effici	ency is higher	than centrifug	al pumps. Flexibi	lity is li	mited.	
4	- Pisto	on pumps	: can be sir	ngle or double	acting. Used for	low pr	essure lig	shi duty or
•	interi	mittent	services. Less	s expensive th	an plunger desig	n but d	cannot ha	ndle gritty
	fluids	S.					_	
1	. Plung	ger pump	s : high pres	sure, heavy du - · ·	ty or continuous	service	usage. S	uitable for
1	gritty	y or torei	gn material. E	-xpensive.				
ł	• Diapr	nram pun	<pre>ip : driven pa</pre>	rts are sealed	from fluid by pla	astic or	rubber dia	aphram. No
	sears	no leaka	ge. Ideal for t	toxic or nazaro	ous material. Ca	n de pre	umaticali	y driven at
1	Slow			nas.	roulation			
	· KEPERE	INCES AF	AD USEFUL L	HERATURE				
i	4-1-	LUDWI	G VOL I	CHA	PTER 3			
	4.2.	PERRY	CHEM. ENG	. HANDBOOK	CHAPTER 6			
1	4.3.	CAMPE	SELL VOL II	СНА	PTER 14			
ı	4.4.	"Centri	fugal pumps a	and system Hyd	raulics"			
		ł	Ugor J. Karas	sik Chem. Engr	ng Oct 4 1982			
I	4.5.	"New P	rogram Speed	. .	of a Pumping unit	t"		
1			. ogi ani opece	s up Selection				
1			M. Seaman	Oil and Gas	J. Nov. 12 1979			
1	4.6.	"Rapid	M. Seaman	oil and Gas Cil and Gas Centrifugal-p	J. Nov. 12 1979 ump hydraulics"			

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisio	on: 0	Page No :
	PUMPS			
TEP/DP/EXP/SUR		Date	2/85	5.4

- . \triangle P orifices for flow meters use 0.2 0.4 bar.
- . \triangle P control values use maximum value of 0.7 bar, or 20 % of dynamic friction losses or 10 % of pump \triangle P.
- . TOTAL DISCHARGE PRESSURE sum of all above \triangle P values.

5. DIFFERENTIAL HEAD

Discharge pressure - suction pressure convert to m head

6. FLOWRATE

- . Normal flowrate is maximum long term operating flow
- Design flowrate is normal flowrate + design margin.
- . Design margin

Use 10 % for feed pumps or transfer pumps 20 % for reflux pumps and boiler feed water pumps

7. POWER REQUIREMENTS

- Note: although the term "horsepower" is still used power requirements are given in kW for metric calculations.
- . Hydraulic horsepower theoretical fluid HP = flow x head/36 KW
- . Brake-horsepower (BHP) hydraulic HP/ p pump efficiency KW
- . Operating load electrical input to electric driver at normal pump operating load = BHP/ nm motor efficiency Kw
- . Connected load electrical power to motor at rated motor size Kw
- . Note pump speeds are either 1 450 rpm or 2 900 rpm

8. MAXIMUM DISCHARGE PRESSURE (shut off pressure)

Shut off pressure = max suction pressure (calculate at HLL and ρ maxi).

+ 120 % x normal pump ΔP

9. PUMP MINIMUM FLOW

For an estimate use 30 % of normal flow.

10. PUMP WEIGHTS

. For an estimation purpose only Figure 4 can be used to determine the weights of a centrifugal pump package.

TEP/DOP/DIP/EXP/SUR

Т.

5

	FRUCESS E	INGINEERING	3 DE:	SIGN	MAN	AUA	ᆝ	Revisio)n :	0	Page	No :
EP/DP/EXP/SUR		PUMPS						Date	:	2/95	5	.7
		FIGL	JRE 3									
	ELECTRIC MOTO	ORS, RECOMMEND	DED SIZ	E & EFI	FICIEN		D					
w = CHP = O'7457 Pu	mp Requirement At Design Conditions BHP	Probable A Motor Rating HP	Aotor E. % of Fu Capa 50	fficienc ull Load acity 75	ר 100	Po % 50	wer Fai of Full Capac 75	ctor(2) Load Ity 100				
0.; 0.; 1.c 2.c	$\begin{array}{rcrcrcccccccccccccccccccccccccccccccc$		81 67 75 75 81	82 73 78 79 83	12.5 75 10 10 14	63 69 69 78 73	75 80 81 84 81	\$0 \$4 \$4 \$6 \$6				
4_C 6.C 8.1 12. 16.	D1 - 6.00 D1 - 8.00 01 - 12.0 1 - 16.0 1 - 20.0	7-1/2 10 15 20 25	75 80 81 80 83	10 14 15 13 16.5	11.5 55 56.5 16 51	84 85 84 84 84	83 90 88 88 88	90 91 91 90 90				
20. 26. 34. 43. 52.	1 - 26.1 2 - 34.8 9 - 43.5 6 - 52.2 3 - 65.2	30 40 50 60 75	83 85 80 84 87	16.5 18 15 18 19.5	88.5 88.5 87.5 89.5 90.5	81 86 84 82 81	88 90.5 89.5 88.5 86.5	90 91 91-3 90 1 9				
65. 87 11 12 13	.3 - \$7.0 .1 - 114 15 - 136 37 - 182 83 - 227	100 125 150 200 250	84 83 86 88 90	19 19.5 19 91 92.5	91 91.5 91 92.5 93.5	25 23 25 27.5 20	19 90 90 91 16	91 92 92 92 89				
· 2: 2: 3:	28 - 273 74 - 318 19 - 364	300 350	90.5 91	93 93	94 94	18	91 90	93 93				
30 6 6	65 - 409 10 - 453 56 - 545	4 50 300 600	91 91 91.5 93	93 93 94	93 93 93_5 94_5	85 85 80	90 90 90 88	91 91 90		,		
30 6 6 <u>Notes</u> :	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE	430 300 600 htally enclosed moto a determination of 1 F IGHT ESTIMATE FO	91 91.5 93 Sers only KVA's if FIGURE	73 93 93 94 (i.e., ex (desired	93 93_5 93_5 94_5 cplosion L 	83 83 80 m proo	90 90 90 88 () -	91 91 91 90				
30 6 6 <u>Notes</u> :	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE	430 300 600 stally enclosed moto determination of 1 IGHT ESTIMATE FO	91 91.5 93 93 FIGURE R CENT	4 (i.e., ex (desired	93 93_5 94_5 p4_5 cplosion L 	83 83 80 m proo	90 90 90 88 () -		- 1			
DRY	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE	450 500 600 otally enclosed moto determination of 1 IGHT ESTIMATE FO	91 91,3 93,5 93 ers only KVA's if FIGURE BR CENT	4 (i.e., ex desired 4 rRIFUG/	93 93-5 94-5 cplosio(1 AL PUM	85 85 80 MP PAC	90 90 90 18 18 () -					
30 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE	450 500 600 stally enclosed moto a determination of 1 IGHT ESTIMATE FO	91 91 91.5 93 93 93 93 93 93 93 93 93 93 93 93 93	73 93 93 94 (i.e., ex (i.e., ex (desired 4 (i.e., ex (desired) 4 (i.e., ex (desired) 4 (i.e., ex (desired) 4 (i.e., ex (desired) 4 (i.e., ex (desired) 4 (desired) (desired) (desired) (desired) (desired) (desired) (desired)	93 93-5 94-5 xplosio(1.	83 83 80 m proo	90 90 90 88 () -					
DRY	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE	4 50 500 600 Stally enclosed moto a determination of 1 F IGHT ESTIMATE FO	91 91 91.5 93 93 93 93 93 93 93 93 93 93 93 93 93	4 (i.e., ex (desired RIFUG/	93 93-3 94-3 cplosio 1	83 83 80 MP PA(90 90 90 88 () ·					
DRY	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE	4 50 500 600 stally enclosed motor determination of 1 IGHT ESTIMATE FO	91 91 91.3 93 93 93 FIGURE R CENT	73 93 93 94 94 94 94 94 94 94 94 94 94 94 94 94	93 93 93_5 94_5 94_5 spiosion 1 	MP PA(90 90 90 88 () -					
30 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE 	4 50 500 600 Stally enclosed motor a determination of 1 IGHT ESTIMATE FO IGHT	91 91 91.5 93 93 93 FIGURE PR CENT	73 93 93 94 94 (i.e., ex (desired 4 (asired 4 (RIFUG) 1 (i.e., ex (desired) 1 (i.e., ex)(desired) 1 (i.e., ex)(desired) (i.e., ex)(desired) (i.e., ex)(desired) (i.e., ex)(desir	93 93-3 94-3 cplosion L AL PUN	83 83 80 MP PA(90 90 90 88 () -					
DRY WEIGHT	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE 	4 50 500 600 Stally enclosed motor determination of 1 IGHT ESTIMATE FO IGHT ESTIMATE FO PUMP PACKAGE IN MP + electrical motor	91 91 91.5 93 93 Prs only KVA's if FIGURE PR CENT	73 93 93 94 94 (i.e., ex (desired desi	93 93-3 94-3 (plosio) 1. AL PUM	83 83 80 m proo	90 90 90 88 () -					
DRY	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE 	4 50 500 600 Stally enclosed motor a determination of 1 IGHT ESTIMATE FO IGHT	91 91 91.5 93 93 Frs only KVA's if FIGURE R CENT CLUDIN CLUDIN driver)	73 93 93 94 (i.e., es desired desired 4 FRIFUG/	93 93-3 94-3 cplosion L AL PUN	83 83 80 MP PA(90 90 90 88 () : : : : : : : : : : : : : : : : : :					
DRY WEIGHT	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE 	4 50 500 600 Stally enclosed motor determination of 1 IGHT ESTIMATE FO IGHT ESTIMATE FO PUMP PACKAGE INI mp + electrical motor	91 91 91.5 93 93 93 93 93 93 93 93 93 93 93 93 93	73 93 93 94 (i.e., ez desired 4 (acsired 4 (RIFUG)	93 93-35 94-3 14 AL PUM	83 83 80 MP PA(90 90 90 88 () : : : : : : : : : : : : : : : : : :					
DRY	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE CENTRIFUGAL - Pump skid (pump - Lube oil pump	4 50 500 600 Stally enclosed motor a determination of 1 IGHT ESTIMATE FO IGHT ESTIMATE FO IGHT ESTIMATE FO PUMP PACKAGE IN mp + electrical motor	91 91 91.5 93 93 93 Frs only KVA's if FIGURE RR CENT CLUDIN CLUDIN driver)	73 93 93 94 (i.e., es desired 4 FRIFUG/	93 93-3 94-3 cplosion L AL PUN	85 85 80 MP PA(90 90 90 88 () :XAGE					
DRY WEIGHT	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE 	4 50 500 600 otally enclosed motor determination of 1 IGHT ESTIMATE FO IGHT ESTIMATE FO PUMP PACKAGE IN mp + electrical motor	91 91 91.3 93 93 93 FIGURE R CENT CLUDIA CLUDIA driver1	73 93 93 94 (i.e., ez desired 4 (RIFUG)	93 93 93.5 94.5 94.5 94.5		90 90 90 88 () CKAGE					
DRY WEIGHT TONNES 	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE 	4 50 500 600 otally enclosed motor determination of 1 IGHT ESTIMATE FO PUMP PACKAGE IN mp - electrical motor	91 91 91.5 93 93 93 93 93 93 93 93 93 93 93 93 93	73 93 93 94 (i.e., ex desired 4 rRIFUG/	93 93-3 94-3 phosion L AL PUM	83 83 80 MP PA(90 90 90 88 () : : : : : : : : : : : : : : : : : :					
S	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE 	4 50 500 600 Stally enclosed motor a determination of 1 IGHT ESTIMATE FO PUMP PACKAGE IN mp + electrical motor	91 91 91.3 93 93 93 Frs only KVA's if FIGURE R CENT CLUDIN CLUDIN CLUDIN	73 93 93 94 94 94 94 95 95 95 95 95 95 95 95 95 95 95 95 95	93 93-3 94-3 spiosion L AL PUN	83 83 80 MP PA(90 90 90 88 () CKAGE					
DRY WEIGHT TONNES	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE 	4 50 500 600 Stally enclosed motor o determination of 1 IGHT ESTIMATE FO PUMP PACKAGE IN mp + electrical motor	91 91 91.5 93 93 93 93 93 93 93 93 93 93 93 93 93	73 93 93 94 (i.e., ez desired 4 (i.e., ez desired (i.e., ez desired (i.e., ez desired (i.e., ez desired (i	93 93-3 94-3 (plosio) 4 		90 90 90 88 () 					
DRY	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used if DRY WE CENTRIFUGAL - Pump skid (pump - Lube oil pump	4 50 500 600 stally enclosed motor a determination of 1 IGHT ESTIMATE FO IGHT ESTIMATE FO PUMP PACKAGE IN mp + electrical motor	91 91 91.5 93 93 Frs only KVA's if FIGURE R CENT CLUDIN CLUDIN driver	73 93 93 94 (i.e., ex desired 4 FRIFUG/	93 93-3 94-3 splosion L AL PUN		90 90 90 88 () : : : : : : : : : : : : : : : : : :					
DRY WEIGHT	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE 	4 50 500 600 Stally enclosed motor determination of 1 IGHT ESTIMATE FO PUMP PACKAGE IN mp + electrical motor	91 91 91.5 93 93 Frs only KVA's if FIGURE R CENT CLUDIN CLUDIN driver)	73 93 93 94 (i.e., ez desired 4 (RIFUG)	93 93.5 94.5 94.5 94.5 94.5		90 90 90 88 () 		PUMP			
DRY WEIGHT TONNES	65 - 409 10 - 455 56 - 545 (1) Applies to to (2) To be used in DRY WE 	4 50 500 600 Detaily enclosed motor is determination of 1 IGHT ESTIMATE FO PUMP PACKAGE INIT PUMP PACKAGE INIT Mp - electrical motor	91 91 91.5 93 93 Frs only KVA's if FIGURE RCENT CLUDIN CLUDIN driver)	73 93 93 94 (i.e., es desired 4 FRIFUG/	93 93-3 94-3 294-3	85 85 80 MP PA(90 90 90 88 () :XAGE				·	

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisio	on :		Page No :
TEP/DP/EXP/SUR		Date	:	2/85	

4

1 ſ

• '

7. COMPRESSORS

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisio	n :	0	Page No :
TEP/DP/EXP/SUR	COMPRESSORS	Date	: 2	/85	7.1
1. APPLICABILITY For both feasib compressor select	ility and pre-project studies the engineer wi ction, discharge temperature, power and comple	ll be re ete a dat	quire a she	ed to	evaluate (

In order to estimate the basis of cost and layout it is important to understand the type of compressors for the service in consideration, and the associated power requirements.

2. DESCRIPTION AND GUIDELINE NOTES

2.1. <u>TYPES OF COMPRESSORS</u>

The principal types used in the oil and gas processing industries are :

- . reciprocating (volumetric) . centrifugal
- . rotary (volumetric) . axial

A compressor selection chart is shown in Figure 1.

2.2. GENERAL USE

2.2.1. Reciprocating compressors

Reciprocating compressors are widely used in the oil and gas industry for small to medium gas flows and high compression ratios. For example :

- . Instrument and service air compressors
- . Low capacity/high pressure gas compression for re-injection of field gas to maintain the gas lift capability.

2.2.2. Rotary compressors

The types of rotary compressors most frequently employed in the petroleum industry are as follows :

- Lobe compressors ("ROOTS" type) . Screw compressors
- . The reliability factor is generally higher than reciprocating machines.
- "Roots" type compressors are used where a high flow rate with a relatively low-pressure is required.
- . Screw compressors are sometimes used in low flow gas service or for instrument and service air for installations of small to medium size.

2.2.3. Centrifugal compressors

. These Centrifugal compressors have become very popular offering more power per unit weight and essentially vibration-free. Initial costs normally are less than reciprocating compressors but efficiency is less and utility costs may be higher. Frequently used in the oil and gas process industry.

6.

5.

ΤE

10	

COMPRESSORS

TEP/DP/EXP/SUR

o :

l

e a

1 of 🗄

: of .

ıall

to

um

2.2.4. Axial compressors

These machines are particularly useful where a very high gas flow at moderate pressure increase is required. Such applications remain relatively rare in the industry, the exception being LNG plants.

2.3. DISCHARGE TEMPERATURE LIMITATION

Discharge temperature is limited either for reasons of gas stability, gas condensation or compressor (or upstream equipment) mechanical resistance limit.

For reciprocating compressor the maximum gas outlet temperature to be allowed is usually between 160 to 190 °C.

For centrifugal compressor used in gas and oil extraction industries the discharge temperature is limited to 170/180 °C.

. Normally intercoolers are used to maintain temperatures within the above limits.

2.4. DESIGN MARGINS

If the flow is constant, no margin, but if the flow is coming from a production separator a margin of 10 % is recommended in order to take into account the possible slugs at the inlet of these production separators.

5. WEIGHT AND SIZE

For weight and size we recommend to ask the manufacturer as vendor catalogues detail only the size and weight of the compressor itself. As the compressor package also includes also the seal and lube oil console, control cabinet and sometimes the driver and gear box. The use of vendors catalogues could be misleading in estimating the installed weight.

Figure 4 could be used for a very preliminary estimation. It is established for the dry weight of a centrifugal compression package including :

- . compressor skid (aeroderivative gas turbine + compressor)
- ely , control room

. overhead tank (seal oil)

6. REFERENCES AND USEFUL LITERATURE

6.1. LUDWIG Volume 3 Chapter 12
6.2. CAMPBELL Volume 2 Chapter 14
6.3. GPSA Chapter 5 1979
6.4. SSI Program

lly ity

bre

for

		a name to a set of the last of the	Anna Cenaptic Litter ico A	·
TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisi	on: 0	Page No :
TEP/DP/EXP/SUR	COMPRESSORS	Date	:2/85	7.3
(9) (8) × (1)			Mcp =	ırves in data lar weight.
(8) Cp (note 1) Scal/kgmole [•] C				own, use the cu versus molecu
(1) × (#)			Pc mix =	ition is not knc 7c, Pc and 8
(6) (1) × (3)			I Tcmix =	If the compos Section giving
(5) (1) x (2)			= MW	Remark:
(4) PC bara				
©1 70 ×				
(2) MOL WT MW				Mcp - 1.99
(1) Inol. frac	,			erage = . X = .
Gas mixture components				ote liat T av

OPERATING CONDITIONS

· · ·

.

1.

オキシント

ţ

!

;

į

é

c :

SUCTION PRESSURE	PI = G $P2 = 14$	BAR A BAR A
SUCTION TEMP.	TI = 46 = 319	С к

-

SUCTION FLOW W = 100000 KG/HACTUAL VOL FLOW V = 12400 M3/H

PRESSURE RATIO P2/P1 = 2.33

MW = 32.74

GAS DENSITY AT SUCTION = 7.73 KG/M3

	STEP					NOTES
1.	GAS PROPERTIES	PC TC	=	44 · 11 291	BAR A K	
2.	POLYTROPIC EFFICIENCY	?e =	(0.80		SEE FIG. 2
3.	AVERAGE S = MCP/MCP-1.99	<u> ೪</u> =	l	·15		ESTIMATE T2 (95°C)
7.	DISCHARGE TEMP = $T1^{+} \left(\frac{P2}{P1}\right)^{\dagger} \left(\frac{7}{3}, \frac{1}{7}\right)$	T2 τ2	= = •	366 93 94 c	K C ok	REPEAT STEP 3-4 IF T2 IS DIFFERENT FROM ONE USED IN STEP 3
5.	DETERMINE Z AVG SUCT DISCH AVG	Z1 Z2. Z	= = =	0.9651 0.9508 0.958		
6.	$\frac{\text{CALCULATE GAS HORSEPOWER}}{\text{GHP} = \frac{Z * R * W * 3 * (T2 - T1)}{MW * 3600 * (3 - 1)}}$	GHP	=	1694	KW	R = 8.314 KJ/KGMOLE
7.	<u>CALC SHAFT HORSEPOWER</u> PS = GHP + (1 - F/100) + 1/7 m	PS	=	1655	K₩	F 7M GHP<800 KW 5.0 .96 800<>10 MW 7.5 .97 >10 MW 10 .98
8.	ESTIMATE DRIVER POWER ELECTRIC MOTOR PS * K GAS TURBINE PS * (1.14 + K)	PO PO	=	(103	KW KW	K = 1.15 K = 0.02 TO 0.04 WITH GEARBOX
9.	ESTIMATED PACKAGE WEIGHT COMPRESSOR-DRIVER-LUBE	м	=	40 * 103	KG	(SEE FIG 4)

		PROCESS CALCULA	TION SHEET	<u> </u>	
TUTAL	C	ENTRIFUGAL OR AXIAL	ITEN: EXAMPLE	·····	
TEP/DOP/DIP/EXP/SUR		COMPRESSOR	NO :		
ВУ СНК	DATE	JOB TITLE : PROCESS MANUAL	JOB Nº :	REV	

OPERATING CONDITIONS			7.5
SUCTION PRESSURE PI = 6 DISCHARGE PRESSURE P2 = 14		PRESS	SURE RATIO = $\frac{P2}{P1}$ = 2.33
SUCTION TEMP T1 = 46 = 3.9	•С К	M W =	32.74
SUCTION FLOW W = 100000 ACTUAL VOLUMETRIC FLOW V = 12400	kg/hr m ³ /h	DENSI COND	TY AT SUCTION ITIONS = 7.73 kg/m ³
STEP			NOTES
I. GAS PROPERTIES	$T_{C} = 291$ $P_{C} = 44.1$	K bar a	
2. AVERAGE ¥ = MCp/MCp - 1.99	8 = 1-15		T2 = 90°C
3. <u>CALCULATE DISCHARGE TEMP</u> = $T1 \times \left(\frac{P2}{P1}\right)^{\frac{y-1}{5}}$	T2 = 362 = 89	°K °C	Repeat 2 - 3 if T2 differs from that used in STEP 2
4. DETERMINE OVERALL EFFICIENCY 7 g	9g = 0.8		See Fig 3
5. <u>CALCULATE GAS HORSEPOWER</u> GHP = $\frac{R \times W \times Y}{MW \times 3600 \times Y - 1} \times (T2 - T1)$	GHP = 2325	k₩	R = 8.314 kJ/kgmole
6. <u>CALCULATE SHAFT HORSEPOWER</u> PS = GHP/f × 7 g	PS = 3030	kW	f = 0.96 to 0.97
7. <u>CALCULATE DRIVER POWER</u> Electrical Motor Po = 1.15 x PS	Po =3480	k₩	
8. ESTIMATED WEIGHT	70 000	kg	

NOTES :

PROCESS CALCULATION SHEET

RECIPROCATING COMPRESSOR

ITEN : NO : EXAMPLE .

∤•5

P/DP/EXP/SUR Date : 2785 7.3 Image: Strate of the strate of	FOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision : 0	Page No :
Image: State of the second	EP/DP/EXP/SUR	COMPRESSORS	Date : 2/85	7.8
DRY WEIGHT TONNES TONNE		Z Z Z Z Z Z	TFICIENTY COPESSURE ATTIO	
	DRY WEIGHT TONNES	FIGURE 4 DRY WEIGHT ESTIMATE FOR CENTRIFUGAL COMPRESSOR PACKAGE THE ALL OF THE ALL OF	CR PACKAGE INCLUDING	

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisio	: nc		Page No :
TEP/DP/EXP/SUR		Date	:	2/85	

L

8. EXPANDERS

TOTAL	PROCESS ENGINEERING DESIGN MANUAL EXPANDERS	Revisio	on : 0	Page No :	
TEP/DP/EXP/SUR		Date	[:] 2/85	8.1	

1. APPLICABILITY

For both the feasibility study and a pre-project study the engineer will be required to fill in a process data sheet with the basic information and to estimate the expander horsepower.

Outlet conditions and horsepower estimation can be calculated accurately by computer. Hand caks for pure component systems using a MOLLIER diagram are OK.

2. DESCRIPTION AND GUIDELINE NOTES

- The turbo-expander is a mechanical device which is designed according to the laws of thermodynamics and aerodynamics. It removes energy from a process gas which results in a drop in pressure and temperature of the gas. The energy removed is converted to the mechanical energy which is most often used to drive a single stage compressor.
 - Turbo-expanders could be used for :
 - cryogenic pressure let down C2 recovery
 - dew point control

ethylene processing, etc...

TEF

3.

1.

- . C3/C4 recovery
- Thermodynamical principal. See Figure 1.
- Expanders efficiency

The expander efficiency is the ratio of the actual energy removed to the maximum theoretical energy on Figure 1:

$$7 = \frac{HB HA}{HBI HA}$$

Expander efficiency depends on :

mass flow rate inlet pressure

- discharge pressure gas composition
- inlet temperature
- speed

Generally a value of 80-85 % can be used for estimation purposes. See Figure 2.

- Liquid content at the outlet of the expander varies from 10 to 30 % (weight)
- Inlet gas must be free of solid particles and water (ice formation is prohibited).
- Maximum horsepower of the manufactured turbo expanders is about 12 000 HP. This figure should not however be considered as a limit.
- Turbo expanders can be used in series.
- Efficiency is affected by the variation of the design flow rate See Figure 3 for an estimation.

And	TOTAL	PROCESS ENGINEI EXP	ERING DESIGN MANUAL ANDERS	Revision : 0	Page No :
	TEP/DP/EXP/SUR			Date 2/85	8.2
	3. REFERENCES	AND USEFUL LITER	ATURE	· · ·	
	CAMPBELL V	OLUME II		•	
	Engineer's guid	e to turbo expanders	HYDROCARBON PROCE Page 97	SSING APRIL 19	70
	Turbo expander	applications in	JOURNAL OF PETROLE	UM TECHNOLOG	Y
	natural gas pro	cessing	May 1976 Page 611 etc		
	What you need	to know about gas	HYDROCARBON PROCE	SSING	
1	• expanders		February 1970 page 105		
	Turbo expander	s offer processors	THE OIL AND GAS JOUR	NAL	
	a way to conser	ve energy	Jan. 23, 1978 page 63		
	Use expander c	ycles for LPG	- HYDROCARBON PROCE	SSING Dec. 1974	
	recovery		Page 89		
	VENDOR DOCI	JMENTATION			

•

i.e. : ROTOFLOW, MAFI-TRENCH ...;

•

٦

;

t.

t

1 - S. 	TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision	:	Page No :
	TEP/DP/EXP/SUR		Date	: 2/85	
	1				
		-			
			,		
		9. FLARE SYSTEMS			

				на , , , , АТ
TOTAL	PROCESS ENGINEERING DESIG	N MANUAL	Revision : 0	Page No :
TEP/DP/EXP/SUR	FLARE SYSTEM		Date : 2/85	9.1
I. APPLICABILIT	Y			L
For the feasib needed.Require	lity and preproject studies, a denoised information for either study wil	etailed design a linclude ;	of the flare sy	stem is not
 Evaluation of Determination Flare KO dr Estimation of PSV sizing (no 	f number and levels of flare system on of maximum relieving (and here um Design of height of flare stack or boom ler not always required, depends on pr	m ce flare design o ngth and type of oject).	tip required	
DESIGN GU	IDE ON FLARES-VENTS-RELIEF	d design requi	rements consul VN SYSTEMS.	lt the CFP
2. DEFINITIONS (see section 3 in DESIGN GUIDE)			
- Relief syste	n : includes any pressure r and liquid separator	elief valve/rupt	ure disc downst	ream piping
- Blowdown sy	rstem : includes any depressuri (normally the pressure common piping and sepa	ng valve, downs relief and de arator)	tream piping a pressuring syst	nd separator ems utilize
- Flare system	a system which ensures	the combustion	of hydrocarbon	s
- Vent system	: the release of hydr combustion	rocarbons to	the atmosphe	re without
- Design press	ure : the pressure used to thickness (see section 1	design the ves .0.)	sel and calcula	te the _1
- Set pressure	: the pressure at which service conditions. Usua	a safety device ally equal to the	is adjusted to Design Pressur	open under e
- Accumulatio	on : maximum allowable in through the safety devi is allowed for external fires an accumulation o	crease in vesse ce. Normal acc fire due to hydr f 5 % is recomm	l pressure durin umulation is 10 ocarbon liquids. nended.	ng discharge % but 20 % For HC gas
3. FLARE SYSTEM	A ANALYSIS AND GUIDELINES			
This section de a feasibility or	tails how to determine the number preproject study and other guidelin	and levels of t	ne required flare	e system for

• A system of items of enuipment and piping can be protected against overpressure most economically by considening it as a single unit when calculating the relieving capacity

JTAL	PROCESS ENGINEERING DESIGN MANUAL
-------------	-----------------------------------

:2/85

Date

- Block valves should not be present in the system so as to isolate a unit from its relieving point. Special cases may warrant a car-sealed open or locked valve. However such arrangements should be avoided if possible
- . Interconnecting piping should be of adequate size and not subject to plugging. The system should not be of such a size that two separate systems would be more economical
- . In specifying the design pressure of the individual items and safety valve setting there are two approaches
 - Set the design pressure of each item independently. Then specify safety valve settings to protect the weakest link in the group of items
 - Study the items as a single system initially. This is preferable as it avoids having an unexpected "weak link" limit the operating conditions.
- Consideration should be given to possible abnormal conditions viz :
 - Light hydrocarbon systems can reach low temperatures during depressurization
 - Heat exchange trains may be bypassed resulting in higher than normal downstream temperatures
 - Failure of cooling medium can cause excessive downstream temperatures
 - Production separators may have a varying feed temperature, especially offshore.

It is often required or beneficial to provide two or more separate piping systems from the items of equipment to the flare system eg: high and low temperature headers. Consideration should be given to the following

- Relief gases below 0°C must be kept apart from warm moist gases to prevent formation of ice within the flarelines. This could cause a system plug up
- Segregated systems may be economically desirable to minimize the extent of low temperature piping
- By segregating the flows from high and low pressure sources into two separate flare systems greater use of the high pressure drops can be achieved without imposing severe backpressures on the low pressure systems
- The molecular composition of some streams may warrant their segregation from other streams. eg moist CO₂ or H₂S is corrosive. It may be cheaper to fabricate a second smaller vent system to handle these rather than fabricate the entire system in corrosion resistant material.

PROCESS ENGINEERING DESIGN MANUAL

TEP/DP/EXP/SUR

TOTAL

: 2/85

Date

9.3

Determination of the flare system and level can be summarized in the following step by step analysis.

- Does the facility contain process areas with distinct pressure levels eg : HP compression, LP compression ; atmospheric separation ?
 If so, consider two or more flare levels if sufficient limitation is imposed by the LP section
- Does gas exist at high pressure that on depressuring will fall to below 0 °C. If so, it must be segregated from warm relief gas. If the temperature falls below - 29°C may have to consider low temperature steel headers

3. Identify any corrosive relief sources and consider if need to pipe up separately

- 4. Is a vent system required for tank breathers, regeneration vents etc...
- 5. Identify on the PFD(s) the set pressures of each PSV anticipated and consequently its maximum allowable backpressure (MABP usually 10 % of set pressure). Locate the "weak links" in the process i.e. : the low design pressure vessels. If only 1 or 2 exist within the system consider installing balanced relief valves (MABP = 40 % set) so as to incorporate them into a higher pressure flare system, or even alter the design pressure of the weak links to acheive the same. This may be more economical than specifying two flare levels.

Having determined the configuration of the flare system, it is necessary to size the <u>main</u> headers only and the flareline itself. For this, an idea of the maximum relief load generated will be required. For the studies a full "risk analysis" of upset conditions is not necessary neither is a listing of every relief load and conditions.

The sizing case of the flare system can usually be judged by inspection. Invariably, the largest vent flow will be a full flow relief off the first separator or compression drum or a total electrical failure. This may be supplemented by a simultaneous depressurization of a compressor or equipment loops resulting in a flare design flow higher than the normal plant throughput. Generally fire generated loads do not dictate the sizing of the flare system, but may influence the sizing of laterals and subheaders. A certain degree of experience will help in identifying the possible one or two cases that will size the flare system without having to perform a full plant risk analysis.

In some cases, the resulting flaring loads may be minimised by using ESD isolation valves or automatic controls to start back-up equipment.

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisio	on: 0	Page No :
TEP/DP/EXP/SUR	FLARE SYSTEM	Date	:2/85	9.4

4. HEADER SIZING : STACK AND TIP CHOICE

In order to estimate the main flareline and header sizes based on backpressures, 3 pieces of information are required :

- Design flowrate temperature MW
- Length of flareboom or height of stack
- Type of tip and stack to be used.

4.1. DESIGN FLOWRATE TEMPERATURE AND MW

This has already been determined from the previous section.

4.2. TYPE OF TIP + STACK TO BE USED (see section 10 in Flare Design Manual)

The choice of stack and tip type will obviously be dictated by the location of the plant under design.

For onshore plants in remote areas it is usually sufficient to use a remote vertical stack with a conventional pipeflare tip. The height of the stack will be determined by the radiation limitation on the designated sterile area round the stack. For non occupied areas, this figure could be high as 5000 BTU/h.ft^2 (15 700 W/m²) resulting in a short stack height. For cases where high flaring loads still result in a tall stack, a further reduction in height can be achieved by using a Coanda/Indair or similar type high pressure sonic flare tip (see section 10 in FLARE DESIGN MANUAL for discussion of each tip type).

Offshore the choice is somewhat more complex in choosing between a remote vertical flare or similar, or an integral 45° mounted boom flare or even on board vertical stack. The decision between these is more often than not governed by economics, structural considerations and specifics pertainent to each platform location eg: water depth. Generally, however sonic flare tips are used where pressure levels allow (2-5 bars) at the tip entry in order to reduce stack/boom lengths, by reducing radiation levels, and associated support structure weights.

4.3. FLAREBOOM - FLARE STACK SIZING

The flareboom or stack (hereafter termed flare) length is determined by the maximum allowable thermal radiation tolerable on the platform or surrounding area. A detailed calculation of this value for vertical or inclined flares on or offshore under a variety of wind conditions and temperatures can be performed using the computer program SUPERFLARE. For feasibility and preprojects, however an estimate of radiation level can be determined using the method as detailed in AP 521. See Appendix 1.

TOTAL	PROCESS ENGINEERING D	ESIGN MANUAL	Revisi	0 : nc	Page No	
TEP/DP/EXP/SUR	FLARE SYST	EM	Date	[:] 2/85	9.5	Т
Recommend	ed Radiation levels are given	below :				•
1	i Coodition	Allowable	ł	Exposure	i i	, • :

a waan .

Condition	i Allowable radiation Btu/h.ft ²	Exposure period
Areas where personnel may be located and expected to per- form their duties continuously	 1000 	I Infinite I
Areas where personnel may be located from which escape is possible and shelter is attainable	2000	l I minute i
Areas where equipment is located and personnel are not normally present during ope- ration, but if present im- mediate shelter is available	3000 (Emergency flaring only)	5 seconds
Areas where personnel are not permitted during operation	5000	0
Helideck	1000	

The above figures are maximum allowable radiation intensities inclusive of solar radiation (250 BTU/hr ft²).

It should be noted that the following recommended values of F - Fraction of heat radiated and mach numbers at the <u>tip</u>.

a) Pipe flare

Low MW gas F = 0.2Ethane F = 0.25 Velocities - max at design relief = 0.5 M Propane F = 0.3 - normal continuous = 0.2 M

b) Indair/Coanda

	All gases	F	=	0.1	Mach I
c)	Mardair	F	=	0.05	Mach I

Having calculated the flare length based on radiation analysis and established both the design flare rates and tip type the main header can now be sized.

ı

1

t

ł

1

1

TEP/DP/EXP/SUR

t

FLARE SYSTEM

4.4. HEADER SIZING

The major criteria governing the sizing of the header are backpressure and gas velocity. Flare headers must be both large enough to prevent excessive backpressure on the plant safety valves and to limit gas velocity and noise to acceptable levels.

Sizing procedure

- Identify "weak link" with respect to MABP on safety values. (this should have been done when determining the levels of relief). This is the maximum upstream pressure tolerable in the system.
- 2) Calculate the \triangle P across the flare tip for the relief design flow. For sonic type tips the backpressure will be 2.0 to 5.0 barg depending on load.

For pipeflare tips use :	Flare tip	0.5 - 2.0	psi	(0.034 - 0.14 bar)
	Fluid seal	0.2 - 0.5	psi	(0.014 - 0.034 bar)
	Molecular seal	0.5 - 1.0	psi	(0.034 - 0.07 bar)

- 3) Estimate the equivalent length of piping from the tip to the flare KO drum. (Allow generous margins, flare headers are complex and rarely straight).
- 4) Calculate the sonic velocity of the relief gas

$$V_{sonic} = 91.19 \sqrt{\frac{KT}{MW}} m/s$$
 $K = CP/CV$
 $T = K$

This will give a first estimate of required pipe id based on maximum relief flow. The stack diameter should be one or two sizes less than the tip diameter. LIMIT VELOCITY IN STACK TO 0.85 M; AT DESIGN FLOW.

5) Using the estimated D calculate the $\triangle P$ from tip to flare KO drum. The Conison equation is recommended for isothermal flow :

$$\frac{P_1^2 = P_2^2}{I} + \frac{\frac{u_2^2 P_2}{V_2}}{V_2} \left(39.4 \frac{fL}{d} + 2\ln \frac{u_2}{u_1}\right) \times 10^{-5}$$
Where : 1 = upstream conditions f = moody friction factor
2 = downstream L = equivalent length m
p = pressure bar (a) d = pipe id inchs
u = velocity m/s
v = specific vol m³/kg

This calculation requires a degree of trial and error as u1 = f(P1)

FLARE SYSTEM Date : 2/85 9.7	TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisio	on :	0	Page No :
	TEP/DP/EXP/SUR	FLARE SYSTEM	Date	:	2/85	9.7

- 6) Examine the P1 (calc) at the relief drum and decide if the stack + header diameter is adequate ie is P1 (calc) drum approaching the maximum upstream pressure allowable at the plant? if so increase the diameter and repeat the ΔP calc.
- 7) Once satisfied with the drum-tip line proceed back up the flare header and calculate the next section of line diameter.
- 8) Continue along the headers, adjusting flowrates as necessary if sources disappear, until the "weak link" criteria has been satisfied.
- 9) If the project requires sub headers and laterals can be estimated from the main line static backpressures calculated above.

EXAMPLE :

- 1. Flare design is based on vent flow from source (1)
- 2. Weak link in system is set by PSV at source (2)
- 3. System must be designed for a design flow from source (1) not giving a backpressure at point (3) of more than 1.2 barg.

1

, I

- Size line from tip to drum (L = 150 m) to give P drum 0,5 barg (say) size line from drum to point (3) (L = 100 m) to give P1 < 1.2 barg.
- 5. Check that source (1) can flow from (1) to (3) with pressure drop available.
| TOTAL | PROC | ESS ENGINEERING DESIGN MANUAL | Revisi | on: 0 | Page No : |
|----------------|----------------|---|----------|-------------|---------------|
| TEP/DP/EXP/SUR | | FLARE SYSTEM | Date | : 2/85 | 9.8 |
| <u>NO1</u> | <u>(F</u> : 1) | Laterals> sub headers> head
as the system progresses to the tip. | lers mus | st increase | in diameter |
| | 2) | Max velocity in a line is MACH 0.7 f | or short | duration (| reliefs only. |
| | . 3) | When calculating ΔP for flare. | systems | isothern | nal flow is |

When calculating ΔP for flare systems isothermal flow is assumed for each section. For high source pressures with low MW a Δ T vs Δ P profile will yield more accurate results, i.e. adjust temp at specific points in the system to account for Δ P occured.

5. FLARE KO DRUM SIZING

d

1

1

A flare KO drum is provided to drop out and collect the liquid part of the flare vapours in order to :

- prevent liquid accumulation at the base of the flare boom or tower
- to minimize the risk of burning liquid (golden rain) emerging from the tip and falling on personnel
- to recover and reclaim valuable product materials.
- 5.1. DESIGN CONSIDERATIONS
 - separate knock out drums are generally required for each level of flare system installed i.e. : an HP KO drum, LP KO drum, LLP drum
 - cold vapour lines (i.e. < 0°C) can be introduced immediately upstream of inlet line to a "warm" drum providing the resultant temperature in the drum does not call below design. This precludes the need for two independent drums.
 - FLARE KO DRUMS SHOULD BE HORIZONTAL AT ALL TIMES.
 - Mist eliminators are not to be installed. Min design pressure of drum is 3.5 bar (g)
 - Heating coils should be installed in flare KO drums to prevent freezing of residual liquids. Typical is to maintain a T min = 4°C
 - LIQUID DROPLET SIZE (per API 521)

Recommended particle sizes are : VERTICAL FLARE 150 (offshore) INCLINED BOOM > 45° 150 " < 45° 400 " REMOTE FLARES 600

TOTAL

TEP/DP/EXP/SUR

Page No :

9.9

5.2. DRUM SIZING

Based on the above design considerations the flare KO drum can be sized using the method outlined in section 2.0. VESSEL DESIGN.

For a flare KO drum, the normal liquid level should be kept in the lower part of the drum i.e.: utilise as much space as possible for the vapor-liquid de-entrainment. If a large diameter drum results consider using a split flow arrangement with the exist nozzles mounted on the head. This will maximise the L/D ratio and give a smaller highter drum. This is especially useful offshore where weight + space are a major concern.

An LCHH will normally be installed in the flare drum to initiate a plant shutdown ' wellhead shut in offshore).

6.0. RELIEF DEVICE SIZING (For more detail see API 520, 521)

6.1. GENERAL

- Safety valves are either termed balanced or conventional depending upon the backpressure limitation
- Rupture discs are less robust than an equivalent safety value and cannot be relied on to function accurately. It is recommended that rupture discs are avoided

6.2. BACKPRESSURE

- Backpressure exists in two forms :
 - . flowing backpressure is the pressure on the discharge side of a PSV that is blowing off to the relief system
 - . superimposed backpressure, or static backpressure is the pressure on the discharge side of a PSV caused by another relief source in the system venting to flare
- For conventional valves the Maximum Allowable Backpressure (MABP) for either superimposed or flowing is 10 %. For balanced relief valves up to 40 % can be allowed for without a reduction in the valve capacity.

6.3. LIQUID RELIEF

The formula for sizing liquid-relief valves is :

$$A = \frac{gpm}{27.2 K_p K_w K_v} \sqrt{\frac{G}{P_d}}$$
 ins²

 	-	TOTAL	R	PRO	CESS E	NGINEE	RING DI	ESIGN N	IANUAL	Revisi	on: 0	Page No :
		TEP/DP/EXP/SU	R			FLAR	E SYST	EM		Date	: 2/85	9.10
}	-		When	re :								
			٩	=	Ef:	fective of	discharg	e area,	ins ²	•		
the	<u>'</u>	٤	gpm _	Ξ	FIC	owrate,	u.s. gallo					
		- (Ū.	=	Spe	ecific gr	avity at	flowing	g temperati	ure		
the		I	< _P	=	Ca	pacity c	orrectio	n facto	r (from fig	ure 6.5)		
fa	İ.	I	b	=	Re	lieving p	oressure	minus o	constant ba	ck pres	sure	
		ł	<w< td=""><td>=</td><td>Ca</td><td>pacity c</td><td>orrectio</td><td>n facto</td><td>r (from figu</td><td>ure 6.4)</td><td></td><td></td></w<>	=	Ca	pacity c	orrectio	n facto	r (from figu	ure 6.4)		
Jon	1 . 1	ł	< _v	=	Vis	cosity c	orrectio	n facto	r (from figi	ure 6.3.)	
jor		6.4.	<u>v</u>	APOR	RELIE	F	1					
' •			т	he for	mula fo	or sizing	vapor r	elief is	:			
	· •			A =	C	W K Pj	Кь	$\sqrt{\frac{TZ}{M}}$				
		Whe	re :					•				
he	'	W	=	Re	lief flo	w, lbs/h		Z	= (Compre	ssibility f	actor
		т	=	Ini	et vapo	r tempe	rature, '	•R		-	-	
		С	=	Co	efficie	nt (from	figure 6	5.1, 6.2)				
ed		к	=	Co	efficie	nt of dis	charge (0.975 u	nless venda	or data a	available)	
		Pi =		Up	stream	Dressur	e, psia.	Set pre	ssure 1.1 f	or bloc	ked outlet	. CV failure
	-	1		or	1.2 for	fire plu	s 14.7 ps	sia				
		K	-	Ca	nacity		on facto	r (from	figure 6.6)		
	'		-		Moleci	ular wei	ght of th		17 IT	, ,		
				-	moree		6	ie tupo.				
is	•	6.5. <u>REL</u>	IEF	FOR	GAS EX	PANSIC	ON DUE	TO FIR	E			
				N –	λ	F'		5	0.14	406	Ţ1.25)
ne	·			A =	^s •	$\overline{P_1}$		Г	- <u>C</u>	к	T0.650	i6
	۱								2			
	•		۲,	. =	effect	ive discl	harge ar	ea of va	alve ins ²	τ	= 1560 -	- T
er			م	\ _s =	expose	ed surfac	ce area (of vesse	el ft∠	Т	= temp.	at relief
e										press	ure .°R	
			ć	TEAN	יחביים							
	·	6.6.	2	ILAN	KELIE	r		-				
	٠			A =	50 P I	/ 	ins ²					
	•											
	•											
								_				

TOTAL PROCESS ENGINEERING DESIGN MANUAL Revision : 0 Page No. FLARE SYSTEM						
TEP/DP/EXP/SUR	9.11		F			
P ₁ = Set pressure x 1.03. (ASME Power) or 1.1. (ASME Unfired vessels)						
K _{sh} - superheat correction factor table 6.1.						

T

|

6.7. STANDARD RELIEF VALVE ORIFICE SIZES

The following table may be used for estimating the relief valve size based upon the effective discharge areas calculated as in paragraphs 6.3. through 6.6. :

Orifice letter	Nozzle Effective Area sq. inches	Normal size Designation
D	0.110	1D2
E	0.196	1E2
F	0.307	1 1/2 F ₂ *
G	0.503	2G3*
н	0.785	2H3
J	1.287	2 J3 or 3J4+
К	1.838	3K4 or 3K6
L	2.853	3L4 or 4L6
м	3.600	4M6
N	4.340	4N6
Р	6.379	4P6
Q	11.045	6Q8
R	16.000	6R8 or 6R10
Т	26.000	8T10

* Avoid using 2 1/2 inch outlet flanges (F and G orifices)

** Avoid using 2 1/2 inch inlet flange (J orifice)

	TOTAL PROCESS ENGINEERING DESIGN MANUAL				n: 0	Page No :
	TEP/DI	P/EXP/SUR	FLARE SYSTEM	Date	9.12	
-	7.0.	REFEREN	CES + LITERATURE			
		7.1. DE CF	IGN GUIDE Flares-Vents-Relief and Blowdov MAY 1984 - TEP/DP/EXP	• wn syster	ns	
		7.2. AP AP	520 AP ₁ 14C 521 AP ₁ 14E			
		7.3. Det Nor con	Norske Veritas : Technical Notes fixed offshore weigen Petroleum Directorate : Guidelines for s ceptual designs.	e installa safety ev	itions valuations	of platform

Setura-					_ C	orrection	Factor K	**				
Tempera-	0.99	0.98	0.97	0.96	0.95	0.94	0.93	0.92	0.91	0.90	0.89	0 22
						Total Ter	BOTTALUTE					
(Degrees						Destres 1	Fabrenben					
rahren-								.,				
hest)												
240	269	305	332	368	400	421	460	492	\$20	\$45	\$70	595
259	286	315	343	375	405	433	463	492	518	542	565	590
287	310	335	357	382	410	440	467	493	515	540	561	585
308	330	350	370	390	422	450	472	495	515	\$37	560	580
324	345	365	385	405	432	460	478	497	515	535	556	380
338	360	375	395	415	440	466	485	500	\$15			
350	370	388	405	425	450	475	490	501	\$20	\$17	337	10
361		398	415	435	455	480	497	510	\$75	540	540	494
370	-	405	425	443	463	487	502	516	\$10	<u> </u>	363	585
379	-	415	432	450	470	492	508	523	535	\$50	\$70	590
388		470	440	456	475	497	\$13	\$77	\$40	***		
396	_	430	445	463	480	502	\$17	517	-	222	373	374
403	-	435	452	470	485	507	\$22	\$37	\$50	565	581	400
409	_	440	440	475	490	512	\$26	541	\$55	44.9	344	401
416	-	447	465	480	495	516	531	545	558	573	590	606
422	_	452	470	485	500	520	\$15	\$50	\$47	*77	481	410
433	_	465	480	496	512	\$30	545	112	\$77	494	173	414
448	_	475	492	508	523	540	\$51	346	510	200	602	414
470	_	495	513	526	543	\$57	568	582	597	410	475	444
489	-	512	530	543	556	\$70	585	596	610	625	638	655
\$20	_	545	558	570	525	197	610	475	419			480
\$46	-	567	582	\$95	608	620	411		440	474	00)	205
574	-	593	605	620	610	640	455	668	681	404	310	105
597	_		630	642	653	664	676	411	202	314	770	725
619		-	647	660	670	680	69Z	704	717	730	743	759
637	_	_	665	675	685	494	204	719	***		-	
670	-	_	690	701	717	771	711	747	755	143	157	773
697	-	-	713	723	733	742	751	762	773	785	780	812
	SanUra- Loos Tempera- (Degress Fahren- hett) 240 259 287 308 324 338 350 361 370 379 388 394 409 416 422 433 448 470 448 520 546 574 597 619 637 670 697	Jon Jos Tempera- 0.99 Tempera- 0.99 Tempera- 0.99 Fahren- 100 Void 269 239 226 237 310 301 330 311 360 350 370 317 - 377 - 381 - 403 - 403 - 403 - 416 - 422 - 433 - 520 - 530 - 617 - 617 - 617 - 617 - 617 - 617 - 617 - 617 -	Samura- loca O.99 O.98 Tempera- (Degrees Fahren- bett) 0.99 0.98 240 269 305 239 284 315 237 310 330 308 330 350 324 345 365 338 360 375 361 - 198 361 - 405 370 - 405 304 - 435 361 - 436 370 - 405 403 - 435 405 - 440 416 - 447 422 - 452 433 - 545 448 - 475 470 - 495 520 - 545 544 - 547 574 - 567 574 - 545 <td>Satura- uoa O.99 O.96 O.97 Image: Comparison of the saturation o</td> <td>Jon Jon Jon 0.99 0.96 0.97 0.96 Tempera- (Degrees Fahren- hett) 0.92 0.97 0.96 240 269 305 313 344 259 246 313 343 375 308 330 350 370 390 314 345 365 385 405 318 360 375 395 415 350 370 388 405 425 361 - 398 415 433 370 - 405 425 445 377 - 415 432 450 388 - 420 440 456 394 - 430 443 443 403 - 435 452 470 407 - 445 440 456 394 - 430 445 440</td> <td>Satura- boo O.99 O.98 O.97 O.96 O.95 Tempera- (Degrees Fabres- bett) 0.99 0.98 0.97 0.96 0.95 220 269 305 333 364 400 239 246 315 343 375 405 217 310 335 357 382 410 308 330 350 370 390 422 318 360 375 395 415 440 350 370 388 405 425 450 361 398 413 435 453 370 405 425 450 470 388 430 443 463 460 407 435 452 470 485 409 440 460 475 490 415 452 470 485 500</td> <td>Correction Correction Correctin Cor</td> <td>Correction Pactor A Correction Pactor A Correction Pactor A Total Temperature (Degrees Fahren- hett) Total Temperature (Degrees Fahren- hett) 240 269 305 315 344 400 421 440 259 264 315 343 375 405 433 463 277 310 330 350 370 390 422 450 472 312 360 375 395 415 440 464 485 318 360 375 395 415 440 464 485 310 310 315 345 450 473 490 314 - 398 415 435 463 487 502 379 - 405 425 440 456 475 497 513 370 - 405 422 440 455 457 50</td> <td>Correction Factor X_{10} Correction Factor X_{10} <</td> <td>Correction Factor X_{ss} Correction Factor X_{ss} Correctin factor factor X_{ss}</td> <td>Correction Factor X_{2} Correction Factor X_{2} Total Temperature (Degrees Fabrenbest) Fabrenbest) Correction Factor X_{2} Correction Factor X_{2} Total Temperature (Degrees Fabrenbest) Fabrenbest) Correction Factor X_{2} Correction Factor X_{2} Total Temperature (Degrees Fabrenbest) Fabrenbest) Total Temperature (Degrees Fabrenbest) Total Temperature (Degrees Fabrenbest) Total Temperature (Degrees Fabrenbest) Total Temperature Total Temperature (Degrees Fabrenbest) Total Temperature<</td> <td>Correction Factor X_{uu} Correction Factor X_{uu} <</td>	Satura- uoa O.99 O.96 O.97 Image: Comparison of the saturation o	Jon Jon Jon 0.99 0.96 0.97 0.96 Tempera- (Degrees Fahren- hett) 0.92 0.97 0.96 240 269 305 313 344 259 246 313 343 375 308 330 350 370 390 314 345 365 385 405 318 360 375 395 415 350 370 388 405 425 361 - 398 415 433 370 - 405 425 445 377 - 415 432 450 388 - 420 440 456 394 - 430 443 443 403 - 435 452 470 407 - 445 440 456 394 - 430 445 440	Satura- boo O.99 O.98 O.97 O.96 O.95 Tempera- (Degrees Fabres- bett) 0.99 0.98 0.97 0.96 0.95 220 269 305 333 364 400 239 246 315 343 375 405 217 310 335 357 382 410 308 330 350 370 390 422 318 360 375 395 415 440 350 370 388 405 425 450 361 398 413 435 453 370 405 425 450 470 388 430 443 463 460 407 435 452 470 485 409 440 460 475 490 415 452 470 485 500	Correction Correctin Cor	Correction Pactor A Correction Pactor A Correction Pactor A Total Temperature (Degrees Fahren- hett) Total Temperature (Degrees Fahren- hett) 240 269 305 315 344 400 421 440 259 264 315 343 375 405 433 463 277 310 330 350 370 390 422 450 472 312 360 375 395 415 440 464 485 318 360 375 395 415 440 464 485 310 310 315 345 450 473 490 314 - 398 415 435 463 487 502 379 - 405 425 440 456 475 497 513 370 - 405 422 440 455 457 50	Correction Factor X_{10} <	Correction Factor X_{ss} Correctin factor factor X_{ss}	Correction Factor X_{2} Correction Factor X_{2} Correction Factor X_{2} Correction Factor X_{2} Correction Factor X_{2} Correction Factor X_{2} Total Temperature (Degrees Fabrenbest) Fabrenbest) Correction Factor X_{2} Correction Factor X_{2} Total Temperature (Degrees Fabrenbest) Fabrenbest) Correction Factor X_{2} Correction Factor X_{2} Total Temperature (Degrees Fabrenbest) Fabrenbest) Total Temperature (Degrees Fabrenbest) Total Temperature (Degrees Fabrenbest) Total Temperature (Degrees Fabrenbest) Total Temperature Total Temperature (Degrees Fabrenbest) Total Temperature<	Correction Factor X_{uu} <

TABLE 6-2-Superheat Correction Factors for Safety Valves in Steam Service

•

.

۱e

1

ŧ

ı

ì

2 -----

20111011111

0:

3

U.):

• •

APPENDIX A

SAMPLE CALCULATIONS FOR SIZING A FLARE STACK

A.1 General

This appendix presents examples of the two methods for sizing a flare stack based on the effects of radiation. The two methods are the "simple" approach presented in Section 4 and the more specific approach using Brzustowski and Sommer's method. Height and location should also be considered, based on gas dispersion if the flame is estinguished (see 4.4.1.4).

A.2 Example 1: Sizing a Flare Stack Using the Simple Approach

 $\bar{\mathbf{O}}$

In this example, the basic data are as follows: The material flowing is hydrocarbon vapors. The flow rate, W. is 100,000 pounds per hour (12.6 kilograms per second). The average molecular weight of the vaport, M. is 46.1. The flowing temperature, T. is 760 degrees Rankine (300 F) [422 kelvins (149 C)]. The heat of combustion is 21,500 British thermal units per pound (5 x 10' kilojoules per kilogram). The ratio of the specific heats in the gas, k, is 1.1. The flowing pressure at the flare tip is 14.7 pounds per square inch absolute (101.3 kilopascals absolute). The design wind velocity is 20 miles per hour (29.3 feet per second) [32.2 kilometers per hour (approximately 8.9 meters per second)]

A.2.1 CALCULATION OF FLARE DIAMETER

The Mach number is determined as follows face 5.4.3.1, liem 1).

Mach =
$$(1.702)(10^{-1})\frac{W}{Pd^{1}}\sqrt{\frac{T}{kM}}$$

In metric units, this translates to:

Mach = (11.61)(10⁻¹)
$$\frac{W}{Pd^3}\sqrt{\frac{T}{kM}}$$

For Mach = 0.2, the flare diameter is culculated as follows:

$$0.2 = (1.702)(10^{-1})\frac{100,000}{14,7d^{-1}}\sqrt{\frac{760}{(1-1)(46.1)}}$$

$$d^{2} = 2.24$$

$$d = 1.5 \text{ feet (inside diameter)}$$

In metric units, this translates to

For Mach = 0.5, the flare diameter is calculated as follower

> d' = 0 897 d = 0.95 foot (inside diameter)

In metric units, this translates to:

d' = 0.0833 d = 0.29 meter (inside diameter)

A.2.2 CALCULATION OF FLAME LENGTH

The heat liberated, O. in British thermal units per hour (kilowatts), is calculated as follows (see Figures 6A and 6B):

Q = (100.000)(21.500)= 2.15 × 10° British thermal units per hour

In metric units, this translates to:

 $O = (12.6)(50 \times 10^3)$ = 6.3 × 10⁴ kilowatts

From Figures 6A and 6B, the flame length, L, is 170 feet (52 meters) (see Figure A-1).

A.2.3 CALCULATION OF FLAME DISTORTION CAUSED BY WIND VELOCITY (SIMPLE CALCULATION)

The vapor flow rate is determined as follows:

Flow =
$$\left(\frac{100,000}{3600}\right) \left(\frac{379.1}{46.1}\right) \left(\frac{760}{520}\right)$$

= 333.9 actual cubic feet per second

In metric units, this translates to:

Flow = $(12 \ 6)\left(\frac{22.4}{46.1}\right)\left(\frac{422}{273}\right)$ = 9.46 actual cubic meters per second

NOTE: In the calculations above, the volume of a perfect gas per pound-mole under English standard conditions (60 F and 14.7 pounds per square inch absolute) is 379 1 cubic feet. The volume of a perfect

٠.

Dispersion of games from and vent stack

N P

ł

1

.

1

1

1

1

1

1

: [

L

L

L

L

L

A State of the sta

Table of Contents

1	INTRODUCTION	1
2	BASIS OF THE STUDY 2.1 GAS COMPOSITIONS 2.2 COLD VENT 2.3 H2S CONCENTRATION MONITORING	2 2 3 3
3	RESULTS	4
4	DISCUSSIONS	5
5	OPERATING EXPERIENCE	8
6	CONCLUSIONS AND RECOMMENDATIONS	9

i

1 INTRODUCTION

The Welton Gathering Centre process plant is provided with an incinerator for disposal of excess associated gases and relief gases. During upsets on the incinerator e.g. fan failure or a plant initiated trip, the incinerator is isolated and the gases are disposed of through a cold vent via a bursting disc arrangement (see Fig 1). j

1

The gases routed to the cold vent contain high levels of H2S and adequate dilution of this component with air is therefore required during dispersion for safe disposal. The option of replacing the existing incinerator with a new and larger one, means that the cold vent would still be required. Dispersion calculations were therefore carried out by Group Environmental Services (GES), London to confirm that safe disposal of the vented gases could be achieved.

Details of the atmospheric dispersion study and results are presented below. The following areas are covered :-

- basis of the study

- results of the dispersion modelling
- discussions of results
- operating experience with the cold vent
- conclusions and recommendations

2 BASIS OF THE STUDY

4

1

1

ł

l

1

The dispersion calculations were performed by Group Environmental Services (GES) in London. The basis of these calculations ¹ is given in the sections following.

2.1 GAS COMPOSITIONS

The composition of the gases that could be vented to the atmosphere can be wide ranging because :-

- the Welton G.C. receives crude from a number of wells at varying flows and varying H2S content. Hence the amount and composition of the gases normally produced varies;

- the relief gas composition which could superimpose on normal flows vary depending on the relief scenario. Accurate prediction of the relief flow and composition is not always possible.

Therefore for the dispersion calculations reported here, a number of vented gas data compositions were prepared from two sources (Table 1) :-

I) The Original Design composition - these were extracted from the Incinerator Work Pack 18, Vol. 1. They were based on the design wellfluid (C-site) and still represent the sourest gases that could be obtained from Gathering Plant HP/relief header. Calculations for the following cases were carried out -

a) Case 1 - Highest gas and H2S flows, Gas I;
b) Case 2 - Lowest H2S concentration, Gas A;
c) Case 3 - Lowest H2S flows, Gas E and
d) Case 4 - Lowest total flow, Gas B.

II) The preliminary revised design cases - these are based on the Welton Upgrading design material balance and represent conditions in the plant when production from C site is diluted by production from the less sour wells (A and B sites). The combined HP, LP and acid gas stream compositions were used for the dispersion calculations. The following cases were considered :-

a) Case 1 - based on the total of normal flows in the gas headers;
b) Case 2 - startup flow based on 300 BOPD;
c) Case 3 - similar to Case 2 but with twice the H2S concentration. This can be considered as starting up

with production from C-site. d) Case 4 - based on normal flows superimposed with fire relief flow in the gas headers.

2.2 COLD VENT

The cold vent is a 16 inch pipe erected vertically with a 6 inch top section acting as a nozzle. Detail dimensions of the cold vent as used in this dispersion study are shown in Fig 2.

Process gas is normally isolated from the cold vent by means of four bursting discs - two in use in series and two spare, as shown in Fig 1. Should these rupture, a common alarm signal is produced in the control room and the incinerator is tripped which in turn causes a general plant shutdown. Thus the duration and quantities of the emissions is minimised.

2.3 H2S CONCENTRATION MONITORING

The following locations were selected for monitoring the H2S concentration during dispersion of gases from the cold vent :-

a) At positions in the plant above grade which could be manned, of which the following were selected :-

Crude	stripper	tower	-	14.9	m
Amine	contactor	•	-	13.6	m
Crude	tanks		-	9.0	m
Incine	erator		-	12.5	m

b) At grade level at various locations within the Welton Gathering Centre perimeter fence, car park and workshop areas.

c) At farm houses in the near vicinity and in particular, the Barfields farm.

The co-ordinates for these receptors are shown in Table 1.

3 RESULTS

Details of the results are given in a GES memo, Ref. ²; an extract of the results is given in this section. The results of H2S concentrations at various locations are quoted in mg/m3. To convert these figures to ppmv then the quoted figures should be multiplied by a factor of 0.7121.

പ്പെട്ടും പ്രവാനം പ്രത്യാന് പ്രതിക്കുന്ന പരിക്കും നിന്നും തന്ത്രങ്ങള്ക്കും കുറ്റത്ത്. പ്രത്യാനം പ്രത്യാനം പ്രത

Tables 2 - 9 show the maximum ground level concentrations for a range of weather conditions and the cases specified. The wind has been arbitrarily set to SW, so the location of the point of the maximum ground level concentration is of no significance, but the distance from source is of use.

Table 10 - 17 shows concentration at the seven sites specified for the same range of weather conditions and the same eight cases. However, in these tables, the wind direction has been deliberately chosen to place the specified site directly downwind of the vent. Thus each concentration represents the worst possible condition at each site.

The result presented in the Tables 2 - 17 are the 3 minute average concentrations at the receptors. To extrapolate the 3 minute average concentration to longer time average concentrations, the following can be applied :-

 $C_x = C_p * (3 / T_x) **0.2$

where Cx is concentration average for time Tx Cp is the 3 minute average concentration Tx is the new time for average concentrations.

Thus, for a 15 minute average concentrations, the 3 minute average concentrations have to be multiplied by a factor of 0.72. Similarly, for an 8 hour average concentration, the factor is 0.36.

For time average concentrations of less than 3 minute, the above correlation does not apply. However as a guide, a similar approximation to that made for odour nuisance investigations (where the 5 second average concentrations are relevant) can be used. Thus, to convert the 3 minute averages to 5 second averages, the results in weather category A should be multiplied by 10, and the remaining weather categories should be multiplied by 5.

4

4 DISCUSSIONS

This section discusses the interpretation of the results given in the above section. It must be stressed that the interpretation of the results and inferences made here concerning the H2S level with respect to safety, occupational health and nuisances are mainly those of the author. Advice from Group Safety and Occupational Health was obtained verbally and is incorporated.

The following observations are made on the results :-

a) The odour threshold for H2S is 0.00066 mg/m3 for 5 sec. average time. Tables 2 - 9 shows that the 3 minute average ground level concentrations (1/5th of 5 second averages for most weather categories) exceed the odour threshold. The use of the cold vent would thus result in odorous emission which would be perceived at fairly remote locations e.g. the Barfields farm, when the wind is blowing in that direction.

It is noted that there are no evidence that odorous emissions due to H2S at low level are a health hazard, but complaints relating the two may still be received.

b) The cold vent facility is provided with two bursting disc installed back to back in the duty line with a parallel spare set provided. Should these rupture, an alarm signal is produced and the incinerator is shutdown. The latter also causes a general plant shutdown thereby minimising the amounts of emissions. The release of H2S containing gases through the cold vent is therefore restricted to the HP/Relief header depressuring or the depressuring of the separators in the HP gas blowthrough scenario. It is not possible to quantify these periods.

c) Tables 10 - 17 show the 3 min average concentrations at the seven particular receptors specified; in all cases the odour threshold is exceeded.

If the concentrations are adjusted to give 8 hr. time interval averages by multiplying by a factor of 0.36 then in some cases the Long Term Exposure Limit of 14 mg/m3 is exceeded. This occurs mainly at elevated receptors and in particular the crude stripper and the amine contactor/regenerator.

If the 3 min average concentration is converted to give the 15 min average value by multiplying by 0.72, then the Short Term Exposure Limit of 21 mg/m3 is also exceeded at the same receptors.

It is concluded that if cold venting were proposed as a normal operation then it would not be acceptable to BP or to environmental authorities. However, it is noted that the original design intentions were that the discharge would be of limited duration and of low probability.

이 가슴 관람이

The second second second second second second second second second second second second second second second s

States and the second second

d) In assessing the safety implications of the discharge, the instantaneous level of H2S perceived is relevant. It is noted that the closest approximation of this is the 3 min average concentrations which shows that at elevated levels, and in particular the top of the amine contactor/regenerator towers, concentrations in excess of 42 mg/m3 are predicted. At these levels, the H2S would cause eye and respiratory tract irritation. This is unpleasant and would be a signal for evacuating the area.

It is noted that if the 5 sec. average concentration (5 times the 3 min average concentrations in most cases) are considered, then levels in excess of 140 mg/m3 are predicted. These could cause a loss of the sense of smell and result in a loss of signal for evacuating from the affected areas. However, the levels are below 700 mg/m3 which would cause a loss of consciousness within 15 mins of exposure. It should also be noted that such duration for exposures are unlikely as explained in b) above.

It must be noted that the effects of H2S depends on a number of variables and above limits are only for guidance. It is noted that people who are regularly exposed to even very low concentrations eventually become unable to detect the gas by smell.

e) The models used for the dispersion calculations lose their validity at distances less than 10 metres of the source. In this area, it is also noted that the mechanism for dispersion is different and low flow emissions have greater impact on the resultant ground level concentrations especially if the gaseous emissions are denser than air as in this particular case. Within this 10 meter area of the Gathering Centre is the location of the pig receivers and wax traps which may well be manned in event of the cold vent operating.

f) Analysis of the results given in Tables 2 - 10 shows that the dilutions resulting from cold vent dispersion increase as the flow of the emission decrease (see Fig 3) but is generally less affected by the concentration of the pollutant in the emissions. Low flows would result during plant startup when plant upsets generally arise and

6

reduction of H2S content in the gas header by starting up using less sour wells would reduce the impact of cold venting during this period.

g) The concentrations of the hydrocarbons at the various receptors after dispersion has not been calculated; this can be roughly estimated from the dilutions imparted on the pollutant during dispersion. Estimated hydrocarbon concentration for two receptors has been calculated for Original Design Case 1 and shown below.

i) Amine contactor, maximum H2S concentration is 50.7 mg/m3 which corresponds to a dilution of 249. Therefore, max concentration of hydrocarbon is 0.40 %.

ii) Incinerator, maximum H2S concentration is 1.9 mg/m3 which corresponds to a dilution of 6636. Therefore, max concentration of hydrocarbon is 0.02 %.

It will be seen that in both cases the concentrations predicted are below the Lower Flammability Level assumed 2 % (methane) for this purpose.

5 OPERATING EXPERIENCE

i.

1

1

1

ļ

During commissioning of the Welton Gathering Centre plant, problems were experienced with the use of graphite bursting discs which ruptured at low bursting pressure. These may have been due to fatigue caused by pulsation of gases in the HP/relief header. This was resolved by reducing pulsation from the burner and the installation of a bursting disc of composite material which has proved reliable.

entra da com

and state to share the second

After commissioning, the cold vent has operated several times mainly as a result of instrument failure on the incinerator. However the production through the plant was below 50 % of the full capacity. With the recent modifications to the incinerator, it has been possible to increase the flow through the Gathering Centre. This increase has resulted in the header pressures being close to the bursting disc pressure. This could increase the frequency of operation of the cold vent resulting from surges through the plant.

If the existing incinerator is replaced by a new incinerator in the next Phase of the Welton Upgrading then the design of the incinerator and the setting of the bursting disc should be such that frequency of rupture due to surges is eliminated.

6 CONCLUSIONS AND RECOMMENDATIONS

a) The study has concentrated on the dispersion of H2S based on a number of the Original Design and the Welton Upgrading gas compositions. It has been predicted that emissions would be odorous at ground level at short and long distances from the cold vent.

l

I

L

b) At elevated areas, for example, the top of the amine contactor/regenerator towers, the predicted levels of H2S are higher than the Short Term Exposure limit. It is therefore recommended that access to the elevated areas close to the cold vent be restricted. Adequate warnings should be displayed at access points of the elevated areas and BA sets must be immediately available.

c) The cold vent is located close to the incinerator and the pig receiving areas. These areas are likely to be manned during operation of the cold vent. An audible alarm which is activated from a bursting disc failure has therefore been installed to provide warning to personnel. Regular testing should establish that this alarm, located near incinerator control panel, provides adequate alarm near the pig receiving area.

d) The plant licence was based on utilising the cold vent on failure of incinerator. The results of this study show that the emissions would be odorous and high concentrations of H2S are predicted at elevated areas near the cold vent. It is therefore important that if operations are changed such that the design intention of utilising the cold vent is changed, then appropriate BP authorities should be consulted.

e) Due to the higher GOR's and plant surges, it is possible that increased pressures close to the bursting disc pressures are experienced as a result of the higher gas flows. This would increase the frequency of operation of the cold vent and represents a further constraint to the maximum allowable plant throughput.

f) For the Welton Upgrading work, a number of options for provision of additional gas disposal capacity are being investigated. Due to the potential hazardous nature of the cold vent emissions, it is recommended that preference should be given to solutions which remove the need to use a cold vent. Such a route is provided if a ground flare is selected to burn gases on incinerator failure. g) In view of the complex nature of the safety and health hazard of H2S, it is recommended that an interpretation of the GES dispersion results reported here should be obtained from HTH, Dyce. Any changes perceived from the original intentions of the using the cold vent should be similarly addressed.

1.1

c.t. J. Caven-Atack A.A. Croll M. Broadribb J.A. Lewis E.A. Mullin/R.W. Bridger 1058/97

ţ

and the state of t

Figure 3

TEP/DP/EXP/SUR Date : 2/85	TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisio	n :		Page No
	TEP/DP/EXP/SUR		Date	:	2/85	

_

10. PIPES VALVES + FITTINGS

0 TOTAL **Revision**: PROCESS ENGINEERING DESIGN MANUAL Page No PROCESS AND UTILITY LINE SIZING 2/85 10.1 TEP/DP/EXP/SUR Date ť 1. APPLICABILITY For a feasibility study a quick estimate of the line size will be required. Ľ For a pre-project study a better estimate of the line size will be required. L The purpose of this guide is to size only the lines in the process unit. For the both the feasibility and pre-project studies abaques AFTP can be used : . "Pour le calcul des pertes de charges des liquides dans les conduites" 1 "Pour le calcul des pertes de charges des gaz dans les conduites" 1 The line sizing depends on the service : . Flare lines, pipeline and riser sizing are not included on this chapter. 2. LIQUID LINES SIZING CRITERIA See Table 1. 3. VAPOR AND STEAM LINES SIZING CRITERIA See Table 2. 4. TWO PHASE FLOW LINE SIZING CRITERIA The ρV^2 criteria as stated for vapor lines to be followed with : in kg/m³ $\int = \int m = \frac{W}{\frac{W1}{M} + \frac{Wv}{M}}$ W = Wl + Wv = total flow rate in kg/hr $\rho l = liquid density in kg/m^3$ W1 = liquid flow rate in kg/hr $\rho v = vapor density in kg/m^3$ Wv = vapor flow rate in kg/hr and V = Vm = $\frac{W}{\rho m. \tau \cdot \frac{\rho^2}{h}.3600}$ m/s \emptyset i = internal diameter of the line in m. om and Vm are respectively the apparent density and velocity of the fluid.

IUIAL	PROCESS ENGINEERING DESIGN MANUAL	Revisi	on: 0	Page No :				
TEP/DP/EXP/SUR	PROCESS AND UTILITY LINE SIZING	Date	: 2/85	10.2				
The flow regime to be checked on the figure 1 for horizontal lines and on the figure 2 for vertical lines.								
. For horizon	prizontal lines slug and plug flow regimes should be avoided.							
• For vertical lines slug flow regime should be avoided.								
Remark : Flow	chart Fig. 1 and 2 are based on author's experi	mental	results.					

5. PRESSURE DROP CALCULATIONS

io:

-1

ţ

1

1

1

- 5.1. MONOPHASIS FLUID (GAS OR LIQUID)
 - 5.1.1. "ABAQUES AFTP" could be used with the correction of the line diameter such as indicated on these ABAQUES.

5.1.2. Method using MOODY or "regular" Fanning friction factors.

a. Calculate Reynolds number

$$Re = \frac{\emptyset i OV}{\mu e} =$$

 $\emptyset i = line internal diameter in mm \mu e = fluid dynamic viscosity in Cpo$ $<math>\rho = fluid density in kg/m^3$ Re is a dimensionless number V = velocity in m/s

See Figure 4 \rightarrow f =

b. Determine the relative roughness : See Figure $3 \rightarrow \frac{\varepsilon}{D} = \frac{\varepsilon}{D}$

c. Determine f = friction factor :

d.
$$P = f \times \frac{100}{\emptyset i} \times \frac{100}{2g \times 10.2} = \frac{f_0 V^2}{20} bar/100 m$$

5.2. TWO PHASE FLUID

Many correlations exist to calculate the pressure drop for two phases flow, depending of the vertical or horizontal line, ratio of vapor/liquid and pressure and temperature conditions. That is out of scope of this guide and we mention only some authors: POETTMAN/CARPENTER FLANIGAN

I OLI IMAN/CARFENTER	I CANIGAN
EATON	BEGGS/BRILL
LOCKHART/MARTINELLE	TAITEL/DUCKLER

quick methods for an estimation are as follows :

TEP/DP/EXP/SUR

2/85

10.3

- 5.2.1. "ABAQUE AFTP" for gas could be used with the correction of the line diameter. Takin as defined in § 4 and the liquid viscosity as the fluid viscosity.
- 5.2.2. Method using MOODY or "regular" fanning friction factors. *

It is the same method as on § 5.1.2. with $\rho = \rho m$ and V = V m as defined on § 4 and the fluid viscosity taken as the liquid viscosity.

5.2.3. A more detailed method using the Lockhart Martinelli method is given in section 11.0 PIPELINES.

6. NOTES

- . Tubes dimensions are standard and an example is given on Table 3.
- With "ABAQUE AFTP" the correction for the internal diameter must be done and an estimation of the line thickness could be done with the following formula used mainly for high pressure.

$$e = \frac{P \, \oint e}{2(SE + PY)} + c$$

e	=	thickness	mm	Y	=	coefficient having value	es for ferritic steels
Ρ	=	Design pressure	bar g	Øe	=	external diameter	inch
S	=	allowable stress	bar	С	=	corrosion allowance	mm
Е	=	longitudial weld joint factor					

S, E and Y are not always available so the following formular could be used for an estimation.

$$e = \frac{P \oint e}{K} + c$$

e	=	thickness in mm	с	=	corrosion allowance in mm
Ρ	=	design pressure in bar g	к	=	43 for carbon steel and low temperature
					carbon steel
Øe	=	external diameter in inch			54 for 3.5 % Ni and stainless steel

For small diameters up to about 10" use the thickness given by the schedule on Table 3. For Δ P do not forget to take into account the change in elevation for liquid and two phase flow.

	IUTAL	PH	DCESS EN PRO	GIN CES	Revision	Page No				
	TEP/DP/EXP/SUR			LI	NE SIZING		•	Date	: 2/85	10.4
ne /	-								· 	
4		Ø > 20"	1.8	2.4	1.8 2.4		3	٩		
r.		ELOCITY m/s 8" < Ø < 18"	1.4	1.8		to 4.5 m/s to 4.5 m/s	3.5	to 4.5 m/s to 4.5 m/s	to 1.5 m/s	30 %.
		MUMIXAM 3" < \$ < 6"	0.1	1.2	1:0	Velocity 1.5 Velocity 1.5	2.5	Velocity 1.5 Velocity 1.5 Velocity 1.5	Velocity 1	rrease by 20 to
	_	Ø < 2"	0.6	0.9	0.6 0.9		1.3			city could inc
	TABLE	ar/km MAXI	1.0	3.5	3.5	4.6 9.0	3.5	9. <i>4</i>		iaximum velo
		NORMAL	0.6	2.3	0.6 2.3	3.5	2.3	3.5		titanium the п
		LIQUID LINE TYPE	Pumps suction : . Liquid at bubble point or with dissolved gas	Non boiling liquid	Unit lines : Liquid at bubble point or with disolved gas Non boiling liquid	Pump discharge : Discharge pressure < 50 barg Discharge pressure > 50 barg	Water lines : . Cooling water and service Note 1	Boiler feed : . Pressure < 50 barg . Pressure > 50 barg	Steam condensate return	Vote 1 : For sea water with line in t
			Pumps suction . Liquid at bu with dissolv	. Non boiling	Unit lines : Liquid at bu with disolve . Non boiling	Pump discharg Discharge p	Water lines : Cooling wat Note I	Boiler feed : . Pressure < 5 . Pressure > 5	Steam condens	

TABLE 2

	MAXIMUM V2		ΔPt	oar/km
VAPOR AND STEAM LINES	V = gas velocity m/s	m/s	NORMAL	MAXI
VAPOR LINES . P < 20 bar g . 20 < P < 50 bar g . 50 < P < 80 bar g . P > 80 bar g	6 000 7 500 10 000 15 000)) ∆P must be)) and be compa	considered atible with
 Discontinuous operation eg: compressor anti-surge: P < 50 bar g 50 < P < 80 bar g P > 80 bar g 	10 000 15 000 25 000) the correspor))))	nding service
 compressor suction compressor discharge) To be compatible with) above		0.25	0.7 1.2
STEAM LINES				
 P < 10 barg Short line L < 200 m Long line L > 200 m 		•	0.5	1.0 0.25
 - 10 < P < 30 barg . Short line L < 200 m . Long line L > 200 m 		42 42	1.2 0.25	2.3 1.0
- P > 30 bar g . Short line L < 200 m . Long line L > 200 m		30 30	1.2 0.35	^2.3 1.0

-

•

TEP/DP/EXP/SUR

PL

LINE SIZING

Date

: 2/85

10.5

- +,

TEP

Revision: 0 Page No :

.

?

TEP/DP/EXP/SUR PROCESS AND UTILITY LINE SIZING Date :2/85 7. REFERENCES AND USEFUL LITERATURE . . 1. LUDWIG . . . LUDWIG . . "Gas liquid flow in pipelines I Research results" by A.E. DUKLER May 1969 Pupi by A.G.A., API and Union of HOUSTON . . "Gas liquid flow in pipeline II - Design manual" by O. BAKER, H.W. BRAINERD, C.O. COLDREN, FLANIGAN and J.K. WELCHEN, October published by A.G.A. and API . "Proposed correlation of data for isothermal two phase, two component flor pipelines" LOCKHART, R.W. and R.C. MARTINELLI (1949) . BEGGS , H.D., and BRILL, J.P. Manual for "Two phase flow in pipes" 1975 universit TULSA . ABAQUES AFTP: "Pour le calcul des pertes de charges des liquides dan conduites" . "POUT le calcul des pertes de charges des gaz dan conduites" . PEPITE PROGRAM . "CHEMICAL PROCESS DESIGN ON A PROGRAMMABLE CALCULATOR" . WAYNE BLACKWEIL, B.S. Page 22 . "Two phase pressure drop computed" - Mafik Soliman, Hyd. Processing April 84	TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision :	0 Pag
 7. REFERENCES AND USEFUL LITERATURE LUDWIG Flow of fluids CRANE "Gas liquid flow in pipelines I Research results" by A.E. DUKLER May 1969 Pupl by A.G.A., API and Union of HOUSTON "Gas liquid flow in pipeline II - Design manual" by O. BAKER, H.W. BRAINERD, C.O. COLDREN, FLANIGAN and J.K. WELCHEN, October published by A.G.A. and API "Proposed correlation of data for isothermal two phase, two component flo pipelines" LOCKHART, R.W. and R.C. MARTINELLI (1949) BEGGS, H.D., and BRILL, J.P. Manual for "Two phase flow in pipes" 1975 universit TULSA ABAQUES AFTP: "Pour le calcul des pertes de charges des liquides dan conduites" "Propor le calcul des pertes de charges des gaz dan conduites" PEPITE PROGRAM "CHEMICAL PROCESS DESIGN ON A PROGRAMMABLE CALCULATOR" W. WAYNE BLACKWEIL, B.S. Page 22 "Two phase pressure drop computed" - Mafik Soliman, Hyd. Processing April 84 	TEP/DP/EXP/SUR	PROCESS AND UTILITY LINE SIZING	Date : 2/	/85
 7. REFERENCES AND USEFUL LITERATURE LUDWIG Flow of fluids CRANE "Gas liquid flow in pipelines I Research results" by A.E. DUKLER May 1969 Pupl by A.G.A., API and Union of HOUSTON "Gas liquid flow in pipeline II - Design manual" by O. BAKER, H.W. BRAINERD, C.O. COLDREN, FLANIGAN and J.K. WELCHEN, October published by A.G.A. and API "Proposed correlation of data for isothermal two phase, two component flop pipelines" LOCKHART, R.W. and R.C. MARTINELLI (1949) BEGGS, H.D., and BRILL, J.P. Manual for "Two phase flow in pipes" 1975 universit TULSA ABAQUES AFTP: "Pour le calcul des pertes de charges des liquides dan conduites" "Pour le calcul des pertes de charges des gaz dan conduites" PEPITE PROGRAM "CHEMICAL PROCESS DESIGN ON A PROGRAMMABLE CALCULATOR" W. WAYNE BLACKWEIL, B.S. Page 22 "Two phase pressure drop computed" - Mafik Soliman, Hyd. Processing April 84 	•		· · ·	t
 LUDWIG Flow of fluids CRANE "Gas liquid flow in pipelines I Research results" by A.E. DUKLER May 1969 Pupl by A.G.A., API and Union of HOUSTON "Gas liquid flow in pipeline II - Design manual" by O. BAKER, H.W. BRAINERD, C.O. COLDREN, FLANIGAN and J.K. WELCHEN, October published by A.G.A. and API "Proposed correlation of data for isothermal two phase, two component flo pipelines" LOCKHART, R.W. and R.C. MARTINELLI (1949) BEGGS , H.D., and BRILL, J.P. Manual for "Two phase flow in pipes" 1975 universit TULSA ABAQUES AFTP: "Pour le calcul des pertes de charges des liquides dan conduites" . "Pour le calcul des pertes de charges des gaz dans conduites" PEPITE PROGRAM "CHEMICAL PROCESS DESIGN ON A PROGRAMMABLE CALCULATOR" W. WAYNE BLACKWEIL, B.S. Page 22 "Two phase pressure drop computed" - Mafik Soliman, Hyd. Processing April 84 	7. REFERENCE	S AND USEFUL LITERATURE	•	
 Flow of fluids CRANE "Gas liquid flow in pipelines I Research results" by A.E. DUKLER May 1969 Pupl by A.G.A., API and Union of HOUSTON "Gas liquid flow in pipeline II - Design manual" by O. BAKER, H.W. BRAINERD, C.O. COLDREN, FLANIGAN and J.K. WELCHEN, October published by A.G.A. and API "Proposed correlation of data for isothermal two phase, two component flo pipelines" LOCKHART, R.W. and R.C. MARTINELLI (1949) BEGGS, H.D., and BRILL, J.P. Manual for "Two phase flow in pipes" 1975 universit TULSA ABAQUES AFTP: "Pour le calcul des pertes de charges des liquides dan conduites" . "Pour le calcul des pertes de charges des gaz dan conduites" PEPITE PROGRAM "CHEMICAL PROCESS DESIGN ON A PROGRAMMABLE CALCULATOR" W. WAYNE BLACKWEIL, B.S. Page 22 "Two phase pressure drop computed" - Mafik Soliman, Hyd. Processing April 84 	. LUDWIG		4 1	
 "Gas liquid flow in pipelines I Research results" by A.E. DUKLER May 1969 Pupl by A.G.A., API and Union of HOUSTON "Gas liquid flow in pipeline II - Design manual" by O. BAKER, H.W. BRAINERD, C.O. COLDREN, FLANIGAN and J.K. WELCHEN, October published by A.G.A. and API "Proposed correlation of data for isothermal two phase, two component flo pipelines" LOCKHART, R.W. and R.C. MARTINELLI (1949) BEGGS, H.D., and BRILL, J.P. Manual for "Two phase flow in pipes" 1975 universi TULSA ABAQUES AFTP: "Pour le calcul des pertes de charges des liquides dan conduites" "Pour le calcul des pertes de charges des gaz dan conduites" PEPITE PROGRAM "CHEMICAL PROCESS DESIGN ON A PROGRAMMABLE CALCULATOR" W. WAYNE BLACKWEIL, B.S. Page 22 "Two phase pressure drop computed" - Mafik Soliman, Hyd. Processing April 84 	. Flow of fl	uids CRANE		
 "Gas liquid flow in pipeline II - Design manual" by O. BAKER, H.W. BRAINERD, C.O. COLDREN, FLANIGAN and J.K. WELCHEN, October published by A.G.A. and API "Proposed correlation of data for isothermal two phase, two component flo pipelines" LOCKHART, R.W. and R.C. MARTINELLI (1949) BEGGS, H.D., and BRILL, J.P. Manual for "Two phase flow in pipes" 1975 universit TULSA ABAQUES AFTP: "Pour le calcul des pertes de charges des liquides dan conduites" "Pour le calcul des pertes de charges des gaz dans conduites" PEPITE PROGRAM "CHEMICAL PROCESS DESIGN ON A PROGRAMMABLE CALCULATOR" WAYNE BLACKWEIL, B.S. Page 22 "Two phase pressure drop computed" - Mafik Soliman, Hyd. Processing April 84 	. "Gas liqui Pupl by A.	flow in pipelines I Research results" by A.E. DU G.A., API and Union of HOUSTON	IKLER May 1	969
 "Proposed correlation of data for isothermal two phase, two component flopipelines" LOCKHART, R.W. and R.C. MARTINELLI (1949) BEGGS, H.D., and BRILL, J.P. Manual for "Two phase flow in pipes" 1975 universite TULSA ABAQUES AFTP: "Pour le calcul des pertes de charges des liquides dan conduites" "Pour le calcul des pertes de charges des gaz dans conduites" PEPITE PROGRAM CHEMICAL PROCESS DESIGN ON A PROGRAMMABLE CALCULATOR" WAYNE BLACKWEIL, B.S. Page 22 "Two phase pressure drop computed" - Mafik Soliman, Hyd. Processing April 84 	. "Gas liquid	fow in pipeline II – Design manual" by O. BAKE BRAINERD, C.O. COLDREN, FLANIGAN and J. published by A.G.A. and API	R, H.W. K. WELCHEI	N, October
 BEGGS, H.D., and BRILL, J.P. Manual for "Two phase flow in pipes" 1975 universite TULSA ABAQUES AFTP: "Pour le calcul des pertes de charges des liquides dan conduites" "Pour le calcul des pertes de charges des gaz dans conduites" PEPITE PROGRAM "CHEMICAL PROCESS DESIGN ON A PROGRAMMABLE CALCULATOR" WAYNE BLACKWEIL, B.S. Page 22 "Two phase pressure drop computed" - Mafik Soliman, Hyd. Processing April 84 	. "Proposed pipelines"	correlation of data for isothermal two pha LOCKHART, R.W. and R.C. MARTINELLI (1949)	se, two con	nponent fl
 ABAQUES AFTP: "Pour le calcul des pertes de charges des liquides dan conduites" "Pour le calcul des pertes de charges des gaz dans conduites" PEPITE PROGRAM "CHEMICAL PROCESS DESIGN ON A PROGRAMMABLE CALCULATOR" W. WAYNE BLACKWEIL, B.S. Page 22 "Two phase pressure drop computed" - Mafik Soliman, Hyd. Processing April 84 	. BEGGS,H TULSA	I.D., and BRILL, J.P. Manual for "Two phase flo	w in pip e s" 1	975 univers
conduites" PEPITE PROGRAM "CHEMICAL PROCESS DESIGN ON A PROGRAMMABLE CALCULATOR" WAYNE BLACKWEIL, B.S. Page 22 "Two phase pressure drop computed" - Mafik Soliman, Hyd. Processing April 84 	. ABAQUES	AFTP: . "Pour le calcul des pertes de ci conduites" . "Pour le calcul des pertes de	narges des l charges de	iquides dan s gaz dar
 PEPITE PROGRAM "CHEMICAL PROCESS DESIGN ON A PROGRAMMABLE CALCULATOR" W. WAYNE BLACKWEIL, B.S. Page 22 "Two phase pressure drop computed" - Mafik Soliman, Hyd. Processing April 84 		conduites"		
 "CHEMICAL PROCESS DESIGN ON A PROGRAMMABLE CALCULATOR" W. WAYNE BLACKWEIL, B.S. Page 22 "Two phase pressure drop computed" - Mafik Soliman, Hyd. Processing April 84 	. PEPITE PI	ROGRAM		
. "Two phase pressure drop computed" - Mafik Soliman, Hyd. Processing April 84	. "CHEMICA W. WAYN	L PROCESS DESIGN ON A PROGRAMMABLE (E BLACKWEIL, B.S. Page 22	CALCULATO	R"

00.0

PROCESS ENGINEERING DESIGN MANUAL

REVINUE. U

.

: 2/85

Date

rage No :

10.10

PROCESS AND UTILITY LINE SIZING

TEP/DP/EXP/SUR

1

UTAL

. .

1

.

;

4

ı

.

2

ł

•

TABLE Nº3

TUBE DIMENSIONS IN THE

		NORMAL THICKNESS WITH TOLERANCE -12.5 %										A.P.I. NORMALISATION					
DIAM DIAM				SCHE	DULE NU	STANDARD	EXTRA	DOUBLE									
INS		SCH 10	SCH 20	SCH XX	SCH 40	SCH 60	5CH 80	SCH 100	SCH 120	SCH 140	SСн 160	SERIES 30 OU 40	SERIES	STRONC SERIES 160 DU 200			
1-	10,29	1,24			1,75		2,4)	• 1		•		1,73	2,41				
<u>مل</u> ه	13,72	1,65			2,23		3,02	1 :				2,74	3.07				
). I	17,16	1.25	1		2,31		3,20	ļ '				2,31	3,20				
1.	21,34	2,11			2,77		3,73				4,75	2,77	۱,۵	7,67			
<u>]</u> .	26,67	3,21			2.87		3,91	i			3,34	2,37	3,91	7,82			
1-	33,34	2.77			3,38		4,55				6,35	3,34	٥,35	9,09			
- 1/4*	\$2,16	2,77		ł	3,58		4,25				6,35	3,54	4,83	9,70			
1 1/2*	\$6,26	2.77			3,62		3,01			•	7,34	3,62	3,08	10.10			
T	30,32	2,77			3.91		3,54				1.71	3,97	3,34	11.07			
54-	73,02	3,06			5,16		7,01				9,32	3,16	7.01	14.02			
-د	21,90	3,06			3,40		7,67				11.10	3,47	7,02	13,24			
24.	101,60	3,06			3,74		8,01					3,74	8,09	18,15			
۹-	114,30	3.06			6,02		1,54		11,10		13,40	6,07	8,50	17,12			
3-	141,30	3,00			6,35		7,52		12,70		13,87	7,55 -	9,32	17,05			
"	144,27	3,40			7,11		10,97		14,27		18,24	7,11	10,97	21,75			
1.	219,07	3,72	_ 6,35	7,04	8,18	10,31	12.70	15,08	18,24	20,62	23,01	7,04 12,18	12,70	22.22			
10-	273,04	4,18	6,35	7,30	9,27	12,70	15,01	18,24	21,41	25,40	n,»	7,07 7,10 9,27	12,70				
127	323,24	4,37	6,35	4,34	10.31	14,27	17,43	21.41	25,40	n,57	»»,»»	26,7 26,2	12,70				
11=00	355,29	6,35	7,93	9,32	11,10	13,04	19,03	23,30	26,97	31,75	35,71	9,32	12,70				
16-00	406,39	6.35	7,93	9,52	12,70	16,44	21.41	26.19	30,94	ж,ю	37,67 9,32		12.70				
13-00	457,10	6,35	7,93	11,10	14,27	18,24	23,00	27,34	34,11	,11 37,07 44,43		9,32	12,70				
20-00	307,99	6,33	9,32	12,70	15,09	20, 52	26,-19	31.75	34,10	•(.•3	•7,20	9,32	12,70				
20-00	609,39	4,33	9,52	14.27	17,45	23,80	30.94	38.10	++,+5 	52.37	54.72	9.52	12.70				
30-00	761,99	7,93	12,70	13,37			<u> </u>		 					<u> </u>			

Notes : 1) For schedule 10 Ø < 14" are not used normally 2) The following diameters are not common : 1/8", 3/8", 1 1/4", 2 1/2", 3 1/2", 5" 3) For OD > 30" line diameters increase in 2" increments

TEP/DP/EXP/SUR Date 2/85 10.11 1. APPLICABILITY The purpose of this chapter is to determine the piping class used as shown on a PID line when the piping material class document does not exist. This is generally the case for feasibility and pre-project studies.	TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision : 0	Page No :
 APPLICABILITY The purpose of this chapter is to determine the piping class used as shown on a PID line when the piping material class document does not exist. This is generally the case for feasibility and pre-project studies. 	TEP/DP/EXP/SUR	Piping CLASS	Date : 2/85	. 10.11
The purpose of this chapter is to determine the piping class used as shown on a PID line when the piping material class document does not exist. This is generally the case for feasibility and pre-project studies.	I. APPLICABILIT	Y		,÷
	The purpose of when the pipin feasibility and p	this chapter is to determine the piping class g material class document does not exist. Th pre-project studies.	used as shown of his is generally t	n a PID line he case for

The class number shall consist of a capital letter representing the ANSI series and a two-digit number representing the main material entering into the composition of material used for the valve bodies, tubes, fittings and flanges of the network in question.

ler

28 9 1

42 48:

538

28.9 t

> 649 704

> > 760

851 NOTES

(a)

(d) 191

(h)

Example:

The tables below give the letters and numbers to be used for numbering piping classes.

2.2. LETTERS representing the series of the class

Series	ļ	125	1	150) [250)	300)	400)	600) [900	1	150	0	250	0	Tracing
	+		÷		÷		÷		+		+		+		<u> </u>	·	<u> </u>		+	
Symbol	i	Α	i	в	i	С	i	D	i	Ε	i	F	i	G		н	i	J		Y

2.3. NUMBERS representing the main material of the class

01 to 20 : Carbon steels (ordinary, galvanized, normalized, etc ...) 21 to 45 : Alloy steels 46 to 70 : Stainless steels 71 to 85 : Special alloys (Monel, Hastelloy, etc...) 86 to 99 : Other materials (Cast-iron, copper, copper alloy, etc...) Glass Plastic, cement-asbestos fiber, etc...
				4							
		TEP/DP	/EXP/SUR		PIPI	NG CLAS	S	Da	ite : 2/85		10.1
••							÷	<u> </u>		<u></u>	
			·						· .		
	·	3. PR	ESSURE T	EMPERATI	JRE RATIN	٩GS					
								۲			
		Th	e following	ANNEX C	G is extra	cted from	ANSI B 16	5-5 1977	(AMERICAN	N NAT	ION
48		51	ANDARD .	FILEL PIPE	FLANGE	·		11(0G2).			
		Fo	r pressure	temperatur	e ratings	higher tha	an series 25	00 the fo	ollowing is u	sed 50	00 F
		10	000 PSI,	(used mainl	y for well	tubing and	d wellhead).				
						1					
	{		-			FIG.	۹				
	-		Pressure	CLASS 150	atings for st	ei flanges a 400	and flanged fitt	tings from /	ANSI 816.5-197	77 	
	-	lemo. *C	lemp, *f			Ac	orm. Carbon steel	A105. A141- A516-70 A150.167 A	II. A216-WCB, A515-70		
	1								33/+6.1		
		28.9 to 378	-20 to 100	285	740	ressures are in po	ounds per square mch.	. gage (psig) 7220	3705	6170	
		28.9 to 37 8 93.3 141.5 204	-20 to 100 200 300 400	285 260 230 200	740 675 655 635	ressures are in po 990 900 875 845	ounds per square unch, 1480 1350 1315 1270	2220 2025 1970 1900	3705 3375 3280 3170	6170 5625 5470 5280	
	-	28.9 to 37 8 93.3 141.5 204 260 316 343 371	-20 to 100 200 300 400 500 600 650	285 260 230 200 170 140 125	740 675 655 635 600 550 550 535	ressures are m po 990 900 875 845 800 730 715	2000 1 20000 1 20000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1	2220 2025 1970 1900 1795 1640 1610	3705 3375 3280 3170 2995 2735 2685	6170 5625 5470 5280 4990 4560 4475	
	-	28.9 to 37 8 93.3 141.5 204 260 316 343 371 427	-20 to 100 200 300 400 500 600 650 650 700 750 800	285 260 230 200 170 140 125 110 95 80	740 675 655 635 600 550 535 535 535 505 410	ressures are in po 990 875 845 800 730 715 710 670 550	bunds per square inch. 1480 1350 1315 1270 1095 1075 1065 1010 825	2220 2025 1970 1990 1795 1640 1610 1600 1510 1235	3705 3375 3280 3170 2995 2735 2685 2665 2520 2060	6170 5625 5470 5280 4990 4560 4475 4440 4200 3430	
	_	28.9 to 37.8 93.3 141.5 204 260 316 343 371 427 482	-20 to 100 200 300 400 500 650 700 750 800 850 900 950	285 260 230 200 170 140 125 110 95 80 65 50 35	740 675 655 635 600 550 535 535 535 535 505 410 270 170 170	ressures are in po 990 900 875 845 800 730 715 710 670 550 355 230 140	200743 per square inch. 1480 1350 1315 1270 1200 1095 1075 1065 1010 825 535 345 205	Bit (psig) 2220 2025 1970 1980 1795 1640 1610 1600 1510 1235 805 515 310	3705 3375 3280 3170 2995 2735 2685 2665 2665 2665 2520 2060 1340 860 515	6170 5625 5470 5280 4990 4560 4475 4440 4200 3430 2230 1430 860	
		28.9 to 37.8 93.3 141.5 204 260 316 343 371 427 482 538	-20 to 100 200 300 400 500 600 650 700 750 800 850 900 950 1000	285 260 230 200 170 140 140 125 110 95 80 65 50 35 20	740 675 655 635 600 550 535 535 535 535 535 505 410 270 170 105 50	ressures are in po 990 900 875 845 800 730 715 710 670 550 355 230 140 70	Dunds per square anch, 1480 1350 1315 1270 1200 1095 1075 1065 1010 825 335 345 205 105 Type 304 304	Bit (prig) 2220 2025 1970 1970 1795 1640 1610 1600 1510 1235 805 515 310 155 A182-F304 A240-304	3705 3375 3280 3170 2735 2685 2665 2665 2520 2060 1340 860 \$15 260 \$15 260 \$15 260	6170 5625 5470 5280 4990 4560 4475 4440 4200 3430 2230 1430 860 430	
	-	28.9 to 37 8 93.3 141 5 204 260 316 343 371 427 482 538 28.9 to 37 8 93.3	-20 to 100 200 300 400 500 650 700 750 800 850 900 950 1000	285 260 230 200 170 140 140 145 110 95 80 65 50 35 20 275 275	740 675 655 635 500 535 535 535 505 410 270 170 105 50	ressures are in po 990 875 845 800 730 715 710 670 550 355 230 140 70 960 800	Dunds per square inch. 1480 1350 1315 1270 1200 1095 1075 1065 1010 825 335 345 205 105 179P 304	JSC (1 £, #) 2200 2205 1970 1900 1795 1640 1610 1600 1510 1235 805 515 310 155 A182-F304, A240-304, A A351-CF3 21600	3705 3375 3280 3170 2995 2735 2685 2665 2665 2520 2060 1340 860 515 260 A182-F304H 351-CF8 eet to be stied or 3600	6170 5625 5470 5280 4990 4560 4475 4440 4200 3430 2230 1430 860 430 860 430	
	-	28.9 to 37.8 93.3 141.5 204 260 316 343 371 427 482 538 28.9 to 37.8 93.3 141.5 204 260 343 371 427 482 538	-20 to 100 200 300 400 500 600 650 750 800 850 900 950 1000 -20 to 100 200 300 400 500	285 260 230 200 170 140 125 110 95 80 65 50 35 20 275 235 205 180	740 675 655 635 500 535 535 535 505 410 270 170 170 105 50 50 720 600 530 470 475	711311/165 are in po 990 875 845 800 730 715 710 670 550 355 230 140 70 960 800 705 630 596	bunds per square inch. 1480 1350 1315 1270 1200 1095 1075 1065 1065 1010 825 535 345 205 105 Type 304 1440 1200 1055 940 825	Jac Pare (pring) 2220 2025 1970 1900 1795 1640 1610 1600 1510 1235 805 515 310 155 A182-F304, A A351-CF3 2160 1585 1410 1400	3705 3375 3280 3170 2995 2735 2685 2665 2520 2060 1340 860 515 260 All2-f304H 351-CF8 mot to be used on 3600 2000 2640 2350	6170 5625 5470 5280 4990 4560 4475 4440 33430 2230 1430 2230 1430 860 430 * * * * * * * * * *	
		28.9 to 37.8 93.3 141.5 204 260 316 343 371 427 482 538 28.9 to 37.8 93.3 141.5 204 260 316 343 371	-20 to 100 200 300 400 500 600 650 750 800 850 900 950 1000 -20 to 100 200 300 400 500 650 700	285 260 230 200 170 140 125 110 95 80 65 50 35 20 275 235 205 180 170 140 125 110	740 675 655 635 500 535 535 505 410 270 170 170 105 50 720 600 530 470 435 415 410 405	Pressures are an pop 990 990 900 875 845 800 730 715 710 670 550 355 355 355 355 355 355 355 355 355 355 355 355 355 355 355 555 545 545 545 545 540	Jundi per square inch. 1480 1350 1315 1270 1200 1095 1075 1065 1010 825 535 345 205 105 Type 304 1440 1200 1055 940 875 830 815 805	S20-11 L Pare (pring) 2220 2025 1970 1990 1000 1640 1610 1650 1510 1235 805 515 310 155 A182-F304 A240-304 A351-CF1 2160 1800 1585 1410 1310 1245 1225 1210 1210	3705 3375 3280 3170 2995 2735 2685 2665 2520 2060 1340 860 515 260 All82-f304H 351-CF8 ext to be exted or 3600 3000 2640 2350 2185 2075 2040 2015	6170 5625 5470 5280 4990 4560 4475 4440 4200 3430 2230 1430 2230 1430 860 430 860 430 * * * * * * * * * * * * * * * * * * *	
		28.9 to 37.8 93.3 141.5 204 260 316 343 371 427 482 538 28.9 to 37.8 93.3 141.5 204 260 316 343 371 427 482 538 482 538 482 538 482 538 482 538 482 538 482 538 482 538 538 538 538 538 538 538 538	-20 to 100 200 300 400 500 600 650 700 750 800 850 900 950 1000 -20 to 100 200 300 400 500 650 700 750 850 950 1000 200 850 950 1000 200 850 950 1000 500 850 950 1000 850 950 1000 850 950 1000 850 950 1000 850 950 1000 850 950 1000 850 950 1000 850 950 1000 850 950 1000 950 1000 850 950 1000 850 950 1000 850 950 1000 850 950 1000 850 950 1000 850 950 1000 850 950 1000 850 850 950 1000 850 950 1000 850 850 950 1000 850 850 950 1000 850 850 850 850 850 850 850	285 260 230 200 170 140 95 80 65 50 35 20 35 20 275 235 205 180 170 140 125 110	740 675 655 635 500 535 535 535 505 410 270 170 170 170 105 50 720 600 500 530 470 415 415 415 410 405 400 395 390	Pressures are on poo 990 900 875 845 800 730 715 710 670 550 355 230 140 70 960 800 705 630 585 545 540 530 525 520	Jundi per square inch. 1480 1350 1315 1270 1200 1095 1075 1065 1010 825 535 345 205 105 Type 304 1440 1200 940 875 830 815 805 790 780	Jac Jac pret (pring) 2220 2205 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1640 1610 1610 1600 1235 805 515 310 155 4182-f304 A351-f73 2160 1800 1585 1410 1310 1245 1225 1210 1195 1180 1165	3705 3375 3280 3170 2995 2735 2685 2665 2665 2520 2060 1340 860 515 260 A182-F304H 351-CF8 set to be stad pro 3600 3000 2640 2655 260 260 260 260 260 260 260 260	6170 5625 5470 5280 4990 4560 4475 4440 4200 3430 2230 1430 860 430 1430 860 430 5000 5000 5000 4400 3920 3640 3460 3360 3320 3280 3280	
		28.9 to 37.8 93.3 141.5 204 260 316 343 371 427 482 538 28.9 to 37.8 93.3 141.5 204 260 316 343 371 427 482 538	-20 to 100 200 300 400 500 600 650 750 800 850 900 950 1000 -20 to 100 200 300 400 500 650 750 850 900 950 1000 750 850 900 950 1000 950 1000 950 1000 950 950 950 950 950 950 950	285 260 230 200 170 140 95 80 65 50 35 20 275 235 205 180 170 140 125 110 95 80 65 50 35 205 180 170 140 125 110 35 205 180 170 140 145 110 110 125 110 110 125 110 110 125 110 110 125 110 110 125 110 110 125 110 110 125 110 110 155 100 155 20 100 155 20 100 155 20 100 155 20 155 20 155 20 155 20 155 20 155 20 155 205 180 155 205 180 195 180 195 205 180 195 205 180 170 180 195 205 180 195 205 180 195 205 180 170 140 125 100 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 125 100 100 100 100 100 100 100 10	740 675 655 635 500 535 535 535 505 410 270 170 105 50 720 600 530 470 435 415 410 405 415 410 405 395 390 385 375 325	Pressures are an an	Jundi per square inch. 1480 1350 1315 1270 1200 1095 1075 1065 1010 825 335 205 105 1200 1055 940 875 815 805 790 750 645	Jac Jac pre (prig) 2202 2025 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1640 1610 16235 805 515 310 155 15 310 155 310 155 310 155 310 155 310 155 310 155 150 150 1245 1225 1210 1195 1180 1165 1150 1125 965 965	3705 3375 3280 3170 2995 2735 2685 2665 2520 2060 1340 860 515 260 AI&2-F304H 351-CF3 ext to be stad or 3600 3000 2640 2350 2185 2075 2040 2015 1990 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970	6170 5625 5470 5280 4990 4560 4475 4440 4200 3430 2230 1430 860 430 860 430 860 430 860 430 5000 5000 5000 5000 5000 5000 5400 3920 3640 3360 3320 3280 3280 3220 3120 3120 3120	
		28.9 to 37.8 93.3 141 5 204 260 314 343 371 427 482 538 28.9 to 37.8 93.3 141.5 204 260 313 141.5 204 260 313 141.5 204 260 313 141.5 204 260 313 141.5 204 260 313 141.5 204 260 343 371 427 482 538 204 205 205 205 205 205 205 205 205	-20 to 100 200 300 400 500 650 700 750 800 850 900 950 1000 -20 to 100 200 300 400 500 650 750 800 850 900 950 1000 750 800 850 900 950 1000 1050 1050 1050 1150	285 260 230 200 170 140 145 110 95 80 65 50 35 20 275 235 205 180 170 140 125 110 125 110 140 125 110 35 205 80 65 50 35 20	740 675 655 635 500 535 535 535 505 410 270 170 105 50 720 600 500 50 50 410 410 405 415 415 415 410 405 400 395 390 385 375 325 310 260 195	Pressures are and 990 900 900 975 845 800 730 710 670 550 355 230 140 70 70 960 800 705 630 585 555 545 545 540 510 500 430 410 345 260	Sundi per square inch. 1480 1350 1315 1270 1200 1095 1075 1065 1010 825 335 345 205 105 1099 304 1440 1200 1055 940 875 830 815 805 795 790 780 770 750 645 620 515 390 390	J30-11 L. pret (pring) 22025 1970 1970 1970 1640 1610 1620 1510 1235 310 155 310 155 310 155 310 155 310 155 310 155 310 155 310 155 1800 1800 1215 1210 1195 1165 150 1125 965 925 770 596	3705 3375 3280 3170 2995 2735 2685 2665 2520 2060 1340 860 515 260 1340 860 515 260 215 260 260 215 260 2060 2060 215 260 2060 2060 215 2075 2075 2040 2015 1990 1975 2040 2015 1990 1970 1070 1070 10	6170 5625 5470 5280 4990 4560 4475 4440 4200 3430 2230 1430 860 430 860 430 5000 5000 5000 5000 5000 5000 5000	
		28.9 to 37.8 93.3 141.5 204 260 316 343 371 427 482 538 28.9 to 37.8 93.3 141.5 204 205 316 343 371 427 482 538 204 204 205 316 343 371 427 482 538 649 704	-20 to 100 200 300 400 500 650 700 750 800 850 900 950 1000 200 300 400 500 650 700 750 800 650 700 750 800 650 700 750 800 650 700 750 800 850 900 950 1000 1000 1000 1000 1000 1150 1250 1300	285 260 230 230 200 170 140 125 110 95 80 65 50 35 20 275 235 205 180 170 140 125 110 125 110 95 80 65 50 35 20	740 675 655 635 500 530 535 535 505 410 270 170 105 50 720 600 530 470 400 530 470 435 415 410 405 50 50 50 50 50 50 50 50 50 50 50 50 5	Pressures are in poo 900 970 900 875 845 800 730 670 550 3355 230 140 70 960 800 700 960 800 705 630 585 545 540 530 525 520 510 500 430 410 345 260 205 140	Junds per square inch. 1480 1350 1315 1270 1200 1095 1075 1065 1010 825 335 345 205 105 1ype 304 1440 1200 1055 940 875 830 815 805 790 780 750 645 620 515 390 310 220 165	June June pret (pring) 2220 2205 1970 1970 1990 1795 1640 1610 1650 1510 1235 805 515 310 155 A182-F304 A240-304 A240-304 A351-CF3 2160 1800 1585 1410 1310 1245 1225 1225 1200 1195 1180 1165 1150 1125 965 925 770 585 465 330 245 245	3705 3375 3280 3170 2995 2735 2685 2665 2520 2060 1340 860 515 260 All82-f304H 351-CF8 ext to be exted or 3600 2000 2640 2350 2185 2075 2040 2015 1990 197	6170 5625 5470 5280 4990 4560 4475 4440 4200 3430 2230 1430 860 430 860 430 5000 5000 5000 5000 5000 5000 5000	
		28.9 to 37.8 93.3 141.5 204 260 316 343 371 427 482 538 28.9 to 37.8 93.3 141.5 204 260 316 343 371 427 482 538 260 316 343 371 427 482 538 593 649 704 760 951	-20 to 100 200 300 400 500 600 650 700 750 800 950 1000 -20 to 100 200 300 400 500 650 700 750 800 950 1000 500 650 700 950 1000 500 650 700 950 1000 1000 1000 1150 1250 1350 1350 1400 145	285 260 230 200 170 140 125 110 95 80 65 50 35 20 275 235 205 180 170 140 125 110 95 80 65 50 35 20 50 10 10 10 125 10 10 95 80 65 50 35 20 20 20 20 20 20 20 20 20 20	740 675 655 635 500 535 535 505 410 270 170 105 50 720 600 500 410 270 170 170 105 50 410 415 415 410 405 400 395 390 385 375 310 260 195 155 155 155 155 155 155 50 50 50 50 50 50 50 50 50 50 50 50 5	Pressures are an pool 990 900 875 845 800 730 710 670 550 355 230 140 70 70 70 960 800 705 630 585 545 540 530 525 510 500 430 345 260 205 145 110 85 65 45 45	Jundi per square inch. 1480 1350 1315 1270 1200 1095 1075 10065 1010 825 335 345 205 105 1770 304 1440 1200 1055 940 875 830 815 805 795 790 750 645 620 515 390 310 220 165 125 90 70	J30-11 L Pare (pring) 2220 2025 1970 1990 1795 1640 1610 1600 1510 1235 805 515 310 155 150 1235 805 515 310 155 150 1235 805 515 310 155 150 1235 1600 150 155 1410 1310 1245 1225 1210 1195 1180 1125 965 925 770 585 465 185 145 185 145 105 105	3705 3375 3280 3170 2995 2735 2685 2665 2665 2520 2060 1340 860 515 260 A182-F304H 351-CF8 ent to be etted en 3600 3000 2640 2350 2185 2075 2040 2015 1990 1970 1970 1945 1920 1870 1610 1545 1285 980 770 550 410 310 240 170	6170 5625 5470 5280 4990 4560 4475 4440 4200 3430 2230 1430 860 430 860 430 5000 430 5000 430 300 5000 4400 3460 3460 3460 3460 3460 3460 3	

SI

Ľ

ł

1

ł

ł

Ł

I

ł

TEP/DP/EXP/SUR

1. APPLICABILITY

The purpose of this chapter is to determine the types of valves used for designation on the PID.

valves are used for two mains functions, isolation and control.

The following is only a guide line for selection of types of valves which must follow the piping material class document when it exists. L

2. BLOCK VALVES

The main types are : ball

butterfly

gate

2.1. BALL VALVE

Ball valves can be full bore or reduced bore.

plug

2.1.1. Full bore uses

- flare system : upstream and downstream of PSV, rupture disc, flare line if • required.
- downstream pig launcher and upstream pig receiver.
- vents and drains on hydrocarbon equipments.
- piping valves on instruments for hydrocarbon.
- for block valves an hydrocarbon lines if the pressure drop is critical.
- utility except water for diameter larger than 2".

2.1.2. Reduced bore uses

. Block on hydrocarbon service without solid particles.

2.2. PLUG VALVE USES

Plug valves have the same use as reduced bore ball valves when used for high pressure (600 [#]). Plug valves can be assimilated to reduced ball valves, generally, plug valves, are smaller and lighter of the two.

TEPIDPJEXPJSUR Date : 2/85 10 2.3. GATE VALVE USES . Gate valves can be used as ball valves except for downstream of pig launche- upstream of pig receivers. The vertical physical space required by a gate val greater than a ball valve. . Tight shut off for ball or plug valves is superior to that of a gate. . For hydrocarbon service with solid particles presentor as wing valves on heads. . For quick closure purposes. . On utility lines for low diameters < 2" 2.4. BUTTERFLY VALVE USES . On water lines for service, utility or sea water, generally for diameters la than 2". 3. CONTROL VALVES The main types are :. globe . butterfly . special 3.1. GLOBE VALVE USED . Control valve used in most of cases except at very high P as define instrument group, or on water networks, and compressor suction lines throttling purposes. 3.2. BUTTERFLY VALVE USED . On water networks . Throttling at compressor suction 3.3. SPECIAL VALVES USED Special valves are defined by instrument group :							
 2.3. GATE VALVE USES Gate valves can be used as ball valves except for downstream of pig launche: upstream of pig receivers. The vertical physical space required by a gate val greater than a ball valve. Tight shut off for ball or plug valves is superior to that of a gate. For hydrocarbon service with solid particles presentor as wing valves on heads. For quick closure purposes. On utility lines for low diameters < 2" 24. BUTTERFLY VALVE USES On water lines for service, utility or sea water, generally for diameters la than 2". 3. CONTROL VALVES The main types are :. globe butterfly special 3.1. GLOBE VALVE USED Control valve used in most of cases except at very high P as define instrument group, or on water networks, and compressor suction lines throttling purposes. 3.2. BUTTERFLY VALVE USED On water networks Throttling at compressor suction 3.3. SPECIAL VALVES USED Special valves are defined by instrument group : (a superior defined by instrument group : 		R	te		: 2/8	:5	10.1
 2.3. GATE VALVE USES Gate valves can be used as ball valves except for downstream of pig launched upstream of pig receivers. The vertical physical space required by a gate valing reater than a ball valve. Tight shut off for ball or plug valves is superior to that of a gate. For hydrocarbon service with solid particles presentor as wing valves on heads. For quick closure purposes. On utility lines for low diameters < 2" 24. BUTTERFLY VALVE USES On water lines for service, utility or sea water, generally for diameters la than 2". 3. CONTROL VALVES The main types are :. globe butterfly special 31. GLOBE VALVE USED Control valve used in most of cases except at very high P as define instrument group, or on water networks, and compressor suction lines throttling purposes. 32. BUTTERFLY VALVE USED On water networks Throttling at compressor suction 33. SPECIAL VALVES USED Special valves are defined by instrument group : (a survive d D bb cords up used ab used of the used 							
 Gate valves can be used as ball valves except for downstream of pig launches upstream of pig receivers. The vertical physical space required by a gate val greater than a ball valve. Tight shut off for ball or plug valves is superior to that of a gate. For hydrocarbon service with solid particles presentor as wing valves on heads. For quick closure purposes. On utility lines for low diameters < 2" 24. <u>BUTTERFLY VALVE USES</u> On water lines for service, utility or sea water, generally for diameters la than 2". CONTROL VALVES The main types are :. globe butterfly special 31. <u>GLOBE VALVE USED</u> Control valve used in most of cases except at very high P as define instrument group, or on water networks, and compressor suction lines throttling purposes. 32. <u>BUTTERFLY VALVE USED</u> On water networks Throttling at compressor suction 33. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group : <i>(a sumption of the particular problement problement of the particular problement problement of the particular problement pro</i>	VALV	<u>'E v</u>					
 upstream of pig receivers. The vertical physical space required by a gate val greater than a ball valve. Tight shut off for ball or plug valves is superior to that of a gate. For hydrocarbon service with solid particles presentor as wing valves on heads. For quick closure purposes. On utility lines for low diameters < 2" 24. <u>BUTTERFLY VALVE USES</u> On water lines for service, utility or sea water, generally for diameters la than 2". 3. CONTROL VALVES The main types are :. globe butterfly special 3.1. <u>GLOBE VALVE USED</u> Control valve used in most of cases except at very high P as define instrument group, or on water networks, and compressor suction lines throttling purposes. 3.2. <u>BUTTERFLY VALVE USED</u> On water networks Throttling at compressor suction 3.3. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group : for water bit A B the sector but would be used 	te val	Jate	trea	ean	n of r	oig l	auncher a
 Tight shut off for ball or plug valves is superior to that of a gate. For hydrocarbon service with solid particles presentor as wing valves on heads. For quick closure purposes. On utility lines for low diameters < 2" 24. <u>BUTTERFLY VALVE USES</u> On water lines for service, utility or sea water, generally for diameters la than 2". CONTROL VALVES The main types are :. globe butterfly special 3.1. <u>GLOBE VALVE USED</u> Control valve used in most of cases except at very high P as define instrument group, or on water networks, and compressor suction lines throttling purposes. 3.2. <u>BUTTERFLY VALVE USED</u> On water networks Throttling at compressor suction 3.3. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group : 	stream eater t	ipsti ;rea	equi	Jire	ed by	ag	ate valve
 For hydrocarbon service with solid particles presentor as wing valves on heads. For quick closure purposes. On utility lines for low diameters < 2" 24. <u>BUTTERFLY VALVE USES</u> On water lines for service, utility or sea water, generally for diameters la than 2". 3. CONTROL VALVES The main types are :. globe butterfly special 3.1. <u>GLOBE VALVE USED</u> Control valve used in most of cases except at very high P as define instrument group, or on water networks, and compressor suction lines throttling purposes. 3.2. <u>BUTTERFLY VALVE USED</u> On water networks Throttling at compressor suction 3.3. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group : (a) such is A B the acade value acade be used 	zht shu	'igh	of a	a g	ate.		
 For quick closure purposes. On utility lines for low diameters < 2" 2.4. <u>BUTTERFLY VALVE USES</u> On water lines for service, utility or sea water, generally for diameters lathan 2". 3. CONTROL VALVES The main types are :. globe butterfly special 3.1. <u>GLOBE VALVE USED</u> Control valve used in most of cases except at very high P as define instrument group, or on water networks, and compressor suction lines throttling purposes. 3.2. <u>BUTTERFLY VALVE USED</u> On water networks Throttling at compressor suction 3.3. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group : for units in the D the costs when could be used 	r hydr ads.	or ead	: as	<u>15</u> v	wing	vai	ves on wo
 On utility lines for low diameters < 2" 2.4. <u>BUTTERFLY VALVE USES</u> On water lines for service, utility or sea water, generally for diameters la than 2". 3. CONTROL VALVES The main types are :. globe butterfly special 3.1. <u>GLOBE VALVE USED</u> Control valve used in most of cases except at very high P as define instrument group, or on water networks, and compressor suction lines throttling purposes. 3.2. <u>BUTTERFLY VALVE USED</u> On water networks Throttling at compressor suction 3.3. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group : 	- quick	or c					
 2.4. <u>BUTTERFLY VALVE USES</u> On water lines for service, utility or sea water, generally for diameters lathan 2". 3. CONTROL VALVES The main types are :. globe butterfly special 3.1. <u>GLOBE VALVE USED</u> Control valve used in most of cases except at very high P as define instrument group, or on water networks, and compressor suction lines throttling purposes. 3.2. <u>BUTTERFLY VALVE USED</u> On water networks Throttling at compressor suction 3.3. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group : 	utility	ים חל					
 On water lines for service, utility or sea water, generally for diameters la than 2". 3. CONTROL VALVES The main types are :. globe	ERFLY	TER					
 3. CONTROL VALVES The main types are :. globe butterfly special 3.1. <u>GLOBE VALVE USED</u> Control valve used in most of cases except at very high P as define instrument group, or on water networks, and compressor suction lines throttling purposes. 3.2. <u>BUTTERFLY VALVE USED</u> On water networks Throttling at compressor suction 3.3. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group : 	water л 2".)n w han	ally	y f	for di	iame	eters larg
 The main types are :. globe butterfly special 3.1. <u>GLOBE VALVE USED</u> Control valve used in most of cases except at very high P as define instrument group, or on water networks, and compressor suction lines throttling purposes. 3.2. <u>BUTTERFLY VALVE USED</u> On water networks Throttling at compressor suction 3.3. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group : 	ALVES	VAI					
 butterfly special 3.1. <u>GLOBE VALVE USED</u> Control valve used in most of cases except at very high P as define instrument group, or on water networks, and compressor suction lines throttling purposes. 3.2. <u>BUTTERFLY VALVE USED</u> On water networks Throttling at compressor suction 3.3. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group : (conventict) A D the apple works and do used (conventict) A D the apple works and do used 	es are	'p es					
 3.1. <u>GLOBE VALVE USED</u> Control valve used in most of cases except at very high P as define instrument group, or on water networks, and compressor suction lines throttling purposes. 3.2. <u>BUTTERFLY VALVE USED</u> On water networks Throttling at compressor suction 3.3. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group : 							
 3.1. <u>GLOBE VALVE USED</u> Control valve used in most of cases except at very high P as define instrument group, or on water networks, and compressor suction lines throttling purposes. 3.2. <u>BUTTERFLY VALVE USED</u> On water networks Throttling at compressor suction 3.3. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group : 							
 Control valve used in most of cases except at very high P as define instrument group, or on water networks, and compressor suction lines throttling purposes. 3.2. <u>BUTTERFLY VALVE USED</u> On water networks Throttling at compressor suction 3.3. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group : 	<u>. VAL</u>	BE			-		
 3.2. <u>BUTTERFLY VALVE USED</u> On water networks Throttling at compressor suction 3.3. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group : 	trol trumer ottling	ont: Istri hrot	nigi ress	sn Sor	r suc	' as ction	n lines f
 On water networks Throttling at compressor suction 3.3. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group : 	RFLY	TER					
. Throttling at compressor suction 3.3. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group :	water	ש חי					
3.3. <u>SPECIAL VALVES USED</u> Special valves are defined by instrument group :	ottlin	hro					
Special valves are defined by instrument group :	AL VA						
for your birth A D the endle velue could be used	i valve	ial v					
. for very high AP the angle valve could be used	very l	or v	-				
 for compressor anti-surge cage valves could be used. 	comp	or c					

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisio	n :	o	Page No:
	Δ P THROUGH VALVES AND FITTINGS				
TEP/DP/EXP/SUR		Date	:	2/85	10.15

1. APPLICABILITY

The purpose of this chapter is to calculate precisely the pressure drop in a piping network. This may be required for either study phase for situations where ΔP is a critical, consideration. For most projects however calculation of process line ΔP will not be required.

The pressure drop calculations are based on a summation K method.

2. $\triangle P$ THROUGH VALVES

2.1. VALVES OPEN

I TYPE	GATE	GLOBE	PLUG COCK	CHECK
	VALVE	VALVE	NALINE	VALVE
К	0.15	5	0.1	2.4

$$\Delta P = K \underline{\rho V2}$$

$$1.962 \times 10^5$$

2

 ρ : fluid density in kg/m³

$$\Delta P$$
 in kg/cm

1 bar = 1.02 Kg/cm2 V : fluid velocity in m/s

2.2. BALL VALVE

 \triangle P through ball value with reduced bore : This \triangle P depends on the value vendor. An extract of CAMERON BALL VALVE PRODUCTS is given as an example.

3. \triangle P THROUGH FITTINGS

The example below gives some values of the pressure drop coefficient K for fit...g encountered in cylindrical conduits. For further information, refer to "MEMENTO DES PERTES DE CHARGE by I.E. IDEL'CIK, EYROLLES édition, PARIS".

 ΔP in kg/cm²

$$\rho$$
 : fluid density in kg/m³

ΛD

= K
$$\frac{\rho V}{1.962 \times 10^5}$$

3.1. ELBOWS

K values for elbows.

R/D	1.5	3	5
90 °	0.17 + 2.36 f	0.12 + 4.72 f	0.09 + 7.87 f
45 °	0.11 + 1.18 f	0.08 + 2.36 f	0.06 + 3.94 f

f = friction factor see chapter PROCESS/UTILITY -LINE SIZING § 5

ΤE

3

S

v

I.

ŧ

3

TOTAL		Revision : 0	Page No :
TEP/DP/EXP/SUR	DP THROUGH VALVES AND FITTINGS	Date :2/85	10.17 *
	L		
2.1			
<u>3-4 TEE</u>	5	45° .	8
			•
S1 Q1	· · · · · · · · · · · · · · · · · · ·		
	a) Lateral branch $K \cdot 1 + \left(\frac{Q_2}{Q_2} \times \frac{S_0}{S_2}\right) = 1$	$2(1-\frac{q_1}{q_2}) - 1-41\frac{s_0}{s_2}$	$\left(\frac{\mathbf{Q}_{\mathbf{I}}}{\mathbf{Q}_{0}}\right)^2$
		_	
	b) Straight branch $K = 1 - \left(1 - \frac{Q_L}{Q_0}\right)^2 - 1.1$	+1 $\frac{S_{\bullet}}{S_2} \left(\frac{Q_2}{Q_0} \right)^2$	
	· · · · · · · · · · · · · · · · · · ·		-
<u>3.4.2</u>			
Q	\rightarrow $V_0 \leq 0$ $=$ $S_1 + S_2 > S_0$		
	<u> </u>		
92			ł
	Γ	c^{1}	7
	a) Lateral branch $K = A \left[1 + \left(\frac{Q_1}{Q_0} \right) \right]$	$\frac{s_0}{s_1}$ - 2 $\left(1-\frac{q_1}{q_0}\right)$	
			-
	52/50 0-0.2 0.3-0.4 0	·6 0.8 1.C	,
	A 1.0 0.75 0.	7 0.65 0.6	1
	6) Straight Branch K = 1.55 = Q2	$-\left(\frac{Q_2}{2}\right)^2$	
		10.1	1
			٦

•

TOTAL

TEP/DP/EXP/SUR

: 2/85

10.19

Page No :

Resistance Coefficient, K

The resistance coefficient is calculated by the formula:

$$K = f \frac{l}{D}$$

Valves of the friction factor, f, for various pipe sizes are listed in table 1+17.

Values for L/D and C for fully opened valves were calculated from theoretical considerations. Valves of C for partially open valves were extrapolated from test results for representative sizes of ball valves.

Chart $1 \cdot 18$ provides graphic representation of valve position versus the percent of full open area.

Table 1-17 Friction Factor (1)

Nominal	Friction	Nominal	Friction
Pipe Size	Factor (f)	Pipe Size	Factor (f)
2*	0190	24*	0115
3*	0175	26*	0113
4*	0165	28*	0112
6" 8" 10"	0150 0140 0135	30" 34"	0110 0107 0105
12"	0130	40"	0104
14"	0125	47"	0103
16"	0123	48"	0102
18" 20" 22"	2_0120 0147 0116	=	

Table 1.3

Calculated Values of L/D for Full Opening Cameron Ball Valves in Full Open Position

Varve	- 150 ID. AHS		LENA DI DOL		100 D ANS		BOO RD. ANSI	
910	liange	Detrew	Hange	Weded	Hange	DeDrew	Flonge	-
2	1 40	+00	4 12	412	-		1.00	5 40
1	2.56	1 32 1	156	128	-	- 1	4 46	4 44
4	2.22	295	2.95	2.95	3%	344	418	4.18
•	2.20	1.45	2.45	2 45	175	3.25	3.66	1 1
	273	2.56	2.06	2.54	2.94	2.56	1.75	1 25
10	210	2 20	2.74	7 70	2.45	2.33	3 10	12
12	200	206	2.12	2.08	2.50	2.16	2.75	2 14
14	7.03	1 177	2.26	172	2.45	2.10	2.64	1 200
14	1 96	177	2.16	177	7 33	1 195	7.56	1 15
18	1.97	174	2 08	174	2.24	196	7 50	1.94
20	1.87	1 1 44	202	1 444	2.14	1.77	2 44	1 17
	1.00	142	2.02	142	2.12	190	2.40	1.91
24	1.81	1 40		140	2 08	1.89	7.36	1.89
74	1.80	1.78	1.96	1 1 1	206	170	2.78	1.70
78	1.81	1.76	1 %	176	2 Gel	1.74	7.76	1.74
x	1 1 76	147	1 10	142	197	1 #1	7 74	149
77	176	1 1 44	1 45	1 47	7 11	147	7.78	1 140
	17		<u> </u>	<u> 100</u>	2.14	1 66	2 32	1 44
36	1.14	1.64	1 97	3 44	2 14	1 444	2.20	1 44
			1 95	1 67	213	1.67	2.29	1.07
<u> </u>		<u>1 1 45</u>		145	207	145	2.34	1 45
-	176	1 1 81	1 14	101	2.11	1.81	215	1.01
<u> </u>	17	17		178	700	170	101	1.70
+0	174	105	E 80	103	2.05	1 85	7 17	1.05
M	-	ן דעין	-	182	-	102	-	1.67

Volve	POO IO, ANISI		1500 ID. ANSI		- 2500 ID ANSI		
Size	Fiange	Wassed	Hange	Decrew	flange		
7	100	/ 03	7 63	/ 00	4 41		
3	+ 40	4 40	397	377	7.78	1 78	
<u> </u>	+ 42	+ 47	5 29	527	4.57	+ 57	
•	— •••	100	442	+ 47	600	1	
•	245	207	4 10	7 64	504	1 1 1	
	מנ	7 45	3 40	7 45	300	1 120	
12	1 1 1	22	371	1 79		1 100	
••	100	7 44	374	7 41		}	
14	177	7 + 4	3 14	2 44		1	

)

TE

1	TOTAL	PROCESS ENGINEERING DESIGN MANOAL	· ego / o .
		ΔP through valves and fittings	

TEP/DP/EXP/SUR

ɔ :

Э

Table 1.5 Calculated Values of L/D for Reduced Opening Cameron Ball Valves in Full Open Position

	150 ID ANS		JOO ID ANS		400 K	ANS	600 ID ANSI		
Morve Suze	Hange	becrew	Fignge	Decrew	Honge	Decient	Flange	Weiched	
3.7	130	98.4	117		-	-	179	206	
4.1		355		25.5	38.4	392	501	401	
644	110	119	121	114	175	87.6	127	114	
8.4	42.5	AL 8	41.8	61.8	48.6	47.2	49.2	472	
	1 1	370	374	37.0	38.1	77.0	244	77	
7.10	263	251	25.4	25 9	24.6	21.2	74.4	213	
4-17	1 115	1115	11.2	11.5	11.0	8.54	10.2	8.56	
de la	1 111	10.1	171	આ ગ	14.1	147	18.3	150	
Ba 16	15.0	154	14.9	15.4	34.4	131	131	131	
Ca 18	13.4	125	13.6	135	12.7	119	11.6	119	
7. 20	17.0	1 12.2	17.7	17.2	13,6	11.0	10 9	10 1	
4.22	10.7	107	110	10.7	7.65	++0	8 44	++1	
the 74	945	44	941	14	471	10	9 97	•4	
8.76	1 995	9 87	10 10	9.87	1017	467	10.37		
Da 78	941	# 35	12	9.35	• 72	• 35		V 35	
7.30	8.45	8.38	844	8.30	6.81	6.36	1 17	1 12	
4.12	1 117	8.77	9.06	1.77	9.25	177		1 1	
4.34	101	7 11	6 37	7.90	14	7.	17	/	
0.34	1493	34 84	15 12	14 M6	15.30	Li the	15.54	1 14 84	
2.40	1 235	7 51	1 775	7.51	795	7.5	870	1	
4.47	22.43	72.52	27.65	2.5	77.81	77.52	2/14	1131	
4	30.55	30.60	30 47	30.40	30.82	30.60	30 64	30.60	
10:54	9.81	7.8	9 972	7 86	10.09	•••	1014		
	1 2	10 *5		10 15	-	1,10,45	-	1042	

Manau	1009	TOO ID ANSI		D. ANSI	2500 ID. ANSI		
34.0	Fionge	· Weitlet? *	Honge	Weided	Hange	Weithed	
3a7 4a3	177	108 41 1 94 5	130 53.7 137	118 44.7 96	87 41.9 117	130 477 107	
8=4 10=8 17=10	54.8 300 21 8	47.6 30.4 27.9	47.6 30.6 16.1	47.4 30.4 27.9	=	<u>51.7</u>	
test?	1 11:	121	12.5	-	=	Ξ	

Table 1-6 Calculated Values of L/D for Venturi Opening Cameron Ball Valves in Full Open Position

	150 10	ANSI	300 H	LANSI	400 4	L ANSI	400 M	ANSI
Size	Fionge .	Decrew	Honge	Vectord	Fionge	Debiew	Fionge	Wetded
1Gaá	282	_	-	-	-			280
12+8	152	21	141	ເມ	נצו	147	147	147
14110	61.9	419	67 *	419	415	567	54.8	1 241
14.17	410	450	450	450	-	44.0	44.1	107
10-14		4.1	44.5	4	590	547	\$2.9	547
30.14				432	457	(سه	447	401
20416				4. <u> </u>		<u>+</u>		1
72+14	1 340	34.0	380	200	347		ه هد	
241 20	1 314	31.4	31.4	314	305	28.4	2117	1 24 4
26+77	270	270	24.4	270	26.4	24.8	251	244
10.14		44.7	44.3		44.8		41 9	1 44
	1 11	11.4	10.4	31.4	771	25.3	25.5	1 253

Manua	900 10	D ANS	1500 1	D. ANSI	2500 (2500 HD ANSI		
3420	flange	Weiged	Fiançe	Welded	Fignore	Weitlet		
KO44		-		-	- 1	-		
17.8	147	135	138	1 135	-	-		
14+10	-	1 441	-	-	- 1	-		
bési?	44	441		441	- 1	- 1		

TOTAL

CONTROL VALVE SIZING

Date

2/85

10.21

1

TE

TEP/DP/EXP/SUR

1. APPLICABILITY

The purpose of this chapter is to give some formulae to estimate the size and the number 0^{n^3} control values installed for one given service, and to estimate the capability of the contro 1 values in case of revamping. The final sizing should be done by instrument people.

2. CONTROL VALVES CHARACTERISTICS

These are determined principally by the design of the valve trim. The three fundamental i characteristics available are quick opening, linear, and equal percentage.

2.1. QUICK OPENING

As the name implies, this type provides a large opening as the plug is first lifted from , the seat with lesser flow increase as the stem opens further. The most common application if for simple on-off control with no throttling of flow required.

2.2. LINEAR

Linear trim provides equal increases in stem travel. Thus the flow rate is linear with plug position throughout its travel.

2.3. EQUAL PERCENTAGE

Provides equal percentage increases in rate of flow for equal increments of stem travel. The characteristics provide a very small opening for plug travel near the seat and very large increase toward the fully open position. As a result, a wide rangeability of flow rate is achieved.

3. CONTROL VALVE RANGEABILITY

- . For an estimation only it is common practice to select a value in which the value opening at maximum flow is smaller than or equal to 95 per cent.
- For normal flow the value opening should be at least 60 per cent while for minimum flow, if applicable, the opening should be larger than 10 per cent. If the minimum flow is close to or smaller than 10 per cent, a smaller value should be installed in parallel with the main value.
- For a flow rate the value opening depends on the value characteristics and it is given by vendor in their catalogue.

4. FORMULAE

The valve area is characterized by the coefficient Cv (except for FISHER which use Cg for the gas (see hereafter).

The Cv coefficient is the number of U.S. gallons of water flowing during one minute through a restriction and the pressure drop through this restriction equal 1 PSI.

The following formulae are simplified and to be used only for an estimation of the Cv. Some corrections may be necessary for the installation of reducers around the control valve. If so, the formulae given by manufacturers in their catclogues will be used for a better Cv calculation.

For sizing, maximum $\Delta P = P1 - P2 = 0.5 Cf^2 P1$

A - Without liquid vaporization

$$Cv = \frac{51.8 \text{ W}}{\sqrt{P (d1 + d2)}}$$

$$Fv = \frac{36.6 \text{ W}}{\sqrt{\Delta P d1}}$$

Cg, P1, P2 same definition and unit as § 4.1.

W = total fluid flow in t/hr

d1 = upstream mixture density in kg/m³

$$d = \frac{W \times 10^3}{\frac{W11}{d11} + \frac{W1v}{d1v}}$$

W11 = upstream liquid flow in kg/hr

dll = upstream liquid density in kg/m³

Wlv = upstream vapor flow in kg/hr

 $dlv = upstream vapor density in kg/m^3$

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisio	on:		Page No :
TEP/DP/EXP/SUR		Date	:	2/85	

11. PIPELINES

÷J

TOTAL	PIPELINES	Revision : 0	Page No.	
TEP/DP/EXP/SUR		Date : 2/85	11.1	1

1. APPLICABILITY

For both feasibility and preproject studies, long pipeline ΔP and ΔT calculations will normally be performed using PETITE or RESEAU. It may be necessary, however to make an estimate by hand. Details are given below on how to proceed on this.

2. PIPELINE PRESSURE DROP FORMULAE

2.1. GAS TRANSMISSION

There exist many methods of calculating ΔP for gas transmission lines. Some of these are : American Gas Association Formula Weymouth Panhandle 'A' and 'B' Darcy

Colebrook

TEP

Below is given the Panhandle 'A' for use : 1 8539

$$P_{I}^{2} - P_{Z}^{2} = \begin{bmatrix} q & G^{0.4604} \\ \frac{T_{s}}{P_{s}} & \frac{1.07881}{x} & \frac{2.6182}{x} \end{bmatrix} \begin{bmatrix} 1.0787 \\ x & T & L \\ m & x & Z & x & 0.3015 \end{bmatrix}$$

P_2 =Downstream pressurebar (a)G=Specific gravity of gas T_s =Base temperatureK P_s =Base pressurebara(1.01325 bar)T=Gas flowing tempKLm=Pipeline lengthkmq=Flowrate at Ts, Ps basem ³ /dd=PIPELINE DIAMETERcmZ=Average gas compressibilityE=Efficiency (0.92 for a clean line)	Where	P1	=	Upstream pressure	bar	(a)	
G=Specific gravity of gas T_s =Base temperatureK P_s =Base pressurebara(1.01325 bar)T=Gas flowing tempKLm=Pipeline lengthkmq=Flowrate at Ts, Ps basem ³ /dd=PIPELINE DIAMETERcmZ=Average gas compressibilityE=Efficiency (0.92 for a clean line)		P ₂	=	Downstream pressure	bar	(a)	
T_s =Base temperatureK(273 K or 298) P_s =Base pressurebara(1.01325 bar)T=Gas flowing tempKLm=Pipeline lengthkmq=Flowrate at Ts, Ps basem ³ /dd=PIPELINE DIAMETERcmZ=Average gas compressibilityE=Efficiency (0.92 for a clean line)		G	=	Specific gravity of gas			
Ps=Base pressurebara(1.01325 bar)T=Gas flowing tempKLm=Pipeline lengthkmq=Flowrate at Ts, Ps basem³/d (at Ts,d=PIPELINE DIAMETERcmZ=Average gas compressibilityE=Efficiency (0.92 for a clean line)		Τs	=	Base temperature	к	(273	K or 298 K)
T=Gas flowing tempKLm=Pipeline lengthkmq=Flowrate at Ts, Ps basem³/d(at Ts,d=PIPELINE DIAMETERcmZ=Average gas compressibilityE=Efficiency (0.92 for a clean line)		Ps	=	Base pressure	bar	a(1.01	325 bar)
Lm=Pipeline lengthkmq=Flowrate at Ts, Ps basem³/d(at Ts,d=PIPELINE DIAMETERcmZ=Average gas compressibilityE=Efficiency (0.92 for a clean line)		т	=	Gas flowing temp	к		
q=Flowrate at Ts, Ps basem³/d(at Ts,d=PIPELINE DIAMETERcmZ=Average gas compressibilityE=Efficiency (0.92 for a clean line)		Ĺm	=	Pipeline length	km		
d = PIPELINE DIAMETER cm Z = Average gas compressibility E = Efficiency (0.92 for a clean line)		P	=	Flowrate at Ts, Ps base	m ³ ,	/d	(at Ts, Ps)
Z = Average gas compressibility E = Efficiency (0.92 for a clean line)		d	=	PIPELINE DIAMETER	cm		
E = Efficiency (0.92 for a clean line)		z	=	Average gas compressibility			
		E	=	Efficiency (0.92 for a clean line)			

The formula does not take into account the pipeline profile which, if significant, can be added to the ΔP calculated if required.

2.2. LIQUID FLOW IN PIPELINES

Use Darcy equation :

$$P = 6.254 \qquad F \qquad M^2 \quad bar/km$$

$$\int D^5$$

M	=	Mass flow	kg/h	F	=	Moody friction factor
ſ	=	Density	kg/m ³	E	=	Absolute roughness cm
D	=	line id	cm			(see page 10.8 and 10.9)
ΔР	=	pressure drop	b.r/km		=	viscosity cp

<u>۷</u> .	TOTAL	PIPELINES	Revision :	0	Page No. :
.1	TEP/DP/EXP/SUR		Date :	2/85	11.2
vill an	Re = wit	$\frac{35.368 \times M}{\times D} = 64/\text{Re} \text{for Re} < 24$ $\times D = F = \left[(S/\text{Re})^{12} + 1/(\text{A+B})^{3/2} \right]$ $h: A = \left[2.457 \text{ Lm} - \frac{1}{(7/\text{Re})^{-9} + (0.27 \text{ E/D})} \right]$ $D = (37530 (\text{D} - 1)) = 16$	000 1/12 for 1	Re > 20	00
		 * BE CAREFUL when using friction factor between MOODY F and FANNING F' : <u>F'</u> 	charts as c = 1/4 F	confusio	on arises
	Est the est stal Giv	imating 2-phase flow Δ P by hand for long pipeli flow characteristics and equilibrium will alter al mate of Δ P can be hand calculated providing ble. en below is a calculation method based on L0	nes is not re ong its leng the phase r DCKHEART	comme the Hov regime -MART	ended, as wever an is fairly INELLI-
		CER method. This method can be used for both lo process lines. $\frac{1}{2} P = \Delta P + \Delta P_{VERT}$	ngpipelines	(stable	regime)
	1. 2. 3. 4.	Evaluate flow regime and adjust Pipeline Ø if require Calculate $\Delta P_{\rm G}$ Calculate $\Delta P_{\rm L}$ Calculate $(\Delta P_{\rm L}/\Delta P_{\rm G})^{1/2}$	red		
	5.	Calculate ΔP factor PeH 2 PHASE Calculate ΔP_{vert} factor (vertical section of pipe)			

For convenience pipe ids are in cm viscosity is in cp.

<u>\</u>___

ı

1

OPERATING DATA

G.	A	S
		_

GAS					LIQUI	D			
FLOWRATE DENSITY VISCOSITY	₩g Dg Vg	kg/h kg/m cp	= 1 3 = 1 = 0	00 00 U 18 3.0124	FLOWRATE DENSITY VISCOSITY SURF TEN	WI DI VI St	kg kg cp dynes/	/h = /m ³ = /cm =	2.0 20 20 20 20 20 20 20 20 20 20 20 20 20
FLOWING TEMP		•(2	= 34					
PIPELINE DIAMI	ETER A	D cn A m	n 2	= 20.02 = 0.13	PIPELINE LENG Vertical change	тн	L A h	m = m =	1000 + 200

	<u>STEP</u>		NOTES
	1. DETERMINE FLOW REGIME	- 39.63	
ו 	$Bx = 210.3 \frac{WI}{Wg} \frac{VDI X Dg}{DI^{2/3}} \frac{VIIII}{St}$		1
	$BY = \frac{7.087 \times Wg}{Ax(DIxDg)\frac{1}{2}}$	= 26719	1
	REGIME FROM BAKER CHART	distroted	see poje 10.7
	2. CALCULATE ΔP_{gas}		
	$Re = \frac{35.368 \times Wg}{Vg \times D}$	Re = 7.02 10 ⁶	
i	Friction factor (Moody)	F = 0.012	see proje 10.1
	$\Delta PG = \frac{6.254 \times f \times Wg^2}{Dg \times D^2}$	∆PG =0.516bar/km	
	3. CALCULATE ΔP_{LIQ}		
	Re = $35.368 \times W1$	Re = 18130	1
		f = 0.02G	
	$\Delta P_{L} = \frac{6.254 \text{ x f x Wl}^2}{\text{DI x D}^5}$	$\Delta P_{L} = -\infty \int bar/km $	1
	; ,`	······································	••••••••••••••••••••••••••••••••••••••

	PROCESS CAL	CULATION SHEET Sheet 1 of 2
	TWO PHASE PIPELINES	ITEM :
TEPODP/DIP/EXP/SUR	A P CALCULATION	No.
ву СНК	DATE JOB TITLE ERANICE	JOB NO. REV

ТЕ В Т

TOTAL	PIPELINES	Revisio	n: ()	Page No.	•
TEP/DP/EXP/SUR		Date :	2/85	11.5	:

3. TEMPERATURE PROFILE

For detailed and accurate ΔT and ΔP calculations in 2 phase lines buried, subsea or in ait the program PEPITE should be used. The hand calculation method presented on pages 11.6, 11.7 is accurate to within 10 % for both gas and liquid lines. The procedure is easily adapted to a small programmable calculator and increases in reliability the greater the number of segments used.

L

D

h

P1

P2

TΙ

1

2.

3. C

Re Se

TEP/DDP/C

ΔY

The following should be remembered when designing pipelines,

- . For long pipelines assuming isothermal flow can result in overdesign in pipeline siz $\triangle P$.
- . If the pipeline is constant with regard to material, insulation and burial depth along its route a fixed thermal conductivity (k) can be assumed.
- . For gas pipelines the internal film resistivity is negligible ignore it.
- . For all steel pipelines the resistivity of the metal is also negligible.
- Small pipelines (< 20") have a large heat flow compared to the specific heat of the flowing medium. Consequently the gas will reach ground/sea temp in a relatively short length. For large pipelines the converse is true and a long distance is required to reach ambient.
- For oil and small gas pipelines the asymptotic temperature Ta is that of the surrounding medium. For large diameter gas lines, Ta depends largely on the Joule-Thompson effect.
- The attached calculation sheet can be used for hot lines in cold surroundings or vice versa.
- For subsea pipelines, epoxy wrapped, concrete coated resting on the bed an overall heat transfer coeff of U = 10 15 kcal/hm² C is a good estimate for calculation purposes.

•				
-		Ĩ	h <u>Covering</u>	Medium :
-,? {	>		Tg Temp P. k Therr	erature °C = n.cond.kcal/hm°C = 1
DAT	<u>A</u>		LIQUID FLOW	
. Ду . D	Total pipeline length No of segments Length per segment Total elevation change Pipeline diameter	m = 2000 $= 2$ $m = 1000$ $+ m = 4100$ $ins = 30$ $m = 0.36$	 Volumetric flown Density (av) kg M Mass flow Cp Specific heat 	n ³ /h = /m ³ € = kcal/kg °C =
h	Burial depth to centre	m = 1.13	GAS FLOW	
P1 P2 ΔP T1	Inlet pressure Exit pressure Total pip e line Initial Temperature	bara = 40 bara = 30 bar = 10 °C = 48	Volumetric fle Molecular ma M Mass flowra Cp Specific I	ow m ³ /d (std)= 2000 ss = 19 ate kg/h = 7063 heat kcal/kg°C= 0.6
ר	FLUID JOULE THOMS (see fig. 1, page 11.8)	ON COEFFIC	CIENT = 56 °F/1000 psi	$(x 0.00805) = 0.45 \circ C/b$
.	STEP		VALUE	NOTES 1
	Calculate heat transfer x = 2h/D $s = 2k\pi/ln[x + (x^2)]$	factor s - 1)1	x = 3.33 s = 5 kcal/hm°C	CoveringkKcal/hmCSoil1.49Air0.022Water0.508Sand dry0.30Sand wet1.49
. ¦—	Calculate heat flow rati	o per unit a		
2.	a = s/MCp (liquid or	gas)	a =11.34 10 ⁻⁶ -1-1	
3. (a = s/MCp (liquid or Calculate Asymptotic ten Ta =Tg - (J & P + ∆ y)	gas) peratureTa /jCp)/aL	a ="1]# 10 ^{-C} m ⁻¹ Ta =-11 °C	L is segment length j = 426.5 <u>kg.m</u> kcał
2.	a = s/MCp (liquid or <u>Calculate Asymptotic terr</u> Ta = Tg - (J \triangle P + \triangle y) <u>Calculate downstream tr</u> T2 = (T1 - Ta)e ^{-aL} +	gas) nperatureTa /jCp)/aL emp T2 Ta	a = 11.4 fo^{-1} Ta = -11 °C T2 = 41.4 °C	L is segment length j = 426.5 <u>kg.m</u> kcal

No.

IOB NO

REV

ł

JOB TITLE EXAMPLE

TEP/DDP/DIP/EXP'SUR

Снк

DATE

BY

ł

TC

		1		I		1	•	<u> </u>		ن ا د	
SEGMENT Nº	LENGTH	ELEVATION			Ta 		P2			•*	
	m	<u>+</u> m	 bar a 	°C	0°	0°	 bar a 				
1	10000	+ 100	40	48	-11	41.4	35			•	
2	(0000	ა	35	41-4	- \\	35.6	30			· ·	
3					4 [[1
4				1	i i	 				•*	ļ
5					l l	l 1				•	
6						 					
8				 					•		
9				נ 							
10			Ì								
	1						l I	l			
	1								1		
	 								ı	•	
I	l	1	i	i		i I	i	i			
1	1	<u> </u>		1	I	1	<u> </u>		: }	, İ	
NOTE : 1) FO	r more ac	curate calculat	iens,	contec	t cr	ل س	зf	or each	,		
ne	w temperatu	re. Also rech	reck	DP 60	ser. I	وت من	فلعرج	flowin		1	
ten	-perature of	early section	•								
	·									8	
										1	
									1		

€.

TOTAL	PIPELINES	Revision: 0	Page No.
TEP/DP/EXP/SUR		Date : 2/85	11.8
	ND LISEFUL INFORMATIONS		
4. LITERATORE A	VOL I chapter 2	¢	
4.2. CAMPBE	L VOL I chapter 12		
4.3. <u>Katz, H</u> /	NDBOOK OF GAS ENGINEERING c	hapter 7	
_ 4.4. <u>CRANE N</u>	IANUAL		
4.5. <u>"Equation</u>	s predict buried pipeline temperature	s" G.King 04J March 16, 1981	
4.6. <u>"Two phas</u>	ΔP computed" R. Soliman Hydr	ocarbon Processing April 198	4
Wet soil Ground> air Ground> water Steel 3 Epoxy coating Coal tar	1.49 sand (dry) 0.30 2.98 sand (wet) 1.49 29.8 Air 0.022 18.7 (2b-0) Water 0.510 0.67 (0.45) 0.22		
Joule-Thomson	n coefficient* Spe	cific heats*	Fig.
To 100 100 107 107 107 107 107 107			

•'

• •

..**'**

ىلىكەنىتىكە ئىسمەردىيە بەرمەرمەر مەرەپىيەتىيە بىلىدۇ.

: MILLER GAS TO MSHEE - BASE CASE 346 MMSCED, 2 inch INSULATION

LENGTH =	18000 M	MASS FLOW =	477265 KG/H	1/U FIPE =	0.001002
SEG =	30	MOLHT =	27.697	1/U INSULAT'N=	5.747022
TION =	100 M	HEAT CAPACIT=	0.3307 KCAL/KGC	U SOIL =	1.642585
NE DIAX=	26 IN OD	J-T CONSTANT=	0.800 C/BAR	U OVERALL =	0.157311
HICKNE =	0.500 IN	STD TEAP =	273 K		•
· · =	38.9 KCAL/HMC	STD PRESS =	1.01325 BARA		
T THICK=	2 IN	GAS GRAVITY =	0.955069		
атк =	0.025 KCAL/HHC	VOL FLOX =	9269277 NM3/D		み
. DEPTH =	1.2 M	IN PRESS =	31.0 BARA		In on
/SEG =	600	IN TEMP =	38.0 C		(myram 1-2-
. =	1.49 HCAL/HHC	SOIL TEMP =	0.0 C		(Lotur

IN PRES OUT PRES IN TEMP OUT TEMP HEAT LOSSASYN TEMP DEL P(PSI) PSI/100'

3

1

Q	31.00	30.79	33.00	37.74 3.13E-0	6 -100.786	3.004	0.153	
າຍ	30.79	30.58	37.74	37.48 3.13E-0	15 -101.309	3.021	0.154	
;0	30.58	30.37	37.48	37.22 3.13E-0	6 -101.843	3.040	0.154	
10	30.37	30.10	37.22	36.95 3.13E-0	6 -102.387	3.053	0.155	
0	30.16	29.95	36.95	36.69 3.13E-0	6 -102.943	3.077	0.156	
°C	29.95	29.74	35.69	35.43 3.13E-0	6 -103.516	3.096	0.157	
Ū	29.74	29.53	36.43	36.17 3.13E-0	6 -104.090	3.116	C.158	
9	29.52	29.31	36.17	35.90 3.13E-0	6 -104.682	3.136	0.159	
Ū	29.21	29.09	35.90	35.54 3.13E-0	6 -105.287	3.157	0.160	
0	29.09	28.37	35.64	35.37 3.132-0	6 -105.906	3.173	0.151	
3	28.87	28.55	35.37	35.10 3.13E-0	6 -106.539	3.220	0.163	
)	28.65	28.43	35.10	34.84 3.132-0	6 -107.186	3	0.164	
3	28.43	28.20	34.34	34.57 3.13E-0	6 -107.848	3.244	0.165	
3	23.20	27.98	34.57	34.30 3.13E-0	6 -108.526	3.267	0.166	
]	27.95	27.75	34.30	34.03 3.13E-0	6 -109.220	3.291	0.167	
,	27.75	27.52	34.03	33.76 3.13E-0	6 -109,932	3 710	0 160	
1	27.52	27.29	33.76	33.49 3.13E-0	6 -110.660	0LF F	0.100	
	27.23	27.86	33.49	33.22 3.13E-0	6 -111.407	3.340	0.170	
	27.66	26.83	\$3.22	32.95 3.13E-0	6 -112.174	3 301	0.171	
	26.83	26.50	122.95	32.57 3.13E-0	6 -112.960	2 410	0 174	
	26.59	<u>26.35</u>	32.67	32.40 3.135-0	6 -113.767	7 112	0.175	
	25.35	26.11	32.40	32.12 3.13E-0	6 ~114.595	- 47a	0.173	
	25.11	25.37	32.12	31.84 3.13E-0	5 -115.446	2.60 t	0.172	
	25.87	25.50	31.84	31.57 3.135-9	6 -116.321	3 530	0.120	
	25.53	25.33	31.57	31.29 3.13E-0	6 -117 211	3.5000 3.5000	0 191	
	25.38	18.12	31.29	31.01 3.13E-0	6 -113.147	9 F14	0.101	
	25.13	24.82	31.01	30.72 3.13E-0	5 -119.100	3 607	0.103	
	24.38	24.60	38.72	30.44 3.138-00	5 -120.031	2.02	0.104	
	24.63	24.38	30.44	30.16 3.13E-06	5 -121 003	7 645	0.100	
	24.38	24.11	30.15	29.87 3.13E-06	5 -122.136	1 7 7 7	5.100	
	24,12	23.35	29.87	29.58 3.13E-06	-123.213	7 767	0.101	
							H.X.2.5	
Я	DP TOTAL	(988) =	- 40		PRESSURE DROP (PS1/1	1001 Y =	0 175	
E	OF TOTAL	(151 =	9.531	•	GAE VELOCITY (PT/S)		44 356	
ţ	TOTAL (DE	EG () -	8.417		(8/5)	-	13 523	
					··· · , · · ,	_	12.220	
Ę	VELOCITY	(RANCE 75	- 100 F1	/5	RECOMMENDED PRESSURE	Orop for C	ias lines	
				-	OPERATING PPPOS	חר	TEDROPTE OF	4 0
	56) x ffeicfi	X TEMP(D	EG R:	(BARG) (PSIG)	233 7 T	CELINDLE DE CI/1001\	2 ،نا
Ľ	ECULA :				9 - 7 . 9 - 100	4) C	51/103') 05 = 0.10	
	. PI	6M.**2 H	OF FRED(P	5IA)	7 - 35 101 - 500	9. A	20 - 0.19	
	(D188.1#	LNS. E			35 - 140 501 - 2000	υ. Λ		
						C.		

GLOBAL SHEET No. / OF_ ENGINEERING JOB No. 1096 LIMITED PROJECT. CLIENT SUBJECT. DATE _ get Miams 8 ŤΨ _ CHK'D BY. _ APP'D BY_ CALC D BY ____ W.m. S. KK J TK. KA J W.S. 1. PIPELINE TEMPERATURE PROFILE Basic equations: T_ Teg = (T_ Teg) x e - UL met (Ref: Dunkle) and Teg: Tg = m [m(p ap) Units: K = K + kg. mK [mK, J K] Whits: K = K + kg. mK [mK, J K] Transformed J $\mathbf{V}_{\mathbf{I}}$ where T2: outlet temp, T, . inlet temp, °c Teg: effective ground temp, "C Tg: ground temp, "C Uz. overall heat transfer coeff per mit dength of portse, W/m K m = mars ftow, kg/r Cp. ges specific heat, J/kg K M. Joule-Thomson coeff, m²K/N P: pressure, N/m² L: 'length, m 2. TROU B-TROM 'A 2.1 Consider Du"NR line, first 1.5km

GLOBAL ENGINEERING SHEET NO. 2 OF LIMITED JOB NO.__1076 LIENT UBJECT DATE _____ May 19 87 ALC'D BY. CHK D $T_{g} = 8^{3}C$ $m = 5 \times 10^{9} \text{ sm}^{3'}, \frac{y}{365 \times 24 \times 36005} = \frac{17.44 \text{ kc}^{2}}{212.6463 \text{ kc}^{2}}$ Teg = 116.7 kg/s (Ripesin med 115.) kg/s) UL · 10 W × Tx 24 mc mr - C 12x 2.287 m - 19.15 W/m°C m. assume 5.6x10-6 Km²/N (typic=() Cp. 2.9 KJ/kg K (@ 117 €ara & 45°C) · 2900 J/2 K $\frac{dP}{dL} = -\frac{0.56\kappa}{1500m} \times \frac{105N}{m^{1.5}\kappa}$ = - 33.3N/m3 - Teg · 8 + 116.7 5.6x0-6x2.9x10³x-33.3 - Teg : (8-3.3)e - 4.7e 72 T, = 46.8°C -. T_2 : $4.7 - (46.8 - 4.7)e^{-\frac{19.15 + 1500}{115.7 + 2900}}$ - . T3. C.7 - (4).1)e-0.0849 · · T2 = 4.7 + 38.7 · . 73 · 43.4°;

SHEET No. ____OF__ ENGINEERING JOB NO. 1096 LIMITED PROJECT SUBJECT DATE ______ 19 55 CALC'D BY CHK D APP'D BY. Conclusion Pépesin & abore equations agree vect, ie. within 0.1°C. 2.2. Du"N.B., 2- Legment. $T_{g}, m, U_{L}, \mu \text{ and } G \text{ are substantially}$ as per the 1st segment $\frac{dP}{dL} = \left(\frac{-0.\mu}{1500} \times 10^{5'}\right) = -26.7 N/m$ Teg ·: Teg . 8 - 116.7 [5.6×10-6×290-×-26.7] - Teg . (8-2.64) °C - Teg : 5.4°C $T_{2}: 5.4 + (43.4 - 5.4)e^{(-0.0845)}$ $\therefore 7_{2}. 5.4 + (38.0)e^{-0.0849}$ 7. - '. T2: 4032 Again ontet king agrees with Roffeeting realts within S. 1°C!

TEP/DP/EXP/SUR Date : 2/85	
12. PACKAGE UNITS	

TEP/DP/EXP/SUR

τατα

TEP

I. APPLICABILITY

For many studies undertaken there will be a requirement for a gas or liquid dehydration un in order to reduce the water content of the export phase to acceptable limits for pipelintransportation. Generally this design will be undertaken by a specialist vendor. However the engineer should be aware of some of the options available for dehydration schemes, some of the dos and donts of design and also how to undertake the basis sizing of the most commounit (TEG). The majority of this section is concerned with gas dehydration using tri-ethylenglycol contact, this being the most widely used.

2. GENERAL DEHYDRATION NOTES

(English units are used throughout this section for convenience)

- . Gas is normally dehydrated to 6 to 10 lb of H2O per MMSCF in order to prevent hydrat formation in gas transmission lines, and reduce corrosion. Unless the gas is dehydrate liquid water may accumulate at low points and reduce the flow capacity of the line.
- . Methods of dehydration in usage are :
 - 1. Adsorption (Alumina, silica gel, mole sieve)
 - 2. Absorption (di- or tri-ethylene glycol)
 - 3. Direct cooling
 - 4. Compression followed by cooling
 - 5. Chemical reaction (for method injection see 4.0)

The last three methods have minor usage and are discussed elsewhere in literature.

- A summary of the advantages and disadvantages of various absorption liquids is given in Table 1.
- . Tri-ethylene glycol is the preferred (most widely used) absorption liquid. Example . flowsheets of di- and tri-ethylene glycol are given in Fig. 1 & 2.
- In order to limit the overhead glycol losses a max practical operating temp of 38 °C (100 °F) is used. A maximum of 50 °C (50 °F) is recommended to prevent problems due to the glycol viscosity.
- . Glycol losses are usually in the order to 0.012 gal/MMCF (0.0016 m³/MMm³) due to vapourisation and in the overheads. Total losses due to leakage, vapourisation, solubility run around 0.025 gal/MMCF (0.0033 m³/MMm³).
- . Concentrations of TEG upto 99.1 % can be acheived without the use of stripping gas. For higher purities gas will be required.

3.

1

ì.

-1	TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision: 0	Page No :				
	TEP/DP/EXP/SUR	DEHYDRATION	Date 2/85	12.2				
	. Glycol foa prescrubbit	ms in the presence of light hydrocarbons, this c ng and addition of anti-foam agents.	an be minimised b	y good fee				
	. Actual gas exit dew points are usually 10-15 °F (5.5 - 8 °C) above the theoretical equilibrum dew point. Take this into account when setting the specification.							
The number of trays (or packing height) is usually small (4 trays) an excess of either is always provided in the design. Recommended efficiencies are 25 % for bubble caps 33 1/3 % for value trays. Use 24" tray spacing.								
	• Regenerato in order to for 6000. P	or temperatures should not be above 400 °F (20 prevent glycol degredation. Limit heat flux to Provide at <u>least</u> 2000 BTU/gall pump capacity.	4 °C) at atmosphe 5000 - 7000 BTU	ric pressur /hrft2, ain				
	. To prevent at 10-15 °1	t hydrocarbon condensation in the glycol feed m F (5.5 - 8 °C) above the gas exit.	aintain the inlet t	emperatur				
	. Regenerator still column should run at 220 °F (104 °C) at top to prevent loss of glycol but maximise water rejection.							
- Glycol circulation rates should be between 2-4 gall/1b H2O removed 3 is a good number.								
	3. PRELIMINAR	Y SIZING CALCULATIONS						
-	An exact sizin CFP inhouse p and utility co following hand	ng of a TEG unit will normally be performed b program "GLYCOL" also exists for estimating v onsumptions. These are based on data from d method can be used however to estimate the re	y the vendor on r vessel sizes, circu the BS+B design equired size :	equest. Th lation rate guide. Th				
	1. Determine Ibs/MMSCI	water content of inlet gas to contactor at requ F, kg/MMm ³ .	uired temp and pre	essure Fig.				
	2. Calculate	total water mass in feed gas to contactor						
	3. Repeat ca Calculate	lculation for exit gas using required exit dew p dew point depression °F, °C.	oint (add 10 °F) co	ontingency				
	4. Calculate	amount of water to be removed in contactor.						
	5. Use 3 galls	s TEG/1b H2O evaluate glycol circulation rate.						
	6. Use Fig. 3 Use Fig. 4	to determine required TEG concentration. % to determine required stripping gas rate						
	7. Use 2000 E	BTU/gall TEG circulated to determine reboiler c	apacity.					

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision : 0	-Page No	T
TEP/DP/EXP/SUR	DEHYDRATION	Date : 2/85	12.3	TEF

- Use Fig. 6 to determine number of trays required in contactor and Fig. 5 to determine contactor diameter.
- 9. Evaluate contactor height (see section 2 vessels) include integral KO pot in base c tower. Hence estimate weight of contactor.

A more detailed sizing method can be found in CAMPBELL VOL II.

4. METHANOL INJECTION (HYDRATE INHIBITION)

In order to prevent hydrate formation is gas transmission lines the product is normally dehydrated in a TEG or mole sieve unit as defined in previous sections. On some oc ior however (wellhead to plant) this is not possible due to the location of the source. If the minimum pipeline temperature is below to hydrate point the inhibition of water is required. This is acheived by injection of inhibitors to depress the hydrate and freezing points.

- . Common inhibitors are methanol, DEG, TEG. Recovery of inhibitors at the receivin plant is normal, the liquid being then recycled. Economics of methanol recovery are no favourable.
- . Methanol is adequate for any temperature. DEG not good below 10 °C due to viscosity limitations. Above 10 °C better as lower vapourisation losses.

Predict injection rate for hydrate depression as follows :

W =	$\frac{d M}{K_{i} + d M}$	$\frac{1}{1}$ M 100	W	=	weight % inhibitor	
				d	=	°C hydrate depression
				М	=	Mol wt of inhibitor
				Ki	=	1297 for Me OH
						2220 for DEG, TEG

To use above equation : 1. Predict hydrate formation temp at max. press in line T1 2. Estimate min flowing temperature in line T2 3. d = T1 - T2

The amount of inhibitor injected must be sufficient to depress the hydrate point as calculated above and also provide for vapour and liquid phase losses due to vapourisation + dissolving. Adjust injection rate accordingly. For glycol use 0.0035 m³/Mm³ (0.2. Ib/MMSCF), vapourisation. For methanol use vapour pressure charts (CAMPBELL pp (159).

6.

5.

	TOTAL	PROCESS ENGINEERING DESIGN MANUA	L Revisio	on: 0	Page No :
12.3	TEP/DP/EXP/SUR	DEHYDRATION	Date	: 2/85	12.4
,					
ì	5. SOLID BED D	EHYDRATION			
ja de marco no de se	Solid bed der	ydration is used when lower residual water	concentrat	ions are r	equired than
4 IS	can be acheiv	ed by glycol units. This is generally around t	:he – 40 °C r ♥	nark or 1	ppm residual
base c	water. Solid	ed dehydration can be used for less string	ent design r	equireme	nts providing
r	the cost is co	npetative when compared to IEG.			
	NOTES :	· · ·			
	. LNG facil	ties always used molecular sieve dehydratio	n to acheive	e I ppm Hi	20 or less.
rmally	. Available	dessicant medium : KgH2O/100 Kg b	bed		
ior	Bau	xite 4-6	chea	apest	
lf the	Alu Alu	mina 4-7			
quirec	Ge	s 7-9			
	Мо	ecular Sieve 9-12	most ex	cpensive	
re no	. Beds can salts and the dessic	be severely degredated by heavy oils, am iquids. It is essential to have a good feed fi ant bed.	ines, glycol ilter or scru	s corrosic Ibb e r prior	on inhibitors, to entering
COSITY	. Bed life is	usually 2-4 years depending on contaminati	on.		
ļ	. Gas flow ensures th the bed.	hrough the bed is generally downwards. Rep e water is stripped from the media without I	generation g having to pa	gas flows u uss all the	pwards. This way through
!	Figures a	and 7 show a typical molecular sieve arrange	ement.		
l	. Regenerat media, to	ion temperature is usually 175 °C - 230 low results in poor regeneration.	°C. Too h	igh temp	destroys the
ті	. Table I gi	ves a summary of operating and regeneratio	n practices.		
ł	6. USEFUL REF	ERENCES AND LITERATURE			
,	6.1. CAMP	BELL VOL II CHAPTERS 17 AND 18			
nt as	6.2. HAND	BOOK OF NATURAL GAS ENGINEERING	KATZ et a	l. Chapter	16
atio-	6.3. PERR	ſ			
(0.2.	6.4. GAS E	EHYDRATION "Fire tuning existing field	installation	s"	
Lpp		D. CRAMER - World O	9il - Jan 198	1	
۱ ا	6.5. "Cutti	ng glycol costs I" C. SIMMONS O + GJ	Sept 21 19 Sept 28 19	81 81	
9	6.6. "Corre dehyd	lation eases, absorber-equilibrum line ation"W. BEHR 0 + 9JNOV 7 1983	cales for	TEG	natural gas
1	1				

(Campbell and Laurence,

TABLE 1

LIQUED	ADVANTACES	DISADVANTACES
Calcium Chloride	Cheap Makeup small	Emulsifies with oil, Carrodes electrolytically Low dew point depression Hydrogen sulfide forms precipitates
Lithium Chloride	Eigh capacity for vecer Low corresion tate Not hydrolysed easily Dew point depression 22-36°C	Expensive Impurities in commercial grades cause corrosion.
10-30 percent NEA 60-85 Percent DG 5-10 Percent Vater	Removes CO2, H2S and water simultaneously. Clycol reduces foaming tendencies of amine. Dehydrates and purifies gas in one operation.	Greater carry over thes with triethylene glycol. Limited for practical purposes to sour gas dehydration. At high regeneration temperatures needed corrosion is a problem. Dew point depression is limited and less than with triethylene glycol.
Diethylene Glycol	Stable Does not solidify in concentrated solution. Stable in presence of sulfur, orygen and CO2 at normal operating temperatures. Highly hydroscopic Carry over is small	Carry over greater than with trietbylene glycol. Not over a 95 percent solution may be obtained resaily. Dew point degreesion less than with trietbylene glycol High initial cost
Triechylene Glycol	Does not solidify in concentrated solution. Stable in presence of sulfur, orygen and CO2 at normal operating temperatures. Highly hygroscopic Easily regenerated to 99 per- cent solution. Carty over small	High initial cost Exhibits some foaming tendency in presence of light hydrocarbon liquids. De- foaming agent must sometimes be added.

on

1

į

PROCESS ENGINEERING DESIGN MANUAL DEHYDRATION

: 2/85

Date

TE

1.

Page No

12.9

TEP/DP/EXP/SUR

BASIC TYPE	t Nominal Pere Diameter UArgstromsi	i Avəiləblə Form	Equilibrium N.O Casacity . 1% =0*	· Molecules Adsorbed**	Melecules Escluded	APPLICATIONS
A{	, 3	Powder 1- 16-in Pellets 1- 3-in Pellets	23 20 29	Matecules with an effective Stameter <3 angstroms, in- titucing MJU and MM,	Maietules with an effective Sumeter >3 angstroms, eg ethane	The preferred Morecular Sieve actionem for the commercial detycration of ansaturated moraciton strains such as crocked gat, brownes, burgolene, and activenes, this asso used for arming potar hourds such as methanol and estand
14	* •	Powder 1:5-in Perlets 1:5-in Perlets 3:12 Beads 4:4 Beads 14:20 Wesn	29 5 22 22 22 22 22 22 22 22 22 22 22 22 22	Molecules with an effective alameter < 4 angstrams, in- cluding ethandi, N.S. 20., SOI, C.M., Q.M., and C.H.	Morecures with an effective clameter >4 ingstroms, e.g. propane	The preferring Melecular Sieve accurrent for static cenvoration in a closed gas of found system. It is used as a static cension systems, in accurrent in household refrigeration systems, in accurrent and perishable chemicals, and as a valer scavenger in paint and plastic systems. Also used commercially in drying saturated hydrocarbon streams
5.4	5	Powder 1,15-m Pellets 1,3-m Pellets	28 215 215	Molecules with an effective drameter <5 angstroms, in- cluding n-C.J.DM** n-C.J.DM** C.J. to C.J.L. R-12	Malecules with in effective trameter >5 angstroms, e.g. iso compounds and all 4 carbon tings	Separates normal parallins from branched chain and protechroito autons through a selective adsorption process
:DX		Powder 1/16 in Pellets L/8-m, Pellets	1 36 25 28	iso parattins and Dielins, CJL Molecules with an effective diameter <8 angstrems	Di-n butylamine and larger	Aromatic hydroCarbon Separation
13x	10	Powder 1/16-m Prilets 1/8-m, Peilets	36 28.5 28.5	Malecules with an effective diameter <10 angstroms	· Molecules with ' an effective diameter >10 angstroms, e.g.:C_F.LM	Used commercially for general gas drying, air stant feed burilication tomilianeous removal of M/D and COJ and inquid M/D and COJ and inquid M/D and COJ and inquid M/D and COJ and inquid M/D and COJ Metco action and Natural das tweetening M/S and merco action removal,

Figure 8 Basic Characteristics Of Molecular Sieves.

2.

3.
Date

0

Page No :

TEP/DP/EXP/SUR

1. APPLICABILITY

Generally natural gas, or associated gas contain acid components, mainly carbon dioxide (CO_2) hydrogen sulfide (COS), carbon disulfide (CS_2) and mercaptans.

To obtain a commercial product, gaseous or liquefied, the gas needs to be treated to eliminate these sour components for safety or process reasons. An other aspect of gas sweetening is linked with the development of the CO2 injection to improve oil recovery. In this case CO₂ is extracted by a selective process. This section details different methods available for gas sweetening and lists their advantages and disadvantages. Guidelines are given on which system to select for specific services.

A detailed sizing method is beyond the scope of this section, but can be found in the referenced literature is required.

2. UNIT

+

The specification of treated gas can be given in grains/100 SCF for H₂S or sulfur content

1 grain/100 SCF = 16 ppm volume

3. GAS SWEETENING PROCESSES

Various processes are available :

- chemical absorption - solid bed adsorption
- physical absorption - cryogenic fractionation
- chemical conversion using catalyst the absorption process is the most utilised

3.1. CHEMICAL ABSORPTION

In this type of process, the chemical solvent absorbe the acid components present in the feed gas by chemical reaction and releases them by heating at low pressure.

The main chemical solvents are :

-	The Alkanolamines Aqu	Jeous % normally
		used (wt)
	. MEA (Monoethanolamine)	15-20
	. DGA (R) (Diglycolamine), (FLUOR ECONAMINE)	up to 65
	. MDEA (Methyldiethanolamine)	15-30
	. DIPA (Diisopropanolamine), (ADIP)	30-40
	- or alkaline salt solutions as potassium carbonate K ₂ CO ₃	25-40

No

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision : 0	Page No	T
	GAS SWEETENING	2/25		TE
TEP/DP/EXP/SUR		Date : 2/85	12.11	

Alkanolamines cannot be used undiluted because :

- . close to solid state at ambient conditions
- . low stability at high temperature (heating is needed to extract the absorbed ac gases) with generation of highly corrosive products by decomposition.

Table 1 shows the advantages and disadvantages of these processes.

3.1.1. MEA PROCESS (see figure 1)

MEA solution was the first solvent used and is still widely used. Generally a 15 % weight solution is utilized.

a) Advantages

- high reactivity low solvent cost
- good chemical stability pubicly available (no licensing fees)

b) Disadvantages

- irreversible degradation into corrosion products by sulfur components such as COS, CS₂
- irreversible degradation for the solvent by oxygen (Direct contact with air must be avoided)
- ineffectiveness for removing mercaptans
- high utility requirements high vaporisation losses
- need of reclaimer to purify the circulating solution
- no selectivity for absorption between H₂S and CO₂

c) Fields of utilization

- general use : MEA can be utilized for gases containing from 60 ppm to 1 15 % volume acid gases without COS, CS₂, mercaptans and with acid gas partial pressure up to 100 PSIA currently maximum capacity for a 1 MEA unit is around 250 X10⁶ SCFD.

3.1.2. DEA PROCESS

The second most widely used gas treating process with a tendancy to replace the MEA process and some improved processes exist.

Flow diagram very similar to MEA process without reclaimer.

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Hevisi	on :	0	Page No
TEP/DP/EXP/SUR	GAS SWEETENING	Date	: 2,	/85	12.12
-	a) Advantages				
	 no degradation by COS and CS₂ (hydroly a significant amount of the light merca is absorbed a good chemical stability a very low absorption of hydrocarbons publicly available 	- no ne losse	o CO ₂ , presen eed fo ced va s	/H ₂ S) t on r a re aporis) the feed ga eclaimer sation
	b) <u>Disadvantages</u>				
	 lower reactivity compared to MEA and for the conventional system (Not applicate an irreversible degradation of the solver higher utilities requirements no selectivity for absorption between H 	thus h able to nt by ox 2S and C	igher SNEA ygen CO ₂	circu -DEA	llation rate process)
	c) Fields of utilization	÷			
	The DEA process is used to treat gases of COS, CS ₂ , RSH (up to a total acid gas conte	containi ent of 2	ng H ₂ 0 % v	2S, C	O ₂ and als e)
	H ₂ S content of the treated gas lower t requirements (4 ppm volume) can be achei treated gas can be as low as to 100 ppm process depends on the CO ₂ /H ₂ S ratio in th	han the ved. Th volume e feed g	e norr ne CO e. Per gas.	nal s 2 Cor form	pecificatio ntent of th ance of th
	d) Improved processes				
	1. <u>Split flow</u> (see figure 2)				
	For sour gases with high acid gas cont flow rate can be reduced. Investment (more equipment, complex columns, incl	cost (ab cost : reased r	increa regene	25 % ises : erator	mole), DEA significantly height).
	2. SNEA - DEA process				
	SNEA company has developed a proces of DEA (above 30 % weight).	s using	a higt	ner Co	oncentratio
	The process licensor claim to give in 0 to 35 % of H ₂ S and 0 to 35 % of CO most stringent H ₂ S specification (4 ppm	one ster 2, a tre by volu	o, for ated ; ume).	gase. gas m	s containin; hatching th

TEP/DP/EXP/SIJR

TE

3.1.3. DIGLYCOLAMINE (DGA) PROCESS (FLUOR ECONAMINE)

The DGA process has a limited number of units compared with MEA an DEA.

Although in the public domaine, the process was developed by FLUOR and i refered to as the FLUOR ECONAMINE process advantages and disadvantage: to compare with MEA are :

a) <u>Advantages</u>

- low solution circulation rate due to the concentration (same abs tio capacity as MEA)
- low utilities consumption

b) <u>Disadvantages</u>

- needs cooling of the solution during the absorption phase
- high solubility hydrocarbons and aromatics are dissolved
- high solvent cost.

c) Criteria of selection

Like MEA, DGA reacts both with CO2 and CS2 and a reclaimer is required. The process is applicable to gases with acid gas content from 1.5 to 30 % volume and CO2/H2S ratios between 300/1 and 0.1/1 at operating pressures above 15 PSIG.

3.1.4. DIPA PROCESS

This process has been developed by SHELL under the ADIP trademark name. It is characterized by the selective absorption of H_2 in presence of CO_2 .

3.1.5. MDEA PROCESS

As with DIPA, MDEA is characterized by its selectivity for H_2S in presence of CO₂.

MDEA processes are proposed by process licensors :

- SNEA (D)
- UNION CARBIDE : UCARSOL

TEP/DP/EXP/SUR CAS SWEETENING Date : 2/83 12. 3.1.6. HOT POTASSIUM CARBONATE PROCESS (see figure 3) An activator specific to each process licensor is added to increase reactivity of the solution .		IUIAL				
 3.1.6. HOT POTASSIUM CARBONATE PROCESS (see figure 3) An activator specific to each process licensor is added to increase reactivity of the solution BENFIELD (amine and other activators) CATACARB (amine and other activators) GIAMMARCO-VETROCOKE (arsenic and others activators) The main characteristic of the process is that the absorber and regenerator operate at the same temperature (110/115*C) a) Advantages no degradation by COS and CS2 which are hydrolysed good-chemical stability - no need for a reclaimer no reaction with air - low heat requirements (isothermal) low hydrocarbon absorption - selective CO2 absorption (GIAMMARCO) b) <u>Disadvantages</u> licensing fees required - high water content of treated gas low reactivity with H₂S - no mercaptan absorption C) Fields of utilization Applicable mainly on gas with high CO2 content. Low H₂S absorptio makes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used K₂CO3 for CO2 removal - amine for H₂S removal This dual system (amine / K₂CO3) can be in some instances m attractive cost wise than an amine process. 		TEP/DP/EXP/SUR	GAS SWEETENING	Date	: 2/85	12.14
 3.1.6. HOT POTASSIUM CARBONATE PROCESS (see figure 3) An activator specific to each process licensor is added to increase reactivity of the solution BENFIELD (amine and other activators) CATACARB (amine and other activators) GIAMMARCO-VETROCOKE (arsenic and others activators) The main characteristic of the process is that the absorber and regenerator operate at the same temperature (110/115°C) a) Advantages no degradation by COS and CS2 which are hydrolysed good-chemical stability - no need for a reclaimer no reaction with air - low heat requirements (isothermal) low hydrocarbon absorption - selective CO2 absorption (GIAMMARCO) b) Disadvantages licensing fees required - high water content of treated gas low reactivity with H₂S - no mercaptan absorption c) Fields of utilization Applicable mainly on gas with high CO2 content, Low H₂S absorptimakes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used K₂CO3 for CO2 removal - amine for H₂S removal This dual system (amine / K₂CO3) can be in some instances mattractive cost wise than an amine process. 						
An activator specific to each process licensor is added to increase reactivity of the solution = BENFIELD (amine and other activators) = CATACARB (amine and other activators) = GIAMMARCO-VETROCOKE (arsenic and others activators) The main characteristic of the process is that the absorber and regenerator operate at the same temperature (110/115°C) a) Advantages = no degradation by COS and CS ₂ which are hydrolysed = good-chemical stability - no need for a reclaimer = no reaction with air - low heat requirements (isothermal) = low hydrocarbon absorption - selective CO ₂ absorption (GIAMMARCO) b) <u>Disadvantages</u> = licensing fees required - high water content of treated gas = low reactivity with H ₂ S - no mercaptan absorption c) <u>Fields of utilization</u> Applicable mainly on gas with high CO ₂ content. Low H ₂ S absorpt makes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used - K ₂ CO ₃ for CO ₂ removal - amine for H ₂ S removal This dual system (amine / K ₂ CO ₃) can be in some instances m attractive cost wise than an amine process. 3.1.7. <u>CONSTRUCTION MATERIALS</u> Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainles, but still subject to corrosion. Monel is an alternative		3.1.	6. HOT POTASSIUM CARBONATE PROCESS (se	ee figur	e 3)	
 BENFIELD (amine and other activators) CATACARB (amine and other activators) GIAMMARCO-VETROCOKE (arsenic and others activators) The main characteristic of the process is that the absorber and regenerator operate at the same temperature (110/115*C) a) Advantages no degradation by COS and CS2 which are hydrolysed good-chemical stability - no need for a reclaimer no reaction with air - low heat requirements (isothermal) low hydrocarbon absorption - selective CO2 absorption (GIAMMARCO) b) Disadvantages licensing fees required - high water content of treated gas low reactivity with H25 - no mercaptan absorption c) Fields of utilization Applicable mainly on gas with high CO2 content. Low H25 absorptimakes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used K2CO3 for CO2 removal - amine for H25 removal This dual system (amine / K2CO3) can be in some instances m attractive cost wise than an amine process. 3.1.7. CONSTRUCTION MATERIALS Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler to can be stainless, but still subject to corrosion. Monel is an alternative 			An activator specific to each process licen reactivity of the solution	sor is a	addeci to	increase th
 CATACARB (amine and other activators) GIAMMARCO-VETROCOKE (arsenic and others activators) The main characteristic of the process is that the absorber and regenerator operate at the same temperature (110/115°C) a) Advantages no degradation by COS and CS2 which are hydrolysed good-chemical stability - no need for a reclaimer no reaction with air - low heat requirements (isothermal) low hydrocarbon absorption - selective CO2 absorption (GIAMMARCO) b) Disadvantages licensing fees required - high water content of treated gas low reactivity with H25 - no mercaptan absorption c) Fields of utilization Applicable mainly on gas with high CO2 content. Low H2S absorptimakes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used K2CO3 for CO2 removal - amine for H2S removal This dual system (amine / K2CO3) can be in some instances m attractive cost wise than an amine process. 3.1.7.CONSTRUCTION MATERIALS Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel Cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative 			- BENFIELD (amine and other activators)			
 GIAMMARCO-VETROCOKE (arsenic and others activators) The main characteristic of the process is that the absorber and regenerator operate at the same temperature (110/115°C) a) Advantages no degradation by COS and CS2 which are hydrolysed good-chemical stability - no need for a reclaimer no reaction with air - low heat requirements (isothermal) low hydrocarbon absorption - selective CO2 absorption (GIAMMARCO) b) <u>Disadvantages</u> licensing fees required - high water content of treated gas low reactivity with H₂S - no mercaptan absorption c) <u>Fields of utilization</u> Applicable mainly on gas with high CO2 content. Low H₂S absorptimakes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used K₂CO₃ for CO2 removal - amine for H₂S removal This dual system (amine / K₂CO₃) can be in some instances m attractive cost wise than an amine process. 3.1.7. CONSTRUCTION MATERIALS Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative 			- CATACARB (amine and other activators)			
The main characteristic of the process is that the absorber and regenerator operate at the same temperature (110/115*C) a) Advantages - no degradation by COS and CS2 which are hydrolysed - good-chemical stability - no need for a reclaimer - no reaction with air - low heat requirements (isothermal) - low hydrocarbon absorption - selective CO2 absorption (GIAMMARCO) b) Disadvantages - licensing fees required - hugh water content of treated gas - low reactivity with H25 - no mercaptan absorption c) Fields of utilization Applicable mainly on gas with high CO2 content. Low H2S absorptimakes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used - K2CO3 for CO2 removal - amine for H2S removal This dual system (amine / K2CO3) can be in some instances m attractive cost wise than an amine process. 3.1.7.CONSTRUCTION MATERIALS Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainlees, but still subject to corrosion. Monel is an alternative			 GIAMMARCO-VETROCOKE (arsenic and or 	thers ac	tivators)	
 a) <u>Advantages</u> no degradation by COS and CS₂ which are hydrolysed good-chemical stability - no need for a reclaimer no reaction with air - low heat requirements (isothermal) low hydrocarbon absorption - selective CO₂ absorption (GIAMMARCO) b) <u>Disadvantages</u> licensing fees required - high water content of treated gas low reactivity with H₂S - no mercaptan absorption c) <u>Fields of utilization</u> Applicable mainly on gas with high CO₂ content. Low H₂S absorpt makes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used K₂CO₃ for CO₂ removal - amine for H₂S removal This dual system (amine / K₂CO₃) can be in some instances m attractive cost wise than an amine process. 3.1.7. CONSTRUCTION MATERIALS Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative 			The main characteristic of the process is regenerator operate at the same temperature	that 1 (110/11	the absort 5°C)	per and th
 no degradation by COS and CS₂ which are hydrolysed good-chemical stability - no need for a reclaimer no reaction with air - low heat requirements (isothermal) low hydrocarbon absorption - selective CO₂ absorption (GIAMMARCO) b) <u>Disadvantages</u> licensing fees required - high water content of treated gas low reactivity with H₂S - no mercaptan absorption c) <u>Fields of utilization</u> Applicable mainly on gas with high CO₂ content. Low H₂S absorpt makes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used K₂CO₃ for CO₂ removal - amine for H₂S removal This dual system (amine / K₂CO₃) can be in some instances m attractive cost wise than an amine process. 3.1.7. <u>CONSTRUCTION MATERIALS</u> Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to Corrosion. Monel is an alternative 	ſ		a) Advantages			
 good-chemical stability no need for a reclaimer no reaction with air low heat requirements (isothermal) low hydrocarbon absorption selective CO₂ absorption (GIAMMARCO) b) <u>Disadvantages</u> licensing fees required high water content of treated gas low reactivity with H₂S no mercaptan absorption c) <u>Fields of utilization</u> Applicable mainly on gas with high CO₂ content. Low H₂S absorpt makes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used K₂CO₃ for CO₂ removal amine for H₂S removal This dual system (amine / K₂CO₃) can be in some instances m attractive cost wise than an amine process. 3.1.7. <u>CONSTRUCTION MATERIALS</u> Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative 			- no degradation by COS and CS ₂ which a	re hydro	olysed	
 No reaction with all - Now heat requirements (sothermal) low hydrocarbon absorption - selective CO₂ absorption (GIAMMARCO) b) <u>Disadvantages</u> licensing fees required - high water content of treated gas low reactivity with H₂S - no mercaptan absorption c) <u>Fields of utilization</u> Applicable mainly on gas with high CO₂ content. Low H₂S absorpt makes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used K₂CO₃ for CO₂ removal - amine for H₂S removal This dual system (amine / K₂CO₃) can be in some instances m attractive cost wise than an amine process. 3.1.7. CONSTRUCTION MATERIALS Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative 			- good-chemical stability - no need f	or a rec	laimer mante (ico)	thermal)
(GIAMMARCO) b) <u>Disadvantages</u> - licensing fees required - high water content of treated gas - low reactivity with H ₂ S - no mercaptan absorption c) <u>Fields of utilization</u> Applicable mainly on gas with high CO ₂ content. Low H ₂ S absorpt makes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used - K ₂ CO ₃ for CO ₂ removal - amine for H ₂ S removal This dual system (amine / K ₂ CO ₃) can be in some instances m attractive cost wise than an amine process. 3.1.7. <u>CONSTRUCTION MATERIALS</u> Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative			- no reaction with air - low heat - low hydrocarbon absorption - selective	CO2 at	ments (iso	inermai)
 b) <u>Disadvantages</u> licensing fees required - high water content of treated gas low reactivity with H₂S - no mercaptan absorption c) <u>Fields of utilization</u> Applicable mainly on gas with high CO₂ content. Low H₂S absorpt makes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used K₂CO₃ for CO₂ removal - amine for H₂S removal This dual system (amine / K₂CO₃) can be in some instances m attractive cost wise than an amine process. 3.1.7. <u>CONSTRUCTION MATERIALS</u> Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative 			(GIAMM/	ARCO)	, ,	
 licensing fees required - high water content of treated gas low reactivity with H₂S - no mercaptan absorption c) Fields of utilization Applicable mainly on gas with high CO₂ content. Low H₂S absorpt makes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used K₂CO₃ for CO₂ removal - amine for H₂S removal This dual system (amine / K₂CO₃) can be in some instances m attractive cost wise than an amine process. 3.1.7. CONSTRUCTION MATERIALS Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative 			b) <u>Disadvantages</u>			
 low reactivity with H₂S - no mercaptan absorption c) Fields of utilization Applicable mainly on gas with high CO₂ content. Low H₂S absorpt makes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used K₂CO₃ for CO₂ removal - amine for H₂S removal This dual system (amine / K₂CO₃) can be in some instances m attractive cost wise than an amine process. 3.1.7. CONSTRUCTION MATERIALS Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel Cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative 			- licensing fees required - high water	content	of treated	d gas
 c) Fields of utilization Applicable mainly on gas with high CO₂ content. Low H₂S absorpt makes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used K₂CO₃ for CO₂ removal amine for H₂S removal This dual system (amine / K₂CO₃) can be in some instances m attractive cost wise than an amine process. 3.1.7. CONSTRUCTION MATERIALS Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative			 low reactivity with H₂S - no mercapt 	an abso	rption	
 Applicable mainly on gas with high CO₂ content. Low H₂S absorpt makes it difficult to achieve specification of 4 ppm volume. Generally a two stage process will be used K₂CO₃ for CO₂ removal amine for H₂S removal This dual system (amine / K₂CO₃) can be in some instances m attractive cost wise than an amine process. 3.1.7. CONSTRUCTION MATERIALS Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative 			c) Fields of utilization			
Generally a two stage process will be used - K ₂ CO ₃ for CO ₂ removal - amine for H ₂ S removal This dual system (amine / K ₂ CO ₃) can be in some instances m attractive cost wise than an amine process. 3.1.7. <u>CONSTRUCTION MATERIALS</u> Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative			Applicable mainly on gas with high CO ₂ makes it difficult to achieve specification of	content of 4 ppm	:. Low H ₂ 1 volume.	S absorptio
 K2CO3 for CO2 removal - amine for H2S removal This dual system (amine / K2CO3) can be in some instances m attractive cost wise than an amine process. 3.1.7. CONSTRUCTION MATERIALS Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative 			Generally a two stage process will be used			
This dual system (amine / K2CO3) can be in some instances m attractive cost wise than an amine process. 3.1.7. <u>CONSTRUCTION MATERIALS</u> Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative			- K ₂ CO ₃ for CO ₂ removal - amine	e for H ₂	S removal	
attractive cost wise than an amine process. 3.1.7.CONSTRUCTION MATERIALS Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative			This dual system (amine / K ₂ CO3) can	be in	some ins	tances mor
3.1.7. CONSTRUCTION MATERIALS Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative			attractive cost wise than an amine process.			
Carbon steel generally utilized in the chemical absorption un Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative	,	3.1.	7. CONSTRUCTION MATERIALS			
Regenerator can have a strainless steel cladding and trays. Reboiler tu can be stainless, but still subject to corrosion. Monel is an alternative	·		Carbon steel generally utilized in the	chemi	cal absor	ption unit:
can be stainless, but still subject to corrosion. Monel is an alternative			Regenerator can have a strainless steel clade	ding and	d trays. Re	eboiler tube
			can be stainless, but still subject to corrosid	on. Mon	el is an al	ternative b

ΤE

Generally solutions treating gas with high CO_2/H_2S ratio will be more corrosive.

When the CO_2/H_2S ratio is high, stainless steel will be preferred for the following equipment: amine/amine exchanger tubes, expansion value internals, regenerator trays and reboiler tubes.

3.2. PHYSICAL ABSORPTION

In this type of process, the solvent extracts the acid components by simple physical contact and releases them by simple expansion at low pressure.

High pressure and low temperature favour the physical absorption. Table 2 lists the radvantages and disadvantages of physical solvents. These processes are applicable especially in the case of high acid gas partial pressure (above 5 bars also).

Not suitable for sweetening at low or medium pressure (10 bars abs) gases containing large amount of heavy hydrocarbons. Can be considered for a selective absorption.

The main processes are :

3.2.1. WATER WASH

Can be used as primary treatment. For absorbers water wash can be realized by addition of trays in the top section.

Because of its low efficiency, water wash should be used mainly on gases with a large amount of H₂S. Corrosion problems for this process should be considered carefully.

3.2.2. SELEXOL PROCESS (see figure 4)

- developed by NORTON CHEMICAL PROCESS can be applied to gases with large acid gas content.
- has been applied for sweetening of gases containing up to 65 % of CO_2 and 9 % of H_2S at pressure ranging from 25 to 100 bars abs.
- treated gas specification can reach 0,02 % CO₂ and 1 ppm H₂S. When used to absorb selectively H₂S or CO₂ it can also dehydrate.

- other sulfur compounds (COS, mercaptans) are also eliminated.

TOT	AL	PROCESS ENGINEERING DESIGN MANUAL	Revision : 0	Page No :
TEP/DP/E>	(P/SUR	GAS SWEETENING	Date :2/85	12.16
	3.2.3.	FLUOR SOLVENT	•	
		 developed by FLUOR, propylene carbonate is upper second sec	used as the solven	τ
		 primarly intended for the removal of CO₂ from volume residual CO₂ content around 1 % volume 	om gas containing ne in treated gas.	م ^و up to 50
		 CO₂ solubility is higher than that obtained carbonate. 	ed with MEA o	r potassium
		 can be used to treat gas containing H₂S as require a finishing treatment douwstream to of mercaptans also absorbed. 	nd CO ₂ , H ₂ S co btain 6 ppm of H	ntent would ₂ S. COS and
		- requires an extensive use frotating equipment.		
	3.2.4.	PURISOL PROCESS		
		 proposed by LURGI uses n-methyl-2-pyr-rolido 	ne as solvent	
		- as the solubility of H_2S is higher than CO_2 can process to remove H_2S even in case of low H_2S	n b <mark>e cons</mark> idered a S/CO ₂ ratio.	s a selective
	3.2.5.	RECTISOL PROCESS		
		 developed by LURGI, uses a refrigerated solu High selectivity for CO₂, primarly used on s gas (cooling by an external refrigerant cycle for 	ution of methano. ynthesis gas or c or example).	l as solvent. on precooled
		 major disadvantage of the process, when not equipped with refrigeration cycles, needs injection. 	integrated in a p refrigeration an	lant already d methanol
	3.2.6.	ESTASOLVAN		
		Developed by F. UHDE GMBH uses tri-n-butylph process for H_2S extraction. If CO ₂ specificati stringent, additional unit downstream will be req	iosphate as solver ions on the trea uired.	nt. Selective ted gas are
3.3.	PHYSIC	CO - CHEMICAL PROCESSES		
	3.3.1.	SULFINOL		
		 this process has been developed by SHELL involves a physical solvent (sulfolane) and (DIPA alkanolamine) in aqueous solution. 	a chemically rea	active agent

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision : 0	Page No ·
P/DP/EXP/SUR	GAS SWEETENING	Date :2/85	12.17 ,
-	Sulfolane permits deep absorption of CO ₂ and extraction of the acid gases from solvent durin performances for selective and non selective operating conditions	d H ₂ S. Amine fac ng regeneration e H ₂ S absorption	ilitates the depends or
-	process also permits extraction of mercaptans (COS). As for physical absorption, absorpt occurs (mainly aromatics). Does not dehydrate to amine processes, SULFINOL shows a low fo SULFINOL solution freezes at about -2°C.	s and other sulfur ion of heavy hy e the treated gas aming tendency	compounds · /drocarbon: . Compared ·
4. SOLID BE	D PROCESS		1
3.4.1. <u>M</u>	OLECULAR SIEVES		
-	not widely used for gas sweetening can be used as a finishing treatment to remove absorption in molecular sieves is particularl finishing treatment to obtain the sulfur conter and butane	e mercaptans y well adapted f nt specifications	or LPG as of propane
• -	good absorption capacity for H ₂ S low for preferentially sieve life is reduced for gases with high CO ₂ ar	CO ₂ . They rem	ove water
3.4.2. <u>IF</u>	CON SPONGE PROCESS		
-	could be also classified as absorption process (H ₂ S is converted to sulfur) mainly applied to gas with low H ₂ S content	or as a conversi	on process
-	discontinuous process, iron oxide has to be Spontaneous combustion of the fouled product o	regenerated or occurs with air.	replaced.
RITERIA FOR	SELECTION OF ABSORPTION PROCESSES		:
there is no n studied accor	nultipurpose process for gas sweetening, each c diñgly	ase is specific ar	nd shall be I
final selectio which seem a	on is done on the basis of economical criterial f ppropriate to satisfy the treated gas specificatio	rom short list of ns	, processes 1
	· ·		
ł			-

JUIA		FROCEDS ENGINE				0	
TEP/DP/EXP/S	UR	GAS	SWEETENING		Date	[:] 2/85	12.18
- ch	emical	processes are cha	racterized by their	ability t	o absorb	acid gase	es with a lo
in	fluence	e of the gas pressur	e. They require a la	arge heat	: quantit	y for rege	eneration
- ph pr	iysical essure	processes perform with high acid g	mances are more gas partial pressure	dependai e, the a	nt on g bsorptio	as pressu n is bett	ire. At hig ter than fo
	emical	processes	nerebelow can be	used for	r presel	ection of	sweetenir
pr	ocesse	s but shall not be c	onsidered as definit	ive.			
4.1. CC	D ₂ ABS	SORPTION (NO H ₂	S IN THE GAS) (see	figure 5)		
4.2. SI	MULTA	ANEOUS ABSORPT	TION OF CO ₂ AND	H ₂ S (see	figure 6	5)	
4.3. H	2S ABS	ORPTION (NO CO	₂ IN THE GAS) (see	figure 7)		
۲۲	nis is no	ot a frequent situa	tion with natural ga	ses.			
4.4. H	2S SEL	ECTIVE ABSORPT	ion (H ₂ s and Co ₂	IN THE	GAS) (s	ee figure	8)
Pt	nysical	solvents are partic	ularly well adapted	in this c	ase.		
A) se	mong t rvice.	the chemical proce	esses, only MDEA a	and DIPA	seem 1	o be ada	pted for th
5. REFERE	NCES	AND USEFUL LITE	ERATURE				
(1) N	atural	gas production trar	nsmission and proces	ssing			
F.	w.co	LE, D.L. KATZ, L.	S. REID, C.H. HINT	ON			
(2) . G R	as co OBERI	nditioning and p [N. MADDOX edit	rocessing (volume ed by JOHN M. CA	4) gas MPBELL	and l.	iquid sw	eetening
							·
		(

į

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	rievisio	^{on:} 0	Page No :
TEP/DP/EXP/SUR	REFRIGERATION	Date	[:] 2/85	12.24

1. APPLICABILITY

No

23

For both feasibility and pre-project studies, the engineer will be required to select a process scheme (i.e.: choice between cold frac and refrigeration system) to estimate the power, utilities, weight of this package.

2. DESCRIPTION

The description is based on simple cycle. A refrigeration cycle is based on the exchange between a hot source and a cold source. The cold source is the air or the water, the hot source is the gas to refrigerated. (see figs 1, 1A)

Figure 1 shows such a cycle where :

tl		:	is refrigerated stream temperature
t ₂		:	is condensed refrigerated stream temperature
Pl		:	is vapor pressure of the refrigerated stream at t_{1}
P ₂		:	is vapor pressure of the refrigerated stream at t_2
Pd		:	compressor discharge pressure
td		:	compressor discharge temperature
T_1/T_2	:		initial and final temperature of the hot source
TB_1/TR_2	:		initial and final temperature of the cold source

On the figure IA, it is easy to explain the cycle on a pressure enthalpy diagram :

ΔQi	:	is the duty of the process to be refrigerated
Δ Q2	:	is the duty of the condenser
∆ Q ₂	:	ΔQ_1 + HP
		HP is the power of the compressor

3. MODIFICATIONS - ECONOMISER

During the discharge of the cryogenic refrigerant, a mixed phase is generated (vapor and liquid). Only the liquid phase participates in the cooling duty. The vapor phase being compressed from low pressure to the high pressure without participation at the refrigerated duty.

It is possible to remove a part of this vapor phase by addition of an intermediate pressure stage removing the vapor from the low pressure stage compressor which is called economiser (see figures 2 and 2A). An economiser is widely used in the industry.

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision : 0	Page No -		TC
TEP/DP/EXP/SUR	REFRIGERATION	Date : 2/85	12.24		TEP/C
				F	

4. SELECTION OF THE REFRIGERANT

Depends on the required final temperature of the hot source and the disponibility of the country where the units are installed.

Tables 1 shows the performances of different refrigerants in various conditions.

It is recommended that the compressor suction pressure be maintained above atmospher pressure.

5. CHOICE OF DIFFERENT PARAMETERS

5.1. REFRIGERATED STREAM TEMPERATURE τ_1 AND COMPRESSOR SUCTION PRESSURE P₂

 t_1 to be 3 to 6°C lower than the final temperature of the hot source T_2 .

With the selected refrigerant and t_1 read on the MOLLIER diagram of the selecter refrigerant the vapor pressure.

5.2. CONDENSED REFRIGERATED STREAM TEMPERATURE t₂ AND COMPRESSOR DISCHARGE PRESSURE P_d

In first, estimation take $t_2 = TR_1$ (initial temperature of cold source) + 15 or 20° c t_2 to be checked later if it is compatible with the cold source flowrate and the pinch of the condenser (pinch are shell and tube § 3 note 2) which should be 3°c minim

With t_2 determine P_2 which is the vapor pressure of the refrigerant at t_2 (read MOLLIER diagram). Compressor discharge pressure = $P_d = P_2 + P$ through th condenser.

5.3. PRESSURE IN THE ECONOMISER Pe

This pressure will be finalized with the compressor manufacture but for an estimatio take :

$$P_e = P_1 \sqrt{\frac{P_2}{P_1}}$$

6. C

	TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision : 0	Page No
	TEP/DP/EXP/SUR	REFRIGERATION	Date : 2/85	12.26
			· · ·	
	6. CALCULATIO	N WITH ECONOMISER (see figure 2A)		
	Step 1 Det	ermine refrigerant circulation through the econ	• omiser = m ₂	
		$m_2 = \frac{\Delta Q_1}{H_2 - H_5}$		
		% vapor at evaporator inlet = $\frac{H_5 - H_5}{H_2 - H_5}$	3 - x 100	
1		% liquid at evaporator inlet = $\frac{H_2 - H_2}{H_2 - H_2}$	5 x 100	
	Ste	2 Determine vapor refrigerant circulation miser = m1	rate through 1	the econo-
		% vapor at economiser inlet = $\frac{H_1 - H_2}{H_4 - H_2}$	5 x 100	
		% liquid at economiser inlet = $\frac{H_4 - H_1}{H_4 - H_2}$	× 100	
		$m_1 = m_2$ $\frac{\% \text{ vapor at economiser inlet}}{\% \text{ liquid at economiser inlet}}$	= m ₂ x	$\frac{H_1 - H_5}{H_4 - H_1}$
	Ster	3 Determine refrigerant circulation through t	he condenser = r	n
.		$m = m_1 + m_2$		
	Ster	4 Duty of condenser		
	Ĺ	Q2 = m (H _d - H ₁)		
	Ste	5 Calculate the compressor discharge te compressor chapter).	mperature and	power (see
	Ste	6 Check the pinch in the condenser and the acceptable select a new t2 and Pd and repe	cold source flow at the calculation	rate (if not).
	Ster	57 Size drums evaporator and condenser (see exchanger chapter 5).	e vessels and she	ll and tube
	t			

TEP/DP/EXP/SUR

REFRIGERATION

Date

12.27

7. SELECTION OF MATERIAL

The material selection to be made carefully. We recommend to take the temperature corresponding at the vapor pressure at the atmosphere pressure (i.e.: for propane it is recommended to select the low temperature killed carbon steel).

8. MULTISTAGE CYCLE

If we look at the enthalpic curves of the exchanger (process refrigerant) with or withou economiser, it is obvious to see that the area between the process stream and the refrigerant stream is proportional to the compressor work (in a first approximation).

It is possible to reduce this area by addition of several pressure levels between the discharge and the suction of the compressor. However, there is more equipment (drums, exchangers, regulation) and the compressor is more complicated.

The number of pressure levels is an economical problem but the maximum is 3 or 4 selections of these pressures: the pressure ratio between each pressure is for a firs estimation.

π

n = number of compresser suction P₁ = first compressor suction pressure P₂ condenser pressure

9. REFERENCES AND USEFUL LITERATURE

- 9.1. Gas conditionning and processing volume 2 by Dr. John M. CAMPBELL
- 9.2. Applied process design for chemical and petrochemical plants volume 3 by Ernest E. LUDWIG
- 9.3. Chemical Engineers Handbook by Robert H. PERRY/CECIL M. CHILTON

	TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision :	Page No :
0	TEP/DP/EXP/SUR	4	Date : 2/85	
: I				

13. UTILITIES

	ł	
TEP/DP/EXP/SUR Date : 2/85 13.1		TE

1. APPLICABILITY

For both feasibility and pre-project studies the engineer will be required to make ar estimate of utility requirements both in consumptions and equipment required.

This section details a few guidelines and notes on the following utilities :

WATER TREATMENT UTILITY AND INSTRUMENT AIR INERT GAS GENERATORS WATER SYSTEMS FUELS

2. WATER TREATMENT

The following details the common used effluent water treatment equipment given in order of effluent quality :

API gravity settler

- . Usually the first line of clean up. Simply a settling tank with a top skimmer to remove any floating oil or debris and a bottom skimmer to remove sludge.
- . Effluent quality around 150 microns globules and 150 ppm oil.
- . Large bulky items, cannot be used offshore. Either circular or rectangular in design.
- . Simple, cheap very common in onshore use.

Tilted Plate Separator (TPS), Corrugated Plate Interceptor (CPI)

- . Widely used both offshore and onshore.
- . Uses plate packs, usually at 45° mounted in a tank and relies on gravity settling between, oil + water within the spaces between the plates.
- . Effluent quality down to 60 micron oil globules and 50-200 ppm.
- . Can have problems with high solids content if upstream settling tank is not installed.
- . TPS units are usually used as the first treatment stage offshore.

Flotation units

. Uses induced or dissolved air flotation to remove any residual solids/oil in the effluent. Works in reverse to a gravity settler (small air bubbles trap debris and float to top of ank).

TOTAL	PROCESS ENGINEERING DESIGN MA	ANUAL Revisi	on: 0	Page No :	
	UTILITIES		2/05	12.0	
TEP/DP/EXP/SUR		Date	<u> (</u> 8)	13.2	
Effluent	quality better than 40 ppm. Vendors u	sually guarantee	< 30 ppm.		
. Can be used	d both offshore and onshore. Usually i	nstalled downstr	eam of a	TPS unit or	
API separat	or.		•		
<u>Filtration</u> (Use	for Water injection systems only)				
. Filtration u achieve wat	units either uses media beds (sand, er quality or filters (fibre socks, mesh,	anthracite, garn stainless steel c	et, walnu [.] age).	t shells) to	
. Usually not content enfo	required for effluent water treatn prced by local effluent standards.	nent unless very	/ low resi	dual solids	
• More comm required. Ca	nonly used for water re-injection wh an achieve 1-2 ppm in certain beds, 10-	ere high quality -15 ppm is more	r, low soli common.	ds level is	
. Units are ge	enerally compact but heavy due to med	ia bed weight.			
• Good pre-fil	ltration is required to prevent fouling u	up of main bed ur	nits.		
Effluent standards					
Listed below ar	e maximum residual on content in erri		amping to	sea:	
	NORTH SEA 40 ppr	ח			
	INDONESIA + MIDDLE EAST 30 ppr	n 			
	LOCAL ESTUARY (river) 5 ppn	n (European stan	dard)		
Process drains,	produced water, deck (site) drains (see	figure 1)			
 Produced was small it may 	ater may need degassing before treatm y be possible to handle it in the TPS uni	nent. If the amount.	unt of diss	olved gas is	
Deck or site drainage is s TPS unit.	e drains normally flow to a separate su small or produced water flow is small c	ump tank before an combine both	de-oiling. 1 streams 1	If the deck through one	
. Process dra tank. These	ins are normally manually initiated ar drains are generally water free.	nd pass directly	to the ret	urn oil stop	
 Always try oil-water s arrangemen 	to use gravity feed between units. Pu eparation harder. Similarly avoid fa ts.	imping can cause ist flowing line:	e emulsion s and tur	s and make bulent pipe	

.

):

зı

:**r**

£

۱,

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision : 0	Page No	
TEP/DP/EXP/SUR	UTILITIES	Date : 2/85	13.3	

ТE

3. UTILITY AND INSTRUMENT AIR (see figure 2)

Compressed air is used on plants for instrument control, turbine and engine start-up an utility services eg : pneumatic tools, cleaning, etc. :

- . For turbine/engine start-up 17-25 bar supply will be required.
- . For general instrument and utility air, compressor discharge around 9 bar is adequate.
- Consumption : use 0.6 scfm (0.017 m³/min) for each air pilot (= valve) (instrument air) 0.8 scfm (0.022 m³/min) for valve positioner generally 1 m³/h per valve unit will do as first estimate.
 Add 25% to compressor capacity for design.
- . Utility air : consumption is intermittent and difficult to estimate at early project stager Add 75-100 scfm (130-170 m³/h) to compressor capacity for initial estimate.
- . All plants should have 100% instrument air standby capacity.
- . Utility and instrument air can be supplied from same compressor or separate one: depending on capacity requirement.
- . Instrument air must be dried before use. Dew point of air is dependant on minimum air temperature in location of unit. Generally dessicant bed driers are used giving dew point as low as -60°C.
- . Size air receivers to give 10-15 minutes of instrument air assuming the compressor goe down. Pressure in the instrument air receiver should not fall below 80 psig (5.5 bar g) during this period.
- . For long air transmission headers in cold climates intermediate KO puts may be required.
- . An estimate of compressor and dryer weights and power are given in figure 3.

4. INERT GAS GENERATORS (N2, CO2)

Inert gas is required in all plants for purging and inerting of equipment. For small requirements N_2 bottles can be used in racks, this however is not feasible for large units and so gas generators must be supplied. The main types of generator in use are :

- cryogenic distillation of air
- oxygen absorbtion on sieve
- gas combustion
- For purging purposes estimate capacity based on 3 times the volume of the largest vesse to be purged in one hour.

- 1 .		ţ .			
--------------	--	-----	--	--	--

THUCLOW MALL

TEP/DP/EXP/SUR

10

.3

зn

r

e:

it

t

,)

1.

- Cryogenic distillation is used only for large volume requirements, specifically LNG plants. Not used offshore.
- . Gas combustion produces a N₂, CO₂ mixture for inerting and purging purposes. Not used much these days except for onshore large volumes.
- Pressure swing absorbtion is the must common used method for N₂ generation. Skid mounted units are sometimes supplied with dedicated air compressor, or can use existing plant air compressor for supply. Air consumption is 4-5 times inert gas production rate, residual O₂ in gas is 1-2%-3%.
- Details and weights of common units are given in figures 4 and 5.

5. WATER SYSTEMS

Seawater

- . Used for cooling purposes both onshore and offshore. Can also be used as wash water, sanitation water and feed to potable water units.
- . Seawater is also used for fire water systems but is usually a separate system. The seawater cooling circuit is normally connected to the fire water ring for emergency supply only.
- . Always coarse filter the seawater before circulating to the plant. This removes any debris or marine life.
- . Treat with chlorine at 1-2 ppm concentration maintain a residual CI⁻ level in the water exit at 0.3-0.5 ppm.
- . Seawater exit temperatures to outfall canals or drain caissons should not be above 40°C to prevent corrosion.
- Once through water systems are preferred for small cooling duties with only 3-4 exchangers. For large duties and number of units where the cost of corrosion proofing is prohibitive consider using a closed loop cooling medium system. Common used is 25% TEG in water.
- For cooling medium/seawater exchangers consider using titanium or similar plate exchangers. These are especially ideal offshore due to reduced weight and space requirements.

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revisio	on: 0	Page No :
TEP/DP/EXP/SUR	UTILITIES	Date	:2/85	13.5
				1

Potable water

- Depending on location of plant potable water can be made in situ or supplied by tanker for storage, or taken direct from a mains supply.
- For onshore plants most common method of water supply is evaporative distillation. Problem with these units is size and weight are high and residual TDS (Total Dissolved Solids) is 5-10 ppm. This results is a bland distilled water which is not pleasant to drink.
- Increasingly popular now are Reverse Osmosis units (RO) which are lighter and need less maintenance than evaporative units. Water quality is 400-500 TDS (World Health Organization TDS for drinking water is 500-1000) operating costs of RO un³ is 1.5 times that of evaporative distillation.
- . Power consumptions : for a 100 gph (0.38 m³/h) unit.

Evaporative Distillation unit	(EO)	3.5	kw
Reverse Osmosis	(RO)	5	kw
Vapor Compression unit	(VC)	15	kw

- . Most common unit offshore at present is the VC unit which is very reliable and easy to, operate. Unit operates at 100°C and is more susceptible to corrosion.
- . RO units are relatively new, operate at ambient temperature and has few mechanical parts for servicing. Average membrane life is 3 years.
- Consumption : estimate on 50-60 gallons per day per man (0.2 m³).
 Storage : allow 10-15 days for offshore units 10 days for onshore remote areas
- . Potable water can be dosed with hypochlorite at 0.4-0.5 ppm to inhibit bacterial growth.

Waste water and sewage

- . Before discharging to river, sea, or underground sewage + waste water must be treated to meet local health regulations prevalant to the area of siting.
- Limits are imposed on BOD (Biological Oxygen Demand), COD (Chemical Oxygen Demand), coliform bacteria count and TDS.

Example limits are :	bacteria	< 200 per 100 ml
	TDS	< 150 ppm
	BOD	< 100 mg/1
	CI ⁻ residual	> 0.5 mg/l < 1.0 mg/

IUIAL	UTILITIES		
TEP/DP/EXP/SU	JR	Date	2/85
- Sewage sewage.	is treated by physical attrition, airation and	chlorine dosi	ng to 30-
. Provide	15-20 hr retention time for enzymic action to	reduce BOD.	
. Allow 3 wastes.	80-50 gall/day per person (0.15 m ³) for sewa Use upper limit for hot unsociable climates.	age, shower,	laundry
6. FUELS			
Diesel			
. Used fo alternati	or emergency generators, pumps motors an ive fuel for turbines.	d air compr	essors,
. For eme operation	rgency equipment provide individual day tanks n.	sized on pro	viding f
• Main die on locati	esel tank (for feed to day tanks) should hold 10- ion of plant and normal supply periods.	-12 days supp	ly. This
 Diesel stand small times, s operation 	hould be filtered to ~ 5 Microns. Can be cent ller particles. This is especially recommende supply boat debris, seawater contact and p n problems.	rifuged to re d offshore w oor supply c	move re here lor quality (
. For stor pedestra	rage use atmospheric venting tanks with ls, platform legs or inter-deck space for offsho	vacuum-PSV pre storage.	vent.
Gas			
. Fuel gas	is supplied as normal fuel to generators, turbir	nes and any g	as drive
. Always 10 micro his own f	pass FG through a scrubber before use. F ons (generally turbine manufacturer will state filters) - do not rely on this and provide separa	ilter gas su quality requir te treatment	pply to red and anyway
• Maintain to be 5°(n FG temperature at least 15°C above dew po C.	int. Minimum	temper
. Common	n supply pressures are 15-20 bar (some jet engin	nes need 35 b	ar).
. Size fue	el gas supply on maximum design duty of a	ull users oper	rating. /
margin.			

Compressors (250 psig) Air intake finer Aftercooler (air or water)

Post-

To instrument air header

06.

Principle relationship between process pressure product flow and spec. anergy requirement of Einder 2000 plants

QD... Product Now ED... Spec. energy requirement Ph... Process messure Adsorptive separation of sir in carbon molecular sieves.

Technical data

FIGURE

S

1

INERT

R

GENERATORS

.

.

.

Small plants:	Ready-for-ope Fully function No installation No cooling w	ration plants j - and perform n work. ater required.	n one unit. ance-lesied.			
Type designation	Max. 0,% content in product	N, product Product quantity mt/11	pressure 4.5 bar Power consumption approx, LW	N, product Product quantity my /li	pressure 6 bas Power consumption approx. 1W	·
DWN 20	0.5	13 17 20	8 8 5 9	16 20 30	11.5 12 14	
DWN 50	05 1 2	29 37 50	15 18 20	35 45 65	21 24 29	
DWN 90	05 1 2	50 68 90	25 30 33	60 85 115	36 47 48	•
DWN 180	05 1 2	100 130 180	48 54 60	120 160 230	70 77 86	•
Large plants	: Ready-for-op Minimal inst	eration plants Mation work	from function-teste	d แม่เม		
Туре	Mar 0,%	N, product	pressure 4.5 bar	N, product	pressure 6 bar	Cooling water m ¹ /h

TEP/DP/EXP/SUR

PROCESS ENGINEERING DESIGN MANUAL

Revision

••

0

Page No

UTILITIES

i.

Date

: 2/85

ü

·0

designation	contents	Product Power		Product Pressure & dat		N ₁ product pressure	
	In product	quantity m ⁱ /h	consumption approx, LW	ព្រះ /h	consumption approx_1W	4 5 bai	6 bar
	0.5	240	110	295	170	12	16
DWN 400	1	300	125	385	190	14	18
	2	370	135	500	200	15	21 .
	0.5	410	185	500	260	17	25
DWN 700	1	510	200	650	280	19	29
	2	620	215	850	300	22	33
	05	910	390	1100	\$30	40	53
DWN 1600	1	1110	410	1440	580 🛥	44	61
	2	1370 .	450	1900	670 *	47	71

The performance figures listed are measured at 20 °C air temperature, 70% air humidity and 1 bar pressure at the shaft. The product nivogen has a dew point of -50 °C at autospheric pressure and contains <20 ppm carbon dioxide as well as a residual portion of rare gases.

The high flexibility of DWN plants enables them to be economically operated at part load up to 60% of product quantity. In addition to the standard units listed, customized DWN plants can be supplied based on customer specifications for product quantities, supply pressures and product units

Newsyon 1 m2/h = \$35 kp/h Air 5 m2/h = "\$2 kp/h (\$10 + 102 kp/cm)

No	TUTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision :	Page No :
9	TEP/DP/EXP/SUR		Date : 2/85	
8		•		
		•	•	
•				
		-		
			2	
		15. DATA		
-				
,				
÷				
		•		

IUIAL		Revision: U	Page No :	
TEP/DP/EXP/SUR	DATA SECTION	Date : 2/85	15 -	
PAGE	ı			
2 3-9	General data Conversion tables			· .
10	PSEUDO CRITICALS AND OIL PROPERTI	ES P		· ·
11-14 15 Figs. 1-3 16 4 5 17 6 18 7 8	Physical properties of hydrocarbons Compressibility factors of natural gas Pseudo critical pressure VS. MW Critical constants for gases and fluids Critical temperature VS. normal boiling po Characterised boiling points of petroleum f Molecular mass, BP, and densities of fracti	int Fractions ons		
19 20 10 21 11	<u>DENSITY</u> Relative density of petroleum fractions VS Relative density of petroleum fractions VS	T MABP		
22 23 12 24 13 25	<u>VISCOSITY</u> Viscosities of hydrocarbon gases Viscosities of hydrocarbon liquids ASTM viscosity chart			
26 14 27 15 28 16 29 17	VAPOUR PRESSURES Low temperature vapour préssures High temperature vapour pressures True vapour pressures of petroleum product Hydrate formation pressures	s and oil		
30 31 18 32 19 33 20 21	SPECIFIC HEATS Specific heats of hydrocarbon vapours at 1 Heat capacity correction factors Specific heat capacity ratios at 1 ATM Specific heat capacity of hydrocarbon liquid	ATM		
34 35 22 23 24	THERMAL CONDUCTIVITY Thermal conductivity of natural gases Thermal conductivity ratio for gases Thermal conductivity of hydrocarbon liquids	5		
36 37 25 38 26 39 27	LATENT HEATS OF VAPOURISATION Latent heats of various liquids Latent heats of hydrocarbons Heat of combusion of liquid petroleum fract	tions	· .	-
40 41 28 42 29 43 30 31	SURFACE TENSIONS - MISCELLANEOUS Surface tensions of hydrocarbons Dew points of natural gases Solubility of natural gas in water and brine Solubility of methane in water			
32 44 33 45 34 35 46 36	Solubility of natural gas in water Solubility of water in hydrocarbons Temperature drops for expanding gas Temperature drops for expanding gas Physical properties of gas treating chemical Physical properties of water	5		

	IUIAL			r ag
	TEP/DP/EXP/SUR	DATA	Date :	15-
ſ	PERSONAL		· · · · · · · · · · · · · · · · · · ·	<u> </u>
	NOTES:		· ·	
			•	
			÷	
		·		

TOTAL	PROC	ESS ENG	INEERING DES	IGN MA	NUAL	Revis	ion : 0	Page N	o :	
TEP/DP/EXP/SUR	NERAL DATA	Date :				5 15 - 2		TO		
us of unim listed before is 22.41	40 liters of Q*	Values Cand 101.32	of the gas constar	nt R in P		TEP/D				
	•									
n iemperature	F1011070	Velume		^	Terr	penature	Energy	R	. .	
si K		(m)	82.057	mai		ĸ	10010	8.314.5	1.1	
si C	bar	liter	0.083 145	lb moi		*8	âru	1 985 9		
н С ж С	kg/cm ¹	liter m ¹	0 084 754 0 008 314 5	ib mol		*2 *2	ng • n	0.000 780 4	B	VILUA
	aim	f# 3	0 730 24	15 mol		•9	11 - 15	1 545 3	'	
	in Mg mm Ha	(m) (m)	21 350	h an ai				2 31 / 5		
moi •9	ib/ in²	f+3	10.732	1 mgi		•	lanie	3 314 3		
mat °R	16/42	(t)	1 545.3							IE LUBE
mol K	mm Hg	41 41	998 97							
nol K	kPa .	د	8.314 5						1 +	
	5ar		0.083145							metre cui
tin SI, I male is equivale	ent to the gm	mole; the mol	ecular mass of carbon-12.	for exampl	le, is 12 g/m	oi				
				7						
The relation of Deg	rees Baum	ne or A.P.I	. to Specific							
ravity is expressed by	the follows	ng formula	IS:			HOLAR	VOLUME		1	-
For liquids lighter the	an water:				P = 1469	ó psia, l	atm. 1.032	5 bara		
_	140			1	th eals					
Degrees Baumé :	$=\frac{140}{G}-13$	30.			ID GOLE	(60-7)	15.5°C	159.03 Ft		
					*				l· 1	c lest
G	=	140						· · · · · · · · · · · · · · · · · · ·		
	130 + De	igrees baur	ne		Kg mole		0.0	22.414 m3		
Degrees A PI :	_ 141.5 _	131.5				(60-1)	13.5°C	23.696 a		aunce (1
	G	101.5,								
		141.5		}						
G :	= 131.5 + 1	Degrees A.	P.I.	ł					i.	n (U.S. M
Carlanda La Carl				{	•0	= 5/9 (**	5 - 32)			
ror liquias neavier in	an water:					- 0/ 5 (1	- 32)			zrui gailo
Degrees Baumé = 145 /	145				°P	= 9/5 (°C	.) + 32			, hquid)
Defices Dadine - 140 -	· <u> </u>				к	= °C + 2	73.15 = 5/9	9 R		
		145			°R	= °F + 4!	59 67 - 1.8	к		el ladi
C =	145 - De	Trees Baur	né							
0 0 0 0 H		Biece Duce			SI	Prefire a	al hatelately -			
G = Specific Gravity	= ratio of	the weigh	t of a given			T TENACO MI		tion ractors:		
ume of water at 60° F	renneit w	the weight	of the same		1013	Preix	Symbol			
anne of water at our f	annenner				10*	101 E	ċ			
To determine the resu	lting gravi	ty by mixi	ng oils of dif-		104	mega	м			
ent gravities:					10 ³	kilo	k			·
~		dz			101	hecto	h			MAS
U =	<u>m + n</u>		4		10-1	deri	0 8. A	•		_
D = Density or Sr	Secific Gray	vity of mix	ture		10-3	œnui	c			
m = Volume prope	ortion of oi	l of di dens	nity		10-3	milli	n			agram
n = Volume prope	ortion of oi	l of d2 dens	nity		10-4	micro	μ	ł		
di = Specific Grav	ity or dens	ity of m oi	1		10-1		0	•		
de = Specific Grav	ity or dena	ity of n oil			10-1	femto	p f	•		mme
,					10-1	Atto				
USEFIT NOTE	s	<u>i</u>							1	na
1	·			<u> </u>						
1	stant	= R/mo	L - t of gas							-
R1 Individual gas cor									i	ind (a
R ₁ Individual gas cor									1.	
R ₁ Individual gas cor	.1	= 6.027	52 x 10 ²³ molecules/m							
R _i Individual gas cor N _a Avogadro constar	.t	= 6.022	52 x 10 ¹³ molecules/m]					
R ₁ Individual gas cor N _a Avogadro constar	.t	= 6.022	52 x 10 ¹³ molecules/m							nce (a
R ₁ Individual gas con N _a Avogadro constar g Accelaration of g	it ravity	= 6.022; 	52 x 10 ²³ molecules/m 						(nce (a
R ₁ Individual gas con N _a Avogadro constar g Accelaration of g	ravity	= 6.022; = 9.81 n 32.17 f	52 x 10 ²³ molecules/m n/s ² t/s ²							rt 101
R ₁ Individual gas con V _a Avogadro constar g Accelaration of g	it ravity	= 6.022; = 9.81 n 32.17 f	52 x 10 ²³ molecules/m n/s ² t/s ²							rt 107 DD 16
R ₁ Individual gas con V _a Avogadro constan g Accelaration of g Velocity of sound 0 *C and 1 arm	nt ravity	= 6.022; = 9.81 n 32.17 t	52 x 10 ²³ molecules/m n/s ² t/s ²							nce (a rt tor OD 16
R ₁ Individual gas con N _a Avogadro constan g Accelaration of g 's Velocity of sound 0 *C and Latm	n dry air a	= 6.022; = 9.81 n 32.17 f t = 1 089	52 x 10 ²³ molecules/m n/s ² t/s ² ft/s • 331.92 m/s							nce (a rt 10r DD 1b g ton
R ₁ Individual gas con Na Avogadro constan g Accelaration of g Velocity of sound 0 *C and Latm	n dry air a	= 6.022; = 9.81 n 32.17 f = 1 039	52 x 10 ²³ molecules/m n/s ² t/s ² ft/s • 331.92 m/e							nce (a rt sor DD 1b g ton .40 lb

ï	TOT	AL	PROC	ESS ENC	ERING D	Revision : 0			Page No:					
1	TEP/DP/EX	P/SUR		Ľ	ATA	SECTION	·	Date : 2/85			15	15 - 3		
			<u> </u>			VOLU	IME			•				
		r	r — …			r	1	ı — — —			6			
	VOLUME	volume u insidente .		1		in ³	f1 ³	11 oz (U.S.) gat (U.S.)		.) gal (U.K.		1 991	
	re cube			ini E in, . i suttrinde E 15't		6 107 376 F (M) 531 466 (×111	ું અન્ય વલ્ડ∕ કું હ	st / Lat 1 / At E - 11/		2 1101 1102 E - 1		6, 2003 H 1 1 4	- (JI)
	antite cube	I DHU UND F US	t	1 <u>(</u> 1611) (11))€ 0.I	6,102.3761 - 02),531.466 E (15	3, ast 402 (- 0	2 1.41 2	70 E 04	2 1103 6122	E (M	6.7H11 811 E	s
		1 OUO NOO E 173	L'OLKI (UDU E	י נח י		6 107 376 E · 111	1,511 466 F . W	3.381.407.E+0	1 26417	20 E 01	2,11916921	E 01	6,2m1811 E	<u>س</u>
	.c usch	1.638 /06 E 1/5 1.638 /06 E -01		•01 1.538.70	1 1.6.0K /Ibi E 16/ I		5./87 035 E 144 5.541 124 E 4-1		UI 4,379 UD3 € 03 3.60			HHE U3 1 030 715		04
	c 1001	2.831 M5 E+02 7 H31 485 E+1M 7 H31		• (54 2 H 31 GH	NSE-111 1724 (NUL)E-11		1 9 \$75 066 (- u		17 J 480 570 E + 00 6 7		6 77H H33	6 77H H33 E · (20) I 781		61
	aunce (U.S.)	2 957 353 E (B) 2 % / 353 F (U) 2 % /		-uri 2767.35)	i€ 412	t non cons é « inc	1 (044-1791) 13-1		/ 812 5481 E 113 6 545 26			E 03 1 M60 119 E 0		
	a IU.S. Inqui di	3 /H5 417 E= N3) /85 4 17 E	·03 3 /05 413	F - UU	7 310 iani € - 02	1,336 805 E - 01	1,2HO COO E + O	7		8,326 /39	E (0)	7 380 957 E	07
	riol gallon bquid)	dhea 4 546 My2 € −03 4 546 My2 € +112 (d)		(0) ، المرز الم	e • Ou	7 //4 3146 E + 112	2 //4 1146 E + 112 1,695 437 E UI 153		2 1,700 9	950 E+00 1			2.859 406 E	07
	ri lon;	1 549 873 E-UI	1 5M1873 E	·15 1,584 87) E + 97	נואי לטל עי E - 03	5 614 583 E +00	5.376 (JUD E + I)	4,200.0	00 € • 91	3,447,230	E • D 1	3	
						MAS	S	······································						
	MASSE	kg		9		1	lb	07		ton	(short)	 	ton (long)	
	រទូ ក្រកាកខ	1	1.000	000 E +03	1,000	000 E - 03	2,204 622 E+0	0 3,527 39	7 E +01	1,102	311 E -03	9,8	942 064 E -	-04
	mme	1,000 000 E -	-03 1		1,000	0 000 E 06	2.204 622 E - 0	3,527 39	7 E –02	1,102	311 E - 06	9.8	342 064 E -	-07
	ne métrique	1 000 000 E 4	+03 1.000	000 E +06	1		2,204 622 E +0	3 3,527 39	7 E +04 1,102		02 311 E +00		342 064 E -	-01
	ind (avoir)	4,535 924 E -	-01 4,535	5 924 E +Q2	4,53	5 924 E - 04	1	1,600 00	0 E +01 5.000		00 000 E04		4,464 286 E	
	nce (avoir)	2,834 952 E -	-02 2,834	952 E +01	2,83	4 952 E - 05	6,250 000 E - 0	12		3,125	000 E -0	5 2.	790 178 E	-09
	rt ton (U.S.) 00 ibm)	9.071 847 E	+02 9.07	1 847 E +05	9.07	1 847 E 01	03 3,200 000 E +04		1		8,928 570 E -		-0	
••	'g ton (G.B.) !40 lbm)	1,016 047 E	+03 1,01	5 04 7 E +06	1,01	6 04 7 E +00	2,240 000 E +0	3,584 00	00 E +04	1,120	000 E +0	0 1		

· .

														5
TO	ral	PR		GINEERING DESIGN MANUAL					Re	vision: 0	Page	≥ No :		T
TEP/DP/	EXP/SUR			DATA SECTION						te : 2/85	(5 -	4		TE
					AR	EA								
AIRE	-1RE m ² m ² c			cm ²			2 acre		in ²		tt	:		
metre carré	metre carré 1		1,000 000 E	+64	1,000 00	00 E -02 2.43		054 E - 04	1,550 003-E03		1.076 39	1 5 -01		
centimetre carré 1,000 000 E04		D E −04	1		1,000 00	0 E -06 2.471 054 E -08		054 Ê -08	1.1	550 003 E -01	• 076 J9	1 E -03	il	J. J. C.
are	1,000 000) E ÷02	1,000 000 E	+06	t		2,471	054 E 02	1,550 003 E -05		1,076-39	I E - 03		metre cu
acre	4.046 856	i E +03	4.046 856 E	+07	4,046 85	6 E +01	1	·	6,272 639 E +06		4,356.000	0 E +04		Patre Ca
square inch	6,451 600) E04	6,451 600 E	+00	6,451 60	0 E06	1,594	225 E -07	1		6.944 444	€ -03		littra par
square foot	9.290 304	E02	7 9.290 304 E+02 9.290 304 E-04 2.295 6		684 E05	1,4	40 000 E +02	1		1				
 	l		1	1	LENC	тн]		1	<u>l</u>		 		e noilee (U.S. be
						0			<u> </u>					
	n			1.000.0	м 								1	
1						1,000 000		1,937,008 (3.280 840 E +00	6,213 /1	2 E04	•	
centimetre	1,000 000 E	-02 1		1,000 0	00 E +04	1,000 000) E +08	3,937 008 8	E01	3.280 840 E -02	6,213 71	2 E 06 ."	1	
micron	1,000 000 E	-06 1.0	00 000 E -04	1	,	1,000 000) E +04	3,937 008 E	05	3,280 840 E - 06	6,213 71	2E-10	•	
angström	1,000 000 E	-10 1.0	00 000 E 08	1,000 0	00 E - 04	1		3.937 008 E	-09	3,280 840 E 10	6,213 71	2E-14	•	
inch (pouce)	2,540 000 E	-02 2.5	40 000 E +00	2,540 0	00 E÷04	2,540 000	6 +08	3		8,333 333 E02	1,578 28	3 E05	e e	^
foat (pied)	3.048 000 E	-01 3,0	48 000 E +01	3.048 0	00 E +05	3,048 000	E +09	1,200 000 E	+01	1	1.893 93	9 E04		kilo
mile (U.S. statut	e) 1,609 344 E	+03 1.6	09 344 E +05	1,609 34	14 E ÷09	1,609 344	E+13	6,336 000 E	+04	5,280 000 E +03	1		,	fit a 1
_					VELO	CITY							· · ' 	pou
	VITESSE LINEAI	ne 	mis	1/h		-	~~~			mile/h		1	:	por
	netre par soconde		3,600 000		000 E +00	3,937 008 E +01 3,280 8		3,280 840	0 E +00 2,736 936 E +00				1 . ·	
	nemetre por houre		2,777 778 E +01 	9,144	000 E - 07	1,093 61	J E +01	9,113 445	E01 E02	6,213 717 E -01	_		н 1 1. 1	
	al per uncand		3.048 000 E -01	1.097	780 E +00	1,200.00	0 E +01	1		6,818 187 E -01			,	
	میں میں میں ملبہ میں ملبہ میں ملبہ		4,4 70 400 E +01	1,609	}aa € +00	1,760.00	0 E +01	1,466 667 (E +UO	,		I	•	
L												1		{
TOTAL

PROCESS ENGINEERING DESIGN MANUAL

Page No :

TEP/DP/EXP/SUR

DATA SECTION

: 2/85 15 - 5 Date

			VOLU	IMETRIC F	LOW	·		
س ^{ع - ۱}	m ³ /s	m ³ /h	i/s	m ³ /mo	s pm	tt ³ /s	ft ³ /h	p/Iqq
metre cube par soconde	1	3,600 000 €+03	1,000 000 £ + 0.3	6,000 000 E+01	1,585 037 €+04	3.531 466 E + 01	1,271 328 6~05	5 434 396 E+05
metro colos per houre	2,777 778 E04	1	2,777 778 E -01	1 <u>,666</u> 667 E -02	4,407 868 E+00	9.809 629 E - 03	3,531 466 E+01	1,509 554 E+02
litte par tocande	1,000 000 E03	3,600 000 E + 00	1	€_000 000 E - 02	1,585 032 E+01	3.531 466 E02	1,271 328 E+02	\$,434 396 E+07
metry code par minute	1,666 667 E-02	6,000 000 E+01	1,666 667 E+01	1	2,641 721 E+02	5,885 778 E-01	2,118 860 E+03	9.057 328 E+03
pilos per Ameto (U.S. hourd)	6,309 070 E05	2,271 747 E-01	\$_309 020 E~02	3,785 411 E03	1	2,226 009 €03	6,020 632 E+00	3.428 571 E+01
avinc lost per mand (avinc)	2.831 685 € -02	1,019407E+02	2,831 685 E+01	1,599 011 6+00	4,4 08 312 E+02	1	3,600 000 E+0 3	1,538 850 E+04
gading foot gave bour	7,866 787 EOE	2,831 685 E02	7 ,865 78 2 E03	4,719 474 E-04	1,246 753 E-01	2,777 778 E-04	1	4,274 583 E+00
bartui par da y	1,840 131 E-06	6,824 471 E03	1,840 131 E-03	1,104 078 E-04	2,916 667 E-02	6,496 361 E-05	2,339 410 E01	1

DENSITY

MASSE VOLUMIQUE	kg/m ¹	g/cm ³	lb/in ³	16/11 ³	lb/gal (U_S.)
kilogramme par mètre sube	3	1,000 000 E03	3,612 730 E 05	6,242 797 E-02	8,345 406 E03
gramme per centimetre cube	1,000 000 E +03	1	3.612 730 E 02	6,242 797 E+01	8,345 406 E +00
pound per cubic inch	2,767 990 E+04	2,767 990 E+01	3	1,728 000 E +03	2,310 000 E +02
pound per cubic foot	1,601 846 E +01	1,601 846 E02	5,787 037 E-04	1	1,336 806 E 01
pound per gallon (U.S.)	1,198 264 E +02	1,198 264 E-01	4,329 004 €03	7,480 519 E+00	- 1

:

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision : 0	Page No : •	
TEP/DP/EXP/SUR	DATA SECTION	Date : 2/85	15-6	
	PRESSURE	· .	TOTAL	
	I RESSORE		IUIAL	_

T

TEP

_____ viscosi" DIFF

métre ca

cantistor

square to

square fi _

ENERGIE DUAN CHA

joule lat

erg

. -____ wattf

•

٠

۰,^۰

,

m

---caloria thermoc

caloria I

kilocalo

thermie

100-001

British ti (IT)

horsepe

PRESSION/ CONTRAINTE —1 —2 m.kg.s	Pa	ber	dyn/cm ²	atm	kg1/cm ²	mmHg (torr)		ры	pst
parcat	1	1.000.900 E. 05	1 000 000 E + 01	9 669 733 E 06	· 019 /16 E . 35	7 500 615 E - 73	1 019 716 E - 01	1 450 377 E - 04	2 084 543E -02
tu	1,000 000 E - 75	1	1 000 000 E + 06	9 869 233 E - J1	1 019 716 E - 90	7 500 615 6 + 02	1 019 716 E +04	1 450 377 E - 01	2 088 243 6 - 03
dyne Bår Centumelle carre	1,000 000 E - 01	1,000 000 E - 06	I	9 869 213 E -07	1 019 716 E OS	7 500 615 E - 04	1 019 716 E -07	1 450 377 E - 05	2 088 543 €-03
, stmaigh ire narmaig	1.013 250 E+05	1.013 250 E+00	1 013 250 E * 06	2	1 033 227 £ - 00	7.60C 000 E * 92	1,033 227 E-04	1 469 595 E + 01	2.11E 2-03
kilogramme-larca par centimette carit	9.806 650 E + 04	9.806 650 E -01	9.806 650 € • 05	9 678 411 E -01	1	7,355 591 €+02	1.000 000 E+04	1 472 334 €+01	2.048 161 E+03
millimetre mercure 6 0°C (Lerr)	1.333 224 E+02	1,333 224 E -03	1,33 3 724 E + 03	1,315-790 € ∞03	1, 359 5 10 € - 03	•	1,359 510 E+01	1.933 678 E -02	7,784 496 E+00
millimetre ann à 4°C	9 805 650 E+O)	9,806 650 E - 05	9,805 650 E +01	9.678 411 2-05	1,000 000 E -04	7,355 591 E - 02	1	1,422 134 E -03	2,048 161 E-01
paund-form par www.uch	6.894 757 E+03	6,894 757 E-02	6.894 757 E+04	6.804 596 E - 02	7,030 695 € -02	\$,171 492 E+01	7,030 695 E+02	1	1,440 000 E+02
paund-force pur unuare laat	4,788 026 E+01	4,758 026 E04	4 788 076 E + 02	4,725 414 E- 04	4 887 478 E -04	3.591 314 E ~01	4.682 428 E+00	6.944 445 E -03	;

VISCOSITY (Dynamique)

VISCOSITE DYNAMIQUE	Pa . s	c ?	tçim k	ib/It_s
pescal seconde	1	1,000 NOD E +03	3,600 000 E +03	6, 719 689 E -01
	1,000 000 E03	1	3.600 000 E +00	6, 719 689 E - 04
kilegramme par metta-heure	2,777 778 E -04	2,777 778 E -01	۲	1 866 581 E04
pound par fout-second	1,488 164 E +00	1,4 88 164 E+03	5,357 390 E +03	1

٠

	AL	PROCESS ENGINEERING DESIGN MANUAL				AL Re	evision :	0 F	'age	
TE?/DP/EX	P/SUR		נס	ATA SECT	ION		Da	ite : 2	/85 (5	_
			N	viscosit	Y (Kiner	natic)		•		
VISCOSITE CINEM		m²	/1	cSt		tt ² /s		61 ² /h		
mêtre carré par sac	onde	1		1,000	0 000 E +06	1	.076 391 E +	-01	3,875 00	28 E
centistokes		1,000 000	0 E06	1		1	,076 391 E -	-05	3,875 00)8 €
square foot per sec	ond	9,290 30	4 E-02 .	9.290	0 304 E +04	1			3,600 00	юE
square foot per hou	ır	2,580 640	0 E - 05	2,580	0 640 E +01	2	.777 778 E-	04	1	
INERCIE					-					T
fNERGIE, TRAVAIL OUANTITEDE CHALEUH m ³ kg.s ⁻²	j abs	erg	kWh abs	cal th	cal _{I.T.}	kcał.T.	th	f1.1bf	^{Btu} l.T.	
fNERGIE/TRAVAIL OUAWIIIEDE CHALEUH m ³ kg.s ⁻² jouie (absolu)	j _{abs}	erg 1 000 000 E - 07	kWh _{abs} 2,777 778 E-07	cal _{th} 2,390 057 E - 01	cal _{I.T.} 2,368 +59 E -01	kcal _{l.T.} 2.388 459 E-04	th 2,389 201 E -07	f1.1bf 7.375 621 E-01	Btul.T. 9 478 170 E = 0	<u> н</u> э.
fnengie, travail Ouautite Dé Chaleun m ³ kg.s ⁻² jouie (absolu) erg	jabs	erg 1 000 000 £ - 07	kWh _{abs} 2,777 778 E-07 7,777 778 E-14	cal th 2,390 057 E - 01 2,390 057 E - 08	cal _{1.T.} 2.388 +59 E -01 2.388 +59 E -08	kcal _{1.T.} 2.388 459 E-04 2.388 459 E-11	th 2.389 201 E - 07 2.389 201 E - 14	f1.1bf 7.375 621 E -01 7.375 621 E -08	Βτυ _{Ι.Τ.} 9 478 170 Ε - 0 9,478 170 Ε - 1	.c 🕰
(NERGIE, TRAVAIL OUAUTIE DE CHALEUH m ² kg.s ⁻² jouie (abiolu) erg 	J abs	erg	kWh abs 2,777 778 E - 07 7,777 778 E - 14	cal th 2,390 057 E - 01 2,390 057 E - 08 8,604 207 E + 05	- cal _{1.T.} 2.368 +59 E - 01 2.388 +59 E - 08 8.598 452 E + 05	kcal _{1.T.} 2.388 459 E-04 2.388 459 E-11 8.598 457 E+07	th 2.389 201 E - 07 2.389 201 E - 14 8.601 173 E - 01	f1.1bf 7,375 671 E -01 7,375 621 E -08 2,655 274 E+06	Btu _{I,T.} 9 478 170 E - 0 9 478 170 E - 1 3 417 141 E+0	1 B. 1.
fNERGIE, TRAVAIL- OUAWIIIEDE CHALEUH m ³ kg.s ⁻² jouie (absolu) erg - wattheure (abs) calorie thermochimique	J abs	erg 1 000 000 E - 07 1 3 500 000 E - 13	kWh abs 2,777 778 E - 07 2,777 778 E - 14 1 1 1,622 727 E -06	cal th 2,390 057 E -01 2,390 057 E -08 8,604 207 E +05	- Cal _{1.T.} 2.368 +59 E -01 2.368 +59 E -08 8.596 +52 E + 05 9.993 317 E -01	kcal _{1.T.} 2.388 459 E-04 2.388 459 E-11 8.598 452 E+02 9.993 312 E-04	th 2.389 201 E - 07 2.389 201 E - 14 8.601 123 E - 01 9.996 416 E - 07	f1.1bf 7,375 621 E - 01 7,375 621 E - 06 2,655 274 E + 06 3,085 960 E + 00	Btul.T. 9 478 170 E - 0 9 478 170 E - 1 3 417 141 E + 0 3 565 666 E - 0	1. B. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
fNERGIE:TRAVAIL OUAWITEDE CHALEUH m ³ kg.s ⁻² joule (absolu) erg wattheure (abs) calorie thermochimique calorie 1.T.	J abs	erg 1 000 000 E = 07 1 3 500 000 E = 13 4 184 000 E = 07 0 4 186 800 E = 07	kWh abs 2,777 778 E - 07 7,777 778 E - 14 1 1.622 722 E -06	cal th 2,390 057 E -01 2,390 057 E -08 8,604 207 E +05 1	- - 2.368 +59 E - 01 2.368 +59 E - 08 8.598 +52 E + 05 9.993 317 E - 01	kcal _{1.T.} 2.388 459 E-04 2.388 459 E-11 8.598 452 E + 02 9.993 312 E -04 1 000 000 E - 02	th 2.389 201 E - 07 2.389 201 E - 14 8.601 123 E - 01 9.996 416 E - 07 1.000 311 E - 06	f1.1bf 7.375 621 E - 01 7.375 621 E - 08 2.655 274 E + 06 3.085 960 E + 00	B tu _{1, T} . 9 478 170 E - 0 9 478 170 E - 1 3 417 141 E + 0 13,965 666 E - 0	1 B. 1 B.
fNERGIE:TRAVAIL OUAWTIEDE CHALEUH m ³ kg.s ⁻² jouie (absolu) erg watthoure (abs) calorie thermochimique calorie 1.T. kilocalorie 1.T.	J abs	erg 1 000 000 E = 07 1 3 600 000 E = 13 4 184 000 E = 07 4 186 800 E = 07 3 4 186 800 E = 10	kWh abs 2,777 778 E - 07 2,777 778 E - 14 1 1. 622 722 E - 06 1. 163 000 E - 06	cal th 2,390 057 E - 01 2,390 057 E - 08 8,604 207 E + 05 1 1 1 000 669 E + 00	- Cal _{1.T.} 2.368 +59 E - 01 2.368 +59 E - 08 8.558 +52 E + 05 9.993 312 E - 01 1 1 1 1 000 000 E + 03	kcal _{1.T.} 2.368 459 E-04 2.368 459 E-11 8.598 452 E+02 9.993 312 E-04 1.000 000 E-02	th 2.389 201 E - 07 2.389 201 E - 14 8.601 173 E - 01 9.996 416 E - 07 1.000 311 E - 02	f1.1bf 7.375 621 E -01 7.375 621 E -08 2.655 274 E + 06 3.085 960 E + 00 3.088 075 E + 00	B tu _{1, T} 9 478 170 E - 0 9 478 170 E - 1 3 417 141 E + 0 13 965 666 E - 0 13 968 370 E - 0 13 968 370 E + 0	
fNERGIE-TRAVAIL- OUADITEDE CHALEUH m ³ kg.s ⁻² jouie (absolu) erg wattheure (abs) calorie thermochimique calorie 1.T. kilocalorie 1.T.	J abs	erg 1 000 000 E = 07 1 3 600 000 E = 13 4 184 000 E = 07 4 186 800 E = 10 4 186 800 E = 10 5 4 185 500 E = 13	kWh abs 2,777 778 E - 07 2,777 778 E - 14 1 1,622 722 E - 06 1,163 000 E - 06 1,163 000 E - 06 1,163 000 E - 06	cal th 2,390 057 E - 01 2,390 057 E - 08 8,604 207 E + 05 1 1 1 1 000 669 E - 00 1 ,000 669 E - 03	- Call_I.T. 2.368 +59 E - 01 2.388 +59 E - 08 8.598 452 E + 05 9.993 312 E - 01 1 1.000 000 E + 03 1.000 000 E + 03 1.000 000 E + 03	kcal _{1.T.} 2.368 459 E - 04 2.388 459 E - 11 8.598 457 E + 07 9.993 312 E - 04 1.000 000 E - 03 1. 9 996 895 E - 07	th 2.389 201 E - 07 2.389 201 E - 14 8.601 123 E - 01 9.996 416 E - 07 1.000 311 E - 05 1.000 311 E - 05	f1.1bf 7,375 621 E -01 7,375 621 E -08 2,655 274 E + 06 3,085 960 E + 00 3,085 960 E + 00 3,086 075 E + 00	Btu _{1, T} 9 478 170 E - 0 9 478 170 E - 0 9 478 170 E - 1 3 417 141 E + 0 13 956 5666 E - 0 13 958 370 E - 0 13 958 370 E - 0 13 958 370 E - 0	1 D. 1.
INERGIE, TRAVAIL- OUAWITEDE CHALEUH m ³ kg.s ⁻² jouie (absolu) erg wattheure (abs) calorie thermochimique calorie 1, T. kilocalorie 1, T. thermie (AFNOR)	J abs	erg 1 000 000 E - 07 1 3 600 000 E - 13 4 184 000 E - 07 4 186 800 E - 07 4 186 800 E - 10 5 4 185 500 E - 10 5 4 185 500 E - 10	kWh abs 2,777 778 E - 07 7,777 778 E - 14 1 1,622 722 E -06 1,163 000 E - 06 1,163 000 E - 06 1,163 000 E - 06 1,163 000 E - 06 1,163 000 E - 06	cal th 2,390 057 E - 01 2,390 057 E - 08 8,604 207 E + 05 1 1 1 000 669 E + 00 1 ,000 359 E + 06 1 ,000 359 E + 06	- Cal _{1.T.} 2.388 +59 E -01 2.388 +59 E -08 8.598 +52 E + 05 9.993 312 E -01 1. 1.000 000 E + 03 9.996 895 E + 05 1.3.238 316 E -01	kcal _{1.T.} 2.388 459 E-04 2.388 459 E-11 8.598 452 E+02 9.993 312 E-04 1.000 000 E-02 1 1 9 996 895 E+02	th 2.389 201 E - 07 2.389 201 E - 14 8.601 123 E - 01 9.996 416 E - 07 1.000 311 E - 06 1.000 311 E - 06 1.000 311 E - 07 1.000 310 E - 07 1.000 310 E - 07 1.000 310 E - 07 1.000 310 E - 07 1.000 310 E - 07 1.000 310 E - 07 1.000 310 E - 07 1.000 310 E - 07 1.000 310 E - 07 1.000 310 E - 07 1.000 310 E - 07 1.000 310 E - 07 1.000 31	f1.1bf 7.375 671 E - 01 7.375 671 E - 08 2.655 274 E + 06 3.085 960 E + 00 3.088 075 E + 00 3.088 075 E + 00 3.088 075 E + 00	Btu _{1, T} . 9 478 170 E - 0 9 478 170 E - 1 3 417 141 E + 0 3 965 666 E - 0 13 968 370 E - 0 13 968 370 E - 0 13 968 370 E - 0 1 785 067 E - 0	
INERGIE, TRAVAIL- OUAWINEDE CHALEUH m ³ kg.s ⁻² jouie (absolu) erg - wattheure (abs) calorie thermochimique calorie 1.T. kilocalorie 1.T. thermie (AFNOR) foot-bound force British thermal innus (I T)	Jabs 1 000 000 E - 03 3 500 000 E - 03 4 184 000 E - 02 4 185 500 E - 02 4 185 500 E - 02 1 055 056 E - 0 1 055 056 E - 0	erg 1 000 000 E + 07 1 3 600 000 E + 13 4 184 000 E + 07 4 186 800 E + 07 4 186 800 E + 07 4 186 800 E + 10 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 4 185 500 E + 11 5 5 7 5 6 E + 10	kWh abs 2,777 778 E - 07 2,777 778 E - 14 1 1,622 222 E - 06 1,163 000 E - 06 1,165 000 E - 06 1,177 000 E - 06	cal th 2,390 057 E - 01 2,390 057 E - 08 4,604 207 E + 05 1 1 000 669 E + 00 1 000 669 E + 00 1 000 359 E + 06 2 3 740 463 E - 01 4 7 571 644 E - 02	- Cal _{I.T.} 7.388 +59 E - 01 7.388 +59 E - 08 8.598 +57 E + 05 9.993 312 E - 01 1. 1. 000 000 E + 03 1. 000 000 E + 03	kcal _{1.T.} 2.388 <59 E - 04 2.388 <59 E - 04 2.388 <59 E - 04 1.598 <59 E - 01 1.000 000 E - 00 1. 9.996 895 E - 02 1. 2.388 316 E - 04 1. 2.388 859 E - 01 1. 2.388 859 E - 04 1. 2.388 316 E - 04 2.398 316 E - 04 2.	th 2.389 201 E - 07 2.389 201 E - 14 8.601 123 E - 01 9.996 416 E - 07 1.000 311 E - 05 1.000 310 E - 05 1.000 310 E - 05 1.000 310 E - 05 1.000 310 E - 05 1.000 310 E - 05 1.000 310 E - 05 1.000 310 E - 05 1.000 310 E - 05 1.000 310 E - 05 1.000 310 E - 05 1.000 310 E - 05 1.000 310 E - 05 1.000 31	f1.1bf 7.375 621 E - 01 7.375 621 E - 00 2.655 224 E + 06 3.085 960 E + 00 13.088 075 E + 00 13.088 075 E + 00 13.088 075 E + 00	Btu _{1, T} . 9 478 170 E = 0 9 478 170 E = 1 3 417 141 E = 0 3 965 666 E = 0 13 968 370 E = 0 13 968 370 E = 0 13 968 370 E = 0 13 968 370 E = 0 13 968 370 E = 0 13 968 370 E = 0 1 968	

JTAL	PROC	ESS ENGINEERING	DESIGN MANUAL	Revision : 0	Page No :
DP/EXP/SUR		DATA SECTIO	Date : 2/85	15 - 8	
		SPECIFIC	C HEAT CAPACITY	,	
CAPACITE THE WASSIO CHALEUR SPE		<i>U</i> 6 g K	ucol/hq."C	י 	
, jours bet prigstemm	e-kelvin	1	7,290 057 E - 04	7 388 459 € -04	
kilocalorw par kilog degre Celsius	ramme -	4,184 000 E -03	1	9 993 312 5 -01	
British thermal unit degree Fahrenheit	per paund-	4 186 800 € ~0J	1 000 669 E +00		1
		THERMAL CO			
CONDUCTIVITE	HERMIQUE	W/m.K	kcai/h m.°C.	£tu/h.tt. [®] F	
m. watt par métre-keivi	<u>×g 1^{−1} K^{−1}</u>	1	8.604 208 E 01	5,777 792 E -01	_
kriacelarie per houre dogré Cetuus ¹ -	-métre-	1,162 222 E +00	1	6.715 193 E -01	

HEAT TRANSFER COEFFICIENT

1,489 160 E +00

1

1,730 735 E +00

British thermal unit per hour-

last-degree Fahrenheit

A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER OF THE OWNER			
COEFFICIENT DE TRANSMISSION THERMIQUE kq.1 ⁻¹ K ⁻¹	W/m ² , K	kcal/h.m ¹³ C	81w/h.m² , °p
well per mitte carré-kelvin	١	8,604 208 E -01	1,761 102 E01
kilocaturie par houre-mètre carré- degré Colsuis	1,162 222 E +00	١	2.046 791 E 01
British thormal unit per hour-square text- degree Fahranheit	\$.678 753 E +00	4,885 696 E +00	1

FORCE

					the second second second second second second second second second second second second second second second s
FORCE	N	dyn	ugi	154	and t
	,	1,000 000 E +05	1,019 716 E-01	2.248 089 E-01	7.733 011 € + 00
d y my	1 000 000 E - 05	١	1 019 716 E -06	2, 248 089 E - 05	1.713 DIT E -05
kilogramme larca	9 805 650 € +00	9.805 650 E ++05	7	2,204 622 E +00	7 093 :61 E +01
paund lorco	+ ++8 222 € +0Q	4.448 227 E +05	4.525 974 E-QI	1	3.217 404 E +01
poundal	+ 382 550 € −01	1,387 550 E +04	1,409 809 E -02	3, 108 096 E -07	1

PUIS FLUX EN m -----------. 841 hilectione chevai vapi lest-peum PPI SECOND British ther per haur · tretrigeran N 8

ł

I

ļ

TOTAL

;

Date : 2/85 15 - 9

DATA SECTION

i.....

		•	
ENTROPIE/ CAPACITE THERMIQUE	J/K	kcal/K s	Btu/ [™] F
joule par kelvin	1	2.390 057 E04	1,706 071 E ~ 03
kilocalorie par degré kelvin	4,184 000 E +03	١	7,138 200 E - 00
British thermal unit per degree Fahrenheit	5,861 422 E +02	1,400 913 E-01	1

HEAT CAPACITY/ENTROPY

POWER/HEAT FLOW RATE

•

FUISSANCE: FLUX (NERGETIOUE m ² kg s ⁻³	w	erg/s	cal/s	kcsi/h	ch	ho	tt.ibf/s	Btu/h	t of refrig.
ven fi figure per propriet f	1	1,000 000 E + U1	2 390 057 E DI	8 604 213R E OT	∿ 359 671 € 03	1 J41 U77 € 0J	7 375 671 E - 01	3 417 141 E+00	7.843 451 E-04
eig par seconde	1 000 000 € ~07	1	2 אפט סעיב 1 E מאַ סעיב 2	В.604 20N € - 0R	+ 75%67+E +0	1 341 077 E 1U	7 375 671 E -08	3 417 141 E -07	7.843 451 E-11
, par urcande	4 184 000 E + 00	4 184 000 E - 07	1	3 600 000 E - 90	5644 ö55 € 03	5610 W35 E /03	3.085 960 € + 00	1,427 640 E - 01	1 189 700 E - 03
kilacalorie per heure	1 167 222 E · 00	1 162 222 E + U7	2 777 778 E01	1	1 580 182 E UJ	1 55H 565 E DJ-	8,577 109 E 01	3 965 666 E · 00	3,304 722 E - 04
Chaval vapeur metrique	? 354 990 €+02	7 354 990 E+09	1 757 BBS E + 02	6 378 J86 E + 92	۱.	9 863 207 € 01	5 474 /67 E • 07	7 509 627 E • 0J	2 091 356 E -01
N#1425	7 457 000 E + 07	7 457 000 E + 00	1 787 766 E + 07	6 416 158 E - 112	1 013 N69 E + DU		\$ 500 000 E + 07	2 544 434 E + 03	2 120 362 E -01
fact pound for Cb per second	1 355 818 € - 00	1,355 818 E+07	3,240 483 E - U1	1 166 574 E - 10	1 843 299 E 03	1 618 187 E Q3	1	4 626 243 E +00	3 855 202 E -04
" British thermainest 1 pat haur	2 930 711 E - 01	2.930 711 E+06	7 DU4 567 E - 07	2 521 544 <u>6</u> - 01 J	3 9H4 657 E - D4	3 930 148 € - 54	2 161 Sell E - 01	1	€ -05 € -05
- tan - i (celcigerazion)	3 516 853 6 + 03	3 5 16 853 6 - 10	8 405 480 E - 07	3 075 114 E - 113	4 781 588 E + (X)	4 716 177 8 . 00	2 5 y3 wyai E • 03	1 2000 000 E+04	,

N.8 - joule absolu

- calorie ou kilocalorie thermochimique

- Biu I.T

ERING DESIGN MANUAL SECTION	Revision : 0 Date : 2/85	Page No : 15 - _	
SECTION	Date : 2/85	15 - ()	
ALS AND OIL PROPERTIE	те. Те		
ALS AND OIL PROPERTIE	b		
			:
vapour pressure of a cr	ude oil at the	actual	1 2 3 4 5
nce vapour pressure of a is for product specification	an oil at a cont h).	rolled	11 12 13
r qual to the sum of the point °R.	mole fraction of	each	14 15 16 17 18 19 20
3P : - average temperatu umes boil	re at which the	ASTM	21 22 23 24 25 26
% + T30 % + T50 % + T70 9 5	<u>6 + T90 %</u>		27 28 29 30 31
- the slope of the ASTM d ee Fig. 7	istillation curve is	s used	33 34 32
- another corrected form o	of VABP.		39 40 41 42 43
TION FACTOR			44 45 46 47 48
sg at 60/60 CABP in °R			49 50 51 52 53 53 54
ctor when defining crude	oils. It is require	ed for	55 56 57 58 59 60 61
	vapour pressure of a cr ince vapour pressure of a is for product specification qual to the sum of the point °R. BP : - average temperatur umes boil. $\frac{5}{5}$ - the slope of the ASTM d ee Fig. 7 - another corrected form of TION FACTOR sg at 60/60 CABP in °R ctor when defining crude	vapour pressure of a crude oil at the ince vapour pressure of an oil at a contained of the product specification). qual to the sum of the mole fraction of point °R. BP : - average temperature at which the umes boil $\frac{36 + T30 \% + T50 \% + T70 \% + T90 \%}{5}$ - the slope of the ASTM distillation curve is ee Fig. 7 - another corrected form of VABP. TION FACTOR sg at 60/60 CABP in °R ctor when defining crude oils. It is require	vapour pressure of a crude oil at the actual ince vapour pressure of an oil at a controlled is for product specification). qual to the sum of the mole fraction of each boint °R. BP : - average temperature at which the ASTM umes boil. $\frac{6}{5}$ - the slope of the ASTM distillation curve is used are Fig. 7 - another corrected form of VABP. TION FACTOR sg at 60/60 CABP in °R ctor when defining crude oils. It is required for

TOTAL

:

TEP/DP/EXP/SUR

DATA SECTION

PHYSICAL CONSTANTS OF HYDROCARBONS(27)

	Carl Maria Maria and								
1	Ste Note No.			<u> </u>					
			1.	1	្ន			Critical consta	
N	o. Compound	Formula	Molecular mass	Boiliny point, °C 101.3250 kPa labi)	Vapor presure, kPa lu 40 °C	Freeting puint, °C 101.3250 kPa faus	Pressure, APa (alus) @	Tempuralure. K	Volurne, m ³ /ky
	1 Methane 2 Ethane 3 Propane 4 n-Butane 5 Isobutane	CH4 C2H6 C3H8 C4H10 C4H10	16.043 30.070 44.097 58.124 58.124	-161.52(28) -88.58 -42.07 -0.49 -11.81	(35 000.) (6 000.) 1 341. 377. 528.	-182.47 ^d -182.80 ^d -187.68 ^d -138.36 -159.60	4 604 4 880. 4 249. 3 797. 3 648.	190.55 305.43 369.82 425.16 408.13	0.006 17 0.004 92 0.004 60 0.004 39 0.004 52
Γ.	6 n-Pentane 7 Isopentane 7 leopentane	$C_{5}H_{12}$ $C_{5}H_{12}$ $C_{5}H_{12}$	72.151 72.151 72.151 72.151	36.06 27.84 9.50	115.66 151.3 269.	-129.73 -159.90 -16.55	3 369. 3 381. 3 199.	469.6 460.39 433.75	0.004 21 0.004 24 0.004 20
	J-Hexane 2-Methylpentane 1 3-Methylpentane 2 Neohexane 3 2,3-Dimethylputane	C4H14 C4H14 C4H14 C4H14 C4H14	86.178 86.178 86.178 86.178 86.178 86.178	68.74 60.26 63.27 49.73 57.98	37.28 50.68 45.73 73.41 55.34	-95.32 -153.66 -99.870 -128.54	3 012. 3 010. 3 124. 3 081. 3 127.	507.4 497.45 504.4 488.73 499.93	0.004 29 0.004 26 0.004 26 0.004 26 0.004 17 0.004 15
14 19 10 17 18 20 21	4 n-Heptane 5 2-Methylhexane 5 3-Methylhexane 7 3-Ethylpentane 8 22-Dimethylpentane 9 2.4-Dimethylpentane 1 3.3-Dimethylpentane 1 Triptane	C7H16 C7H16 C7H16 C7H16 C7H16 C7H16 C7H16 C7H16 C7H16	100.205 100.205 100.205 100.205 100.205 100.205 100.205 100.205	98.42 90.05 91.85 93.48 79.19 80.49 86.06 80.88	12.34 17.22 16.16 15.27 26.32 24.84 2093 25.40	-90.582 -118.27 -118.60 -123.81 -119.24 -134.46 -24.91	2 736. 2 734. 2 814. 2 891. 2 773. 2 773. 2 945. 2 954.	540.2 530.31 535.19 540.57 520.44 519.73 536.34 531.11	0.004 31 0.004 20 0.004 03 0.004 15 0.004 15 0.004 17 0.004 13 0.003 97
21 23 24 25 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	2 n-Octane 3 Diisobuty! 4 Isooctane 5 n-Nonane 5 n-Decane 7 Cyclopentane 3 Methylcyclopentane 9 Cyclohexane 0 Methylcyclopexane	C6H16 C6H16 C6H18 C9H20 C10H22 C3H10 C4H12 C4H12 C4H12	114.232 114.232 114.232 128.259 142.286 70.135 84.162 98.189	125.67 109.11 99.24 150.82 174.16 49.25 71.81 80.73 100.93	4.143 8.417 12.96 1.40 0.4732 73.97 33.85 24.63 12.213	-56.76 -91.200 -107.38 -53.49 -29.64 -93.866 -142.46 6.554 -126.59	2 486. 2 486. 2 568. 2 288. 2 099. 4 502. 3 785. 4 074. 3 472.	568.76 549.99 543.89 594.56 617.4 511.6 532.73 553.5 572.12	0.004 31 0.004 22 0.004 10 0.004 27 0.004 24 0.003 71 0.003 79 0.003 68 0.003 75
31 32 33 34 7 38 39 40	Ethene (Ethylene) Procene (Propylene) I-Butene (Butylene) i.cir-2-Butene rans-2-Butene i.coutene I-Pentene J.2-Butadiene J.3-Butadiene i.soorene	UUUUUUUUUUUU	28.054 42.081 56.108 56.108 56.108 56.108 56.108 56.108 54.092 54.092 54.092 54.092 68.119	-103.77(29) -47.72 -6.23 3.72 0.88 -6.91 29.96 10.85 -4.41 34.07	1 596. 451.9 337.6 365.8 452.3 141.65 269. 434. 123.77	-169.15 ^d -185.25 ^d -185.35 ^d -138.91 -105.55 -140.35 -165.22 -136.19 -108.91 -145.95	5 041. 4 600. 4 023. 4 220. 4 047. 3 999. 3 529. (4 502.) 4 330. (3 850.)	282.35 364.85 419.53 435.58 428.63 417.90 464.78 (444.) 425. (484.)	0.004 67 0.004 30 0.004 28 0.004 17 0.004 24 0.004 24 0.004 26 0.004 22 (0.004 05) 0.004 05
41 42 43 44 45 46 47 48 49	Acetviene Benzene Toluene Ethylienzene o-Xylene p-Xylene Siyrene Siyrene	C2H2 C4H6 C7H8 C6H10 C8H10 C8H10 C8H10 C8H10 C8H10 C8H10	26.038 78.114 92.141 106.168 106.168 106.168 106.168 106.168 104.152 120.195		24.38 7 895 2.87 2.05 2.53 2.65 1.85 1.47	-80.8 ⁴ 5.533 -94.991 -94.975 -25.18 -47.87 13.26 -30.61 -96.035	6 139. 4 898. 4 106. 3 609. 3 734. 3 536. 3 511. 3 999. 3 209.	308.33 562.16 591.80 617.20 630.33 617.05 616.23 647.6 631.1	0.004 34 0.003 28 0.003 43 0.003 53 0.003 53 0.003 48 0.003 54 0.003 56 0.003 38 0.003 57
50 51 52 53 54 55	Methyl alcohol Ethyl alcohol Carbon monoxide Carbon dioxide Hydrogen sulfide Sulfur dioxide	CH40 C1H40 CO CO2 H2S SO2	32.042 46.069 28.010 44.010 34.076 64.059	64.54 78.29 - 191 49 - 78.51* - 60.31 - 10.02	25.43 17.70 2881 630.8	-97.68 -114.1 -205.0 ^d -56.57 ^d -85.53 ^d -75.48 ^d	8 096. 6 383. 3 499.(33) 7 382.(33) 9 005. 7 894.	512.64 513.92 132.92(33) 304.19(33) 373.5 430.8	0.003 68 0.003 62 0.003 32(33) 0.002 14(33) 0.002 87 0.001 90
56 57 58 59 60 61 62 63 64	Ammonia Air Hydrogen Oxygen Nitrogen Chlorine Water Helium Hydrogen chloride	NH3 N2+02 H2 O2 N2 Cl2 H2O He HCI	17 031 28.964 2.016 31.999 28.013 70.906 18.015 4.003 36.461	-33.33(30) -194.2(2) -252.87" -182.962" -195.80(31) -34.03 100.00" -268.93(32) -85.00	1 513. 	-77.74 ^d -259.2 ^d -218.8 ^d -210.0 ^d -101.0 ^d 0.00 -114.18 ^d	11 260. 3 771.(2) 1 297 5 061. 3 399. 7 711. 22 116. 227.5(32) 8 309.	405.6 132 4(2) 33.2 154 7(33) 126.1 417 647.3 5.2(32) 324 7	0.004 25 0.003 23(3) 0.032 24 0.002 29 0.003 22 0.001 75 0.003 18 0.014 36(32) 0.002 22

								T					L.B.Y	
	TAL	PF	ROCESS E	NGINEEF	nng d	ESIGN MA	NUAL	Revi	sion :	0	Page No	: 4	4	T
TEP/D	P/EXP/SUF	3		DATA S	ECTION			Date	: 2	/85	15 - 12	and the second		TE
			PHYSICA	L CONST	ANTS	OF HYDRC	CARBO	NS(27)						
	4			5.	ő.	7 7		3			3			:
ļ	101 3250 kPa (aps), 15°C					:01 32	iceal gas 50 kPa la	- csi.#15 °C	Specific 101 32	neat cabaciti 50 × Pa (abs)	× I		
2				C E	12	fact.		.			15 °C '	NL:		NO
	AUCTOR	t mus		ure co	uti c	Liber V	titua	in to	2 5		C		۲ ۱	
C/15		a.e.	5	D	a) e	press 945 - 4	1 34						ľ	f L
Rulu 15	hy/m (ma	m/g/ IdV1 IdV1	e	Ten den - 1/	bille	Con	Hold	Sugar Sugar	Volu Jas/I	ldeai ga	s Liquid		:	1 2 5
(0.3)+ 0.3581 ^h	(300.)4 357.8 ^{h.#}	(300.) ⁴ 356.6 ⁴	(0.05) ⁴ 0.084 04 ^h	=	0.0126	0.9981 0.9915	0.5539	1.474	(442.) ¹ 291.3 ^h	2.204	3 807	† 1	ŀ	3 P:
0.5083" 0.5847"	507 8 ^{4,2} 584.2 ^h	506.7 ^h 583.1 ^h	0.086 84	0.002 74"	0.1541	0.9810	1.5225	0.5362	272.3 ^h 237.6 ^h	1.625	2.476	3		6 0
0.6316	631.0	629.9	0.114 3	0.001 57	0.2524	0.9665	2.0068	0.4068	229,1"	1 616	2.366(41)	_ `'		BN
0.5972	596.7 ^h	623.3 595.6 ^h	0.1156 0.1209 ^h	0.001 82	0.2286	0.9481	2,4911 2,4911	0.3277 0.3277	204.6 195.5 ^h	1.600 1.624	2.235 2.317	٤	:	•
0.6583	663.8 657.7 658.8	662.7 656.6	0.1298	0.001 35	0.2998	0.9101	2.9753 2.9753	0.2744	182.1 180.5	1.613 1.602	2.231 2.205	191	1	13 2
0.6545	653.9 666.2	652.8	0.1318	0.001 40	0.2333	\equiv	29753	0.2744	183.5 179.4	1.578	2.170	<u> </u> ,		14 1
0.6886	688.0 682.8	686.9	0.1456	0.001 24	0.3494	0.8521	3.4596	0.2360	162.4	1.606	2.148			16 3 17 3
0.6921 0.7032	691.5 702.6	690.4 701.5	0.144 9	0.001 24	0.3239	=	3.4596	0.2360	161,1 163,2	1.595	2.183	[: ,]		18 2 19 2
0.6787	678.0 677.1	676.9 676.0	0.147 8 0.148 0	0.001 30 0.001 30	0.2876 0.3031	=	3.4596 3.4596	0.2360	160.0 159.8	1.613	2.161	18		20 3 21 T
0.6950	697.4 694.4	696.3 693.3	0.1437 0.1443	0.001 17 0.001 24	0.2681 0.2509		3.4596 3.4596	0.2360 0.2360	164.6 153.9	1.603	2.099 2.088	2		22 n 23 D
0.7073	706.7	705.6 696.6	0.161 6 0.163 7	0.001 12 0.001 17	0.3981 0.3564	0.7831	3.9439 3.9439	0.2070 0.2070	146.3 144,4	1.601	2.191	22		24 19
0.7224	721.7	694.9 720.6	0.164 1 0.177 7	0.001 17	0.3041		3.9439 4.4282	0.2070 0.1843	144.1 133.0	1.599 1.598	2.049 2.184	2'''		27 C 28 N
0.7508	750.2 753.4	749.1	0.093 49	0.001 26	0.1945	0.9491	4.9125 2.4215 7.9057	0.1662	122.0 252.9	1.595	2.179	21		29 C 30 M
0.7838	783.1 773.7	782.0 772.6	0.107 5 0.126 9	0.001 22 0.001 13	0.2098		2.9057	0.2809	211.7	1.258	1.843	28	:	31 E 32 P
0.5231	522.6 ^{*.#}	521.5 ^h	0.080 69*	0.003 40 ^h	0.0869	0.9938	0.9686	0.8428		1.514		1.		33 1 34 c
0.6019 ^h 0.6277 ^h	601 4 ^h 627 1 ^h	600.3 ⁴ 626.0 ⁴	0.093 30 ⁴ 0.089 47 ⁴	0.002 09 ⁴ 0.001 76 ⁴	0.1949 0.2033	0.9703 0.9660	1.9372	0.4214	293.0 253.4 ^A 264.3 ^A	1,480	2.237	33.		35 1
0.6105" 0.6010" 0.6462	610.0 ⁴ 600.5 ^h	608.9 ^h 599.4 ^h	0.091 98 ⁿ 0.093 44 ^h	0.001 93" 0.002 16"	0.2126	0.9661 0.9688	1.9372 1.9372	0.4214 0.4214	257.1 ^A 253.1 ^A	1.528	2.238	3,		
0.6576*	657. ^h 627.4 ^h	656. ⁴	0.082.33	0.001 76	(0.2540)	10.9691	2.4215	0.3371 0.4371	217.7 287.2 ^h	1.519 1.446	2.241(43) 2.262	37 38		40 1
0.6866	686.0	684.9	0.099 30	0.001 55	(0.1567)	0.9491	2.3519	0.3471	274.2" 238.1	1.426	2.124 2.171	4		42 E 43 T
0.8850	884 2 871 6	883.1 870.5	0.028 34	0.001 19	0.1893	0.9925	0.8990	0.9081	267.6	1.659 1.014	1.715	4		45 0
0 8721 0.8850	871.3 884.2	870.5 883.1	0.121 9 0.120 1	0.000 97 0.000 99	0.3031		3.6655	0.2227	194.0	1.085	1.677	4	•	40 0
0.8691 0.8661	868.3 865.3	867.2 864.2	0.122 3 0.122 7	0.000 97	0.3257 0.3214		3.6655 3.6655	0.2227	193.4	1.163	1.696	4		49 1
0.8667	866.0	909.5 864.9	0.114 4 0.139 0	0.001 03	0.1997 0.3260	—	3.5959 4.1498	0.2270 0.1967	206.7 170.4	1.133	1,724 1,732	48 4	•	51 E
0.7967 0.7922 0.78927	796.0 791.5 788.670(341	794.9 790.4	0.040 25	0.001 17	0.5648		1,1063	0.7379	587.4 406.2	1.352 1.389	2.484 2.348	5 5		53 0
0.8226	821.9 ¹ (35) 789.0 ¹ -*(36)	820.8 ^h 787 0 ^h	0.053 55 ^h 0.043 19 ^h	ΞΙ	0.2667	0.9943	0.9671 1.5195	0.5373	441.6h	1.040 0.8330		52 (53. (i	55 5
1.397 ⁴ 0.6183 ⁴	1396.4.*(36) 617.74.*(36)	1395. ^A	0.045 89*	_=+	0.2548	0.98011	2.2117	0.3691	515,31	0.9960	2.08(36) 1.359(36)	5		57 4 58 1
0.8567 (36)	855.m 71.00 ^m (37)		0.033 9		-0.219	0.9996	1,0000	0.8163 11.73	857.4	2.079	4 693(30)	50 57 68		59 0 60 7
1.1420 251 J.8093 261	1141. ^m (38) 808.6 ^m (31)		0.028 04 ^m 0.034 64 ^m	\equiv	0.0200 0.0372	0.9993(39) 0.9997	1.1048	0.7389	Ξ	0.9166 1.040	\equiv	5	•	62
1 000	1424 5 999 1 125 0 ^m 1771	1423.5 998.0	0.049 78	0.000 14	0.0737	10.987511061	2.4481 0.6220	0.3335	475.0 1311,	0.4760	4.191	6 62	:	64
0.8538	853.0	851.9	0.042 74	0.006 03	0.1232		0.1382	5 907 0.6485	553.2	5.192 0.7991	_	6) 6		

-

ł

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	

DATA SECTION

Date

Page No :

: 2/85 | 15 - 3

TEP/DF/EXP/SUR

•: I,

·tv s)

1

11 11 11

۰,

PHYSICAL CONSTANTS OF HYDROCARBONS(27)

-	See Note No -	T	10			11	12	1 13	Elamo	ability		C T
		•	leating valu	не, 15 [°] С*				Ś	timits.	vol %	o o	ctar
NO.	Compound	MJ/m ³ tdeat gas, 101.3250 kPa tabsi	MJ/m ³ Ideal gas, 101.3250 kPa (abs)	MJ/kg Liquid (Mass in victurin)	MJ/m ³ Liquid (Mass in vacuum)	Heat of vaporization, 101.3250 kPa (±bs) at boiling point, kJ/kg	Refractive index ". n ₀ 15 °C	Air required for combi tion ideal gus " m ³ fair(/m ³ fgas)	15 84 9	Higher Interiore	Motor method	
1 2 3 4 5	Merhane Ethane Propane n-Butane Isobutane	33.936 60.395 86.456 112.384 112.031	37.694 66.032 93.972 121.779 121.426	51.586 ^h 50.008 ^h 49.158 ^h 49.044 ^h	18 458 ⁴ 25 394 ⁴ 28 718 ⁴ 27 621 ⁴	509 86 489 36 425 73 385 26 366 40	1.214 04 ^h 1.219 05 ^h 1.332 92 ^h	9.54 16.70 23.86 31.02 31.02	5.0 2.9 2.1 1.8 1.8	15.0 13.0 9.5 8.4 8.4	+.05 [/] 97 1 89.6 [/] 97 6	
6 7 8	n-Pentane Isopentane Neopentane	138.380 138.044 137.465	149.654 149.319 148.7 3 9	48.667 48.579 48.427 h	30 709 30 333 28 896*	357.22 342.20 315.34	1.360 24 1.356 58 1.345	38.18 38.18 38.18	1.4 1.4 1.4	8.3 (8.3) (8.3)	62.6 ⁷ 90.3 80.2	
,°	-Hexane Methylpentane J-Methylpentane Neonexane 2,3-Dimethylbutane	164.402 164.075 164.188 163.683 164.025	177.556 177.229 177.341 176.836 177.179	48.344 48.273 48.300 48.191 48.269	32 091 31 749 32 303 31 512 32 157	334.81 322.52 325.82 305.24 316.50	1.377 46 1.374 17 1.379 18 1.371 57 1.377 59	45.34 45.34 45.34 45.34 45.34	12 12 (12) 12 (12)	7,7 (7,7) (7,7) (7,7) (7,7) (7,7)	26.0 73.5 74.3 93.4 94.3	
14 15 16 17 18 19 20 21	n-Heptane 2-Methylhexane 3-Methylhexane 3-Ethylpentane 2.2-Dimethylpentane 2.4-Dimethylpentane 3.3-Dimethylpentane Triptane	190.398 190.099 190.243 190.327 189.630 189.803 189.885 189.690	205.431 205.132 205.276 205.359 204.662 204.836 204.918 204.722	48.104 48.051 48.082 48.101 47.964 48.000 48.019 47.982	33 095 32 809 33 249 33 796 32 520 32 501 33 488 33 319	316.33 306.06 307.27 308.94 291.03 294.41 295.87 288.90	1.390 17 1.387 43 1.391 19 1.395 94 1.384 75 1.384 08 1.393 42 1.391 96	52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50	1.0 (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)	7.0 (7.0) (7.0) (7.0) (7.0) (7.0) (7.0) (7.0)	0.0 46.4 55.8 69.3 95.6 83.8 86.6 +0.1	
22 23 24 25 26 27 28 29 30	n-Octane Disobutyl Isooctane n-Nonane n-Decane Cyclopentane Methylcyclopentane Cyclohexane Methylcyclohexane	216.374 215.797 215.732 242.398 268.396 131.114 156.757 156.034 181.567	233.286 232.709 232.644 261.189 289.066 140.509 168.032 167.308 194.720	47.919 47.832 47.843 47.783 47.670 46.955 46.825 46.606 46.525	33 865 33 372 33 299 34 485 34 985 35 225 35 278 36 497 35 997	301.26 285.69 271.44 268.82 276.06 389.20 345.51 355.95 317.03	1.399 81 1.394 88 1.393 92 1.407 73 1.414 11 1.409 27 1.412 40 1.425 66	59.65 59.65 59.65 66.81 73.97 35.79 42.95 42.95 50.11	0.96 10.98) 1.0 0.87* 0.78* (1.4) (1.2) 1.3 1.2	2.9. 2.6 8.35 7.8	55.7 100. 84.9 ⁷ 80.0 77.2 71.1	
31 32 33 34 35 36 5 40	Ethene (Ethylene) Propene (Propylene) 1-Butene (Butylene) cs-2-Butene trans-2-Butene Isobutene -Pentene -2-Butadiene 1.3-Butadiene Isopurene	55.942 81.482 107.475 107.191 106.957 106.755 133.465 104.118 101.917 127.330	59.700 87.119 114.991 114.707 114.473 114.271 142.860 109.755 107.555 134.846	48.081 ^h 47.927 ^h 47.843 ^h 47.769 ^h 47.788 47.504 ^h 46.608 ^h 46.408	28 916Å 30 055Å 29 184Å 28 685Å 30 852 31 210Å 29 242Å 31 836	482.77 437,68 390.60 416.10 405.56 394.18 359.25 (449.6) (418.7) (385.2)	1.374 61 1.425 36	14.32 21.48 28.63 28.63 28.63 28.63 35.79 26.25 26.25 33.41	2.7 2.0 1.6 (1.6) (1.6) (1.6) 1.4 (2.0) 2.0 (1.5)	34.0 10.0 9.3 	75.6 84.9 80.8' 83.5 77.1 81.0	
41 42 43 44 45 45 45 47 48 49	Acetylene Benzene Toluene Etnylbenzene o-Xylene m-Xylene p-Xylene Siyrene Isoprooylbenzene	53.098 134.055 159.534 185.555 185.020 185.020 185.050 180.290 211.328	54.978 139.692 167.050 194.950 194.487 194.415 194.445 187.806 222.603	41.843 42.450 43.014 42.900 42.891 42.901 42.213 43.410	36 998 37 000 37 478 37 935 37 245 37 122 38 439 37 591	393.32 360.14 334.98 346.80 342.47 338.92 (351.23) 312.25	1,504 32 1,499 73 1,498 56 1,507 95 1,499 80 1,498 39 1,549 69 1,494 00	11.93 35.79 42.95 50.11 50.11 50.11 50.11 47.72 57.27	2.5 1.3 1.2 0.99 1.1 1.1 1.1 1.1 1.1 0.88	80. 7.9° 7.1° 6.7° 6.4° 6.4° 6.6° 6.1 6.5°	+2.8' +0.3' 97.9 100. +2.8' +1.2', +0.2' 99.3	
50 51 52 53 54 55	Metnyl alconol Ethyl alconol Carbon monoxide Carbon dioxide Hydrogen sulfide Sulfur dioxide	28.601 54.062 11.959 0 21.912	32.360 59.699 11.959 0 23.791	22.685 29.707	18 057 23 513	1075.97 840.54 215.70 573.27 ⁿ 548.01 387.74	1.330 28 1.363 45 1.000 36 1.000 49 1.000 61 1.000 62	7.16 14.32 2.39 7.16	6.72(5) 3.28(5) 12.50(5) 4.30(5)	36.50 18.95 74.20 45.50		
56 57 58 59 60 61 62 63 64	Ammonia Air Hydrogen Oxygen Nitrogen Chlorine Water Helium Hydrogen chloride	17 301 10.230 0	20.121 12.091 1.879 			1366. 214. 450.4 213. 204 288.0 2257. 431.5	1.000 36 1.000 13 1.000 27 1.000 28 1.387 8 ⁷ 1.333 47 1.000 03 1.000 42	3.58 2.39	15.50(5) 4.00(5) 	27.00 74.20 —— ——		

N N N N 2223

3)

5) 5

PROCESS ENGINEERING DESIGN MANUAL

: 2/85

15 - 4

1

ŝ

i.

÷

:

١

;

ι.

١

Т

TEP/DP/EXP/SUR

TOTAL

DATA SECTION

REFERENCES

- 12) International Cottoal Tables 13) Hodaman, "Handbess of Chemister and Physics", 31st edition. 1414
- 151 Dones Chem. Rev. 1934, 22, 1 (21) Don, F. Ed. "Thermodynamic Functions of Gases". Hutterworths London, 1956

- Lindin, 1956
 25) Ruder, H. M., Weber, L. A. NASA Spire Publ. SP 3071, 1972
 25) Ruder, H. M., Weber, L. A. NASA Spire Publ. SP 3071, 1972
 26) Ruder, H. M., Weber, L. A. NASA Spire Publ. SP 3071, 1972
 27. Values for hydrocarbons, compound numbers 1:44, where selecter in calculated from data in the tables of the Thermodynamics Research Center Hydrocarbon Project iformerly API Research Project 141 and the values for the remaining compounds, numbers 30-54, where selected or calculated from data in the tables at the Thermodynamics Research Center Data Project unieus indicated atherwise
 29) Angus S. Armstrong, B.; de Reuch, K. M., Eds. "Methane Inter-national Thermodynamic Tables of the Fluid State-5", Pergamin Press Oxford, 1978
 29) Angus, S. Armstrong, B.; de Reuch, K. M., Eds. "International

- Press Oxford, 1978
 (29) Aneus, S., Armstrung, B., de Reuck, K. M., Eds. "International Thermodynamic: Tables of the Fluid State-Ethylene, 1972"; Butterworths: London, 1974
 (30) Haar, L. Callacher, J. S. J. Phys. Chem. Ref. Data 1978, 7, 635.
 (31) Angus, S., de Reuck, K. M., Armstrong, B., Eds. "Nitrogen Inter-national Thermodynamic Tables of the Fluid State-6", Pergamon Press: Oxford, 1979
 (32) Angus, S. de Reuck, K. M. Eds. "Helum International Thermodynamic Tables of the Fluid State-6", Pergamon
- 1321 Anzus, S., de Reuck, K. M., Eds. "Helium: International Thermo-dynamic Tables of the Fluid State-4", Pergamon Press: Oxford, 1977.
- (33) Kudchadker, A. P.; Alani, G. H.; Zwolinski, B. J. Cheni, Rev. 1968, 68, 659.
 (34) Hust, J. G.; Stewart, R. B. "Thermodynamic Property Values for Gaseous and Liquid Carbon Monoxide from 70 to 300 K with Pressures to 300 Atmospheres," Nat. Bur. Sland. U.S. Tech. Note No. 202, November 30, 1963.

- No. 202, November 30, 1963.
 (33) Angus, S.: Armetrong, B.: de Reuck, K. M., Eds. "Carbon Dioxide. International Thermodynamic Tables of the Fluid State-J". Pergamon Press: Oxford, 1976.
 (36) "The Matheson Unabridged Gas Data Brok": Matheson Gas Products: New York, 1974.
 (37) Desn, J. W. "A Tabulation of the Thermodynamic Properties of Normal Hydrogen from Low Temperatures to 300 K and from 1 to 100 Atmospheres". Nat. Bur. Stand. (J.S. Tech. Note No. 120, November 1961.
 (38) McGerty R. D. Weber I. A. "Thermodynamical Branchesical Production of the Thermodynamical Properties".

- November 1961.
 (38) McCarty, R. D.; Weber, L. A. "Thermophysical Properties of Oxygen from the Freesures Lo. Scott SOUP Rus", Net. Bur. Stand. U.S. Tech Note No. 384, July 1971.
 (39) Weber, L. A. Nat. Bur. Stand. U.S. Rept No. 3710, 1968.
 (40) Tsederberg, N. V.; Popov, V. N., Morozova, N. A. "Thermodynamic and Thermophysical Properties of Helium"; Atomizat: Moscow, 1969; Israel Program for Scientific Translation, 1971.
 (41) Touloukian, Y. S.; Makuta, T. "Thermophysical Properties of Matter, Vol. 6 Specific Heat, Non-metallic Liquida and Gases": IFI/Plenum: New York, 1970.
 (42) Schingert, W.G.; Sage, B. H. Ind. Eng. Chem. 1952, 44, 2454.
 (43) Todd, S. S.; Oliver, G. D.; Huffman, P. M. J. Am. Chem. Soc. 1947, 69, 1519. NOTES

NOTES

- Air securated liquid.
- All percented invite. Absolute values from weights in vacuum. The apparent values from weight in air are shown for users' con-venience and compliance with ASTM-IP Petroleum Measurement Tables. In the United States and Great Britain, all commercial weights are required by law to be weights in air. All other mass data are on an absolute mass (weights in vacuum) basis. At saturation pressure (triple point).
- Sublimation point. The τ sign and number following signify the ASTM octane number corresponding to that of 2.2.4 simmethylpentane with the indicated number of cm³ of TEL added per gal. 1
- Determined at 100°C. Saturation pressure and 15°C. Apparent value at 15°C.

- Apparent value at 15°C. Average value from octane numbers of more than one sample Relative density ispecific gravity), 48.3°C '15°C (sublimation point; solid Cztls/liquid H2O). Densities of liquid at the boiling point. 1
- m
- Hest of sublimation.
- See Note 10.
- Extrapolated to mom temperature from higher temperature. Gross calonific values shown for ideal gas volumes are not direct conversions of each other using only the gas volume per liquid volume value shown herein. The values differ by the heat of vepmitation to ideal gas at 288.15 K. Fixed points on the 1968 International Practical Temperature Scale (IPTS-68).

- Scale (1PTS-68). Value for normal hydrogen (25% para, 75% ortho). The value for equilibrium mixiure of para and ortho is -0.218; however in most correlations, 0 is used. Densities at the builing point in kg/mJ for: Ethane, 5464; pro-pane, 5410, propene, 6004 %, hydrogen aulide, 560, sulfur diskide, 1462, ammonia, 541.5, hydrogen chlonde, 1192. Calculated values. x
- 11
- **Estimated** values
- Values are estimated using 2nd virial coefficienta. 1.
- Values are estimated using the virial coefficients. Molecular mass (M) is based on the following atomic weights C =12.011. H = 1.004: O = 15.9995; N = 14 the7; S = 32.06; Cl = 35.451. Rolling point —the temperature at equilibrium between the inquid and vapor phases at 101.3250 k Pa (ane). Freeting point—the temperature at equilibrium between the crys-tailine phase and the air assurated liquid at 101.3250 k Pa (aba). All values for the density and miler volume of liquids refer to the 2.
- 3
- All values for the density and milar volume of liquids refer to the air saturated liquid at 101.1250 kPatabal, except when the boiling

print in lowe than 15°C. In such cases the density and miller volume are given for the liquid in cyulishnum with its value at 15°C. The relative density 15 °C is defined as alliquid 15°C's

Date

21water 15*(')

The density of water at 15"" is taken as 379 10 kg m

- The apparent density in air gunnam in girl is related to the density in various by
- "Maan in sir (in the ratio of gravitational furce on the object to the force of a standard brann weight, with onth ubjects immersed
- 10 417 in air , and the set $15^2C_{\rm c}$ and (01,0250) kParametric taken we taken we take the density of brans as 8700 kg (m 3
- The compensative coefficients of density is related to the expansion coefficient by $\frac{1}{p}\left(\frac{dp}{dT}\right)_{p} = -\frac{1}{V}\left(\frac{dV}{dT}\right)_{p}$ in units of $-1/2^{\circ}$

n. Prizer acentric factor $\omega = -\log_{10}\left(\frac{P}{P_r}\right) - 1$ at $T_r = \frac{T}{T_r} = 0.7$ P is calculated at T from same vapor pressure equation used in calculate vapor pressure at 40°C in Fig. 16-1. 7 The compressibility factor of the real gas, Z, is PV

$$Z = \frac{1}{RT}$$

5. The density of an ideal gas relative to air is M(gas)/M(ar)

- The molecular mass of air is taken as 28 964. The specific volume of an ideal gas is $V = \frac{RT}{MP}$
 - The volume ratio is V(ideal gas)/V(liquid in vacuum)
- The volume ratio is Violeel gas/Viliquid in vacuum) 9. The specific heat capacity of the ideal gas was calculated from the constant pressure malar heat capacity reported in the refer-ences cited. These were calculated from the molecular partition functiona. This quantity is independent of pressure. The specific heat capacities of liquids are derived from experimental measure-ments. For liquids boiling below 15°C, the values given are $C_0 M_{\odot}$, where C_0 is the molar heat capacity of the liquid under saturated vapor pressure conditions.
- Vapor pressure conditional. The heating value is the negative of the enthalpy of combustion $(-\Delta H_c^2)$ of a gas or liquid in its scandard state at 15°C to give combustion products in their standard states, all at 101.3250 kPa (abs). For a compound where the formula is $C_n H_m OhSjNk$, the combustion reaction is main the states of the states m h

$$GnH_mOhS_jN_k(s, l, or k) + (n + \frac{2}{4} - \frac{2}{2} + j)O_2(k) - nCO_2(k)$$

H2O(g or I) + 2N2(g) + 1SO2(g)

For the gross heating value, the water produced by the combus-tion is in the liquid form, and for the net heating value, the water is in the gas state.

is in the gas state. The enthalpies of combustion at 15°C were calculated from those at 25°C, as reported in the references cited, by $\Delta H_2^*(15°C) = \Delta H_2^*(25°C) - 10\Delta C_2^*$, where $\Delta C_2^* = nC_2^*(CO2, g) + \frac{m}{2}C_2^*(H_2O, g or I) + \frac{1}{2}C_2^*(N_2, g) + jC_2^*(SO2, g)$

 $= C_{\mu}^{\mu} (C_{\mu} H_{m} O_{h} S_{i} N_{k}, s, L \text{ or } g) = (n + \frac{m}{4} - \frac{h}{2} + j) C_{\mu}^{\mu} (O_{2}, g) \text{ at } 25^{\circ}C$ LHe (MJ/ml) = LHe (MJ/kg)/s(kg/ml, vacuum).

 $\begin{aligned} & \mathcal{M}_{1}^{p}(MJ/m^{-1}) = \mathcal{M}_{1}^{p}(MJ/kg)/s(kg/m^{-1}, vacuum). \\ & The above equations apply to the combustion of an unitially) \\ & bonedry gas. The heat of combustion of 1 m^{-1} of an ideal gas. \\ & saturated with water vapor, is \\ & \mathcal{M}_{1}^{p}(g, sati(MJ/m^{-1}) = 0.9R122 \ \mathcal{M}_{1}^{p}(g)(MJ/m^{-1}) \\ & The vapor pressure of water at 15°C is 1.70 kPa tabe). The gross heat of comhustion of 1 m^{-1} of gas, saturated with water vapor for which all of the water is confidenced to final products, is \\ & \mathcal{M}_{1}^{p}(g, sati(MJ/m^{-1}) = 0.98322 \ \mathcal{M}_{2}^{p}(g)(MJ/m^{-1}) = 0.0315 \\ & The heat of vaporization of water to an ideal gas at 15°C is 44.43 \\ & \mathcal{M}^{r}(g). \end{aligned}$

L/mol.

- The heat of vaporization is the enthalpy of the saturated vapor at the boiling point at 101.3250 kPs (abs) minus the enthalpy of the liquid at the same condition.
- The refractive index reported refers to the liquid or gas and is measured for light of wavelength corresponding to the sodium D-line 1589.26 nm. 12
- :3 Air required for combustion of ideal gas for compounds of formula $C_n H_m O_h S_i N_k = V_{fairt} = n + V_{fair} = V_{fair} + j$ $\frac{V(air)}{V(gas)} = \frac{n + V_{im} - V_{ih} + j}{0.2095}$

COMMENTS

Units-all dimensional values are reported in SI units, which are derived from the following basic units: mass-kilogram, kg length-meter, m

temperature 1964 (IPTS-68), with Other derived units are. volume--cubic meter, mi-pressure--Pascal, Pa (I Pa = N/m2) Physical constants for molar volume = 22.41143 ± 0100.31 gas constant, R = 5.31441 J/(K. mul) 1.94119 cal/(K. mul) 1.94596 Blut(T)/r*R-Ib-mol) 1.94596 Blut(T)/r*R-Ib-mol) temperature-International Practical Temperature Scale of 1964 (IPTS-68), where 010 = 272.15 K

- $\begin{array}{l} tm^4 = 16,31467 \ ft^3 = 214 \ 1720 \ gal \\ 1 \ kg = 2.214 \ 6.211b \\ 1 \ kg = 3.214 \ 6.211b \\ 1 \ kg = 0.011 \ kg < 21795 \ 1b/ft^3 = 0.001 \ g < cm^4 \\ 1 \ kPa = 0.01 \ har = 9.969 \ 231 = 10^{-3} \ atm = 0.1450377 \ 1h/(n^2) \\ 1 \ kPa = 0.01 \ har = 9.969 \ 231 = 10^{-3} \ atm = 0.1450377 \ 1h/(n^2) \\ 1 \ kPa = 0.01 \ har = 9.969 \ 231 = 10^{-3} \ atm = 0.1450377 \ 1h/(n^2) \\ 1 \ kPa = 0.01 \ har = 1.4959 \ kFa \ 10^{-3} \ b/(n^2) = 10^{-3} \ atm = 0.1450377 \ 1h/(n^2) \\ 1 \ kPa = 0.01 \ har = 1.4959 \ kFa \ 10^{-3} \ b/(n^2) = 10^{-3} \ b/(n^2) \ b/(n^2) = 10^{-3} \ b/(n^2) \$

ł

TOTAL	PROCESS ENGINEERING DESIGN MANU	AL Revision : 0	Page No :		r
TEP/DP/EXP/SUR	DATA SECTION	Date : 2/85	15-22 .	Т	ΓE
	VISCOSITY		i		0.(
UNITS :			i		01
Dynamic viscosity	: 1 centipose = 0.01 dyne.sec/cm2 =	= 0.000672 lbm/ft sec	:		0.
Kinematic viscosity	: 1 centistoke = 0.01 cm2/s = Dyn	amic viscosity density			0.
Other quoted units	for kinematic viscosity are :	· .		ipoise	-
Saybolt universa	ll Redwood Engler	- - - -		Cent	; -
Saybolt Iurol	conversion charts are sited in 11	terature		(cosity	
VAPOUR VISCOSIT	Y			, i	
. Use figure 12 in	this section or	*			0
. Calculate using	$: i) \qquad \mu_{m} = \frac{Z \mu_{i} \mu_{i} \mu_{m} \mu_{i}}{Z \mu_{i} \sqrt{M \mu_{i}}}$	um = mixture viscosit	у.		
		u; = component visco	osity		
	ii) $\mu m = A \exp(B\mu'^{C})$	_i = component mol.	frac ·		С
		accuracy + 5 %			
	$A_{-} = \frac{(9.4 + 0.02 \text{ mW}) \text{ T}^{1.5}}{(209 - 19 \text{ mW} + \text{T}) 10^{4}}$	T in R			C
•	8 = 3.5 + 986 + 0-01 MW	40 < T < 460 .F	· ·		С
	C = 2.4 - 0.28	4.7 < P < 10000 p	iia.		
	p'= MW.P a/cm ³	R = 669.8	1		Z
	₹RT 3		ł		כנטיילי
LIQUID VISCOSITY					, tirko
. Use Figure 13 in	this section or : 3		•		
. Calculate using	$: i) \qquad \mathcal{M}_{n} = \left[\left\{ X_{i} \left(\mathcal{M}_{i} \right)^{\mathcal{H}_{3}} \right] \right] \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	K: = component mol.	rac		(
. The viscosity of	crude oils with an <u>API > 30 $^{\circ}$ (sg = 0.88) car</u>	be estimated using :	1		
	iogµ= a - (0.035)(API)	centipoise			
	°C I a				
where	38 2.05				
	71 1.83				
	88 1.30 104 1.08				
. Correlations for	liquid viscosity possess a general reliability	of <u>+</u> 15 %		L	

TEP/DP/EXP/SURDATA SECTIONDate: 2/8515 - 30SPECIFIC HEATS (HEAT CAPACITY)UNITS:BTU/LB *FI BTU/Lb *F $= 4.19$ KJ/Kg *CKJ/KG *CI BTU/Lb *F $= 1$ cal/g *CVAPOUR MIXTURESUse figs 18, 19 in this sectionCp* = A + BT + CT2where A, B, C are constants dependant on system composition and T is in *R (K)Values of A, B, C are cited in Kern, or Perry.Cp* can be corrected for pressure if Pr and Tr are known using FigureK = ratio of specific heats Cp this should also be corrected for pressure if required.LIQUID MIXTURESUse Figure 21 In this section or :Calculate usingCp1 = 2.96 - 1.34 G + T (0.00082 - 0.002349)KJ/KG *C (T in *C)Cp1 = 2.96 - 0.31 G + T (0.00082 - 0.002349)KJ/KG *C (T in *F)G = liquid specific gravityCAMPBELL(accuracy ± 5 %)	TOTAL	PROCESS ENGINEERING DESIGN MA	NUAL	Revision	: 0	Page No :	_	
IPPOPEAR/SUM SPECIFIC HEATS SPECIFIC HEATS (HEAT CAPACITY) UNITS: BTU/LB *F IBTU/LB *F IPT FOR IPT FOR IPT FOR IBTU/LB *F IBTU/LB *F IBTU/LB *F <td colsp<="" th=""><th></th><th>DATA SECTION</th><th></th><th>Data</th><th></th><th></th><th>•</th></td>	<th></th> <th>DATA SECTION</th> <th></th> <th>Data</th> <th></th> <th></th> <th>•</th>		DATA SECTION		Data			•
SPECIFIC HEATS (HEAT CAPACITY) UNITS: BTU/LB *F $(1 BTU/Lb *F = 4.19 KJ/Kg *C KJ/KG *C I BTU/Lb *F = 1 cal/g *C VAPOUR MIXTURES Use figs 18, 19 in this section Cp* = A + BT + CT2 where A, B, C are constants dependant on system composition and T is in *R (K) Values of A, B, C are cited in Kern, or Perry. Cp* can be corrected for pressure if Pr and Tr are known using Figure K = ratio of specific heats CP this should also be corrected for pressure if required. LIQUID MIXTURES Use Figure 21 in this section or : Calculate using CpI = 2.96 - 1.34 C + T (0.00620 - 0.002349) KJ/KG *C (T in *C) CpI = 2.96 - 1.34 C + T (0.00620 - 0.002349) KJ/KG *C (T in *F) C = liquid specific gravity CAMPBELL CAMPBELL CAMPBELL $				Date	: 2/85	15 - 30		
(HEAT CAPACITY) UNITS: $BTU/LB *F$ $i BTU/Ib *F = 4.19 KJ/Kg *C KJ/KG *C I BTU/Ib *F = 1 cal/g *CVAPOUR MIXTURESUse figs 18, 19 in this sectionCp^* is a fuction of temperature and can be calculated using':Cp^* = A + BT + CT^2where A, B, C are constants dependant on system compositionand T is in *R (K)Values of A, B, C are cited in Kern, or Perry.Cp^* can be corrected for pressure if Pr and Tr are known using FigureK = ratio of specific heats CP this should also be corrected for pressure if required. LIQUID MIXTURES Use Figure 21 in this section or : Calculate using CpI = 2.96 - 1.34 G + T (0.00620 - 0.002349) KJ/KG *C (T in *C)CpI = 0.68 - 0.31 G + T (0.00082 - 0.000319)$ BTU/LB *F (T in *F) C = liquid specific gravity CAMPBELL (accuracy ± 5 %)		SPECIFIC HEATS					1	
UNITS: BTU/LB *F I BTU/Ib *F = 4.19 KJ/Kg *C KJ/KG *C I BTU/Ib *F = 1 cal/g *C VAPOUR MIXTURES Use figs 18, 19 in this section Cp* is a fuction of temperature and can be calculated using* Cp* = A + BT + CT ² where A, B, C are constants dependant on system composition and T is in *R (K) Values of A, B, C are cited in Kern, or Perry. Cp* can be corrected for pressure if Pr and Tr are known using Figure K = ratio of specific heats $\frac{CP}{CV}$ this should also be corrected for pressure if required. LIQUID MIXTURES Use Figure 21 in this section or : Calculate using Cpi = 2.96 - L34 G + T (0.00620 - 0.002349) KJ/KG *C (T in *C) Cpi = 0.68 - 0.31 G + T (0.00082 - 0.000319) BTU/LB *F (T in *F) G = liquid specific gravity CAMPBELL (accuracy ± 5 %)		(HEAT CAPACITY)			u p			
UNITS: BTU/LB *F 1 BTU/Ib *F = 4.19 KJ/Kg *C KJ/KG *C 1 BTU/Ib *F = 1 cal/g *C VAPOUR MIXTURES Use figs 18, 19 in this section Cp* is a fuction of temperature and can be calculated using*: Cp* = A + BT + CT ² where A, B, C are constants dependant on system composition and T is in *R (K) Values of A, B, C are cited in Kern, or Perry. Cp* can be corrected for pressure if Pr and Tr are known using Figure K = ratio of specific heats $\frac{CP}{CV}$ this should also be corrected for pressure if required. LIQUID MIXTURES Use Figure 21 in this section or : Calculate using CpI = 2.96 - 1.34 G + T (0.00620 - 0.002349) KJ/KG *C (T in *C) CpI = 0.68 - 0.31 G + T (0.00082 - 0.000319) BTU/LB *F (T in *F) G = liquid specific gravity CAMPBELL (accuracy ± 5 %)								
 VAPOUR MIXTURES Use figs 18, 19 in this section Cp° is a fuction of temperature and can be calculated using': Cp° = A + BT + CT² where A, B, C are constants dependant on system composition and T is in °R (K) Values of A, B, C are cited in Kern, or Perry. Cp° can be corrected for pressure if Pr and Tr are known using Figure K = ratio of specific heats <u>CP</u> this should also be corrected for pressure if required. LIQUID MIXTURES Use Figure 21 in this section or : Calculate using Cpl = 2.96 - 1.34 G + T (0.00620 - 0.002349) KJ/KG °C (T in °C) Cpl = 0.68 - 0.31 G + T (0.0082 - 0.000319) BTU/LB °F (T in °F) G = liquid specific gravity CAMPBELL (accuracy <u>-</u> 5%) 	UNITS :	BTU/LB °F I BTU/Ib °F = KJ/KG °C I BTU/Ib °F =	= 4.19 k = 1 cal/	<j kg="" °c<br="">g °C</j>			1	
 Use figs 18, 19 in this section Cp° is a fuction of temperature and can be calculated using?: Cp° = A + BT + CT² where A, B, C are constants dependant on system composition and T is in °R (K) Values of A, B, C are cited in Kern, or Perry. Cp° can be corrected for pressure if Pr and Tr are known using Figure K = ratio of specific heats CP/Cv this should also be corrected for pressure if required. LIQUID MIXTURES Use Figure 21 in this section or : Calculate using Cpl = 2.96 - 1.34 G + T (0.00620 - 0.002349) KJ/KG °C (T in °C) Cpl = 0.68 - 0.31 G + T (0.00082 - 0.000319) BTU/LB °F (T in °F) C = liquid specific gravity CAMPBELL (accuracy ± 5 %) 	VAPOUR MIXTURE	S	1				Ι.	
 Cp° is a fuction of temperature and can be calculated using*: Cp° = A + BT + CT² where A, B, C are constants dependant on system composition and T is in °R (K) Values of A, B, C are cited in Kern, or Perry. Cp° can be corrected for pressure if Pr and Tr are known using Figure K = ratio of specific heats Cp/Cy this should also be corrected for pressure if required. LIQUID MIXTURES Use Figure 21 in this section or : Calculate using Cpl = 2.96 - 1.34 G + T (0.00620 - 0.002349) KJ/KG °C (T in °C) Cpl = 0.68 - 0.31 G + T (0.0082 - 0.000319) BTU/LB °F (T in °F) C = liquid specific gravity CAMPBELL (accuracy ± 5 %) 	. Use figs 18, 19 i	n this section	**					
$Cp^{\circ} = A + BT + CT^{2}$ where A, B, C are constants dependant on system composition and T is in °R (K) Values of A, B, C are cited in Kern, or Perry. Cp° can be corrected for pressure if Pr and Tr are known using Figure K = ratio of specific heats CP this should also be corrected for pressure if required. LIQUID MIXTURES Use Figure 21 in this section or : Calculate using Cpl = 2.96 - 1.34 G + T (0.00620 - 0.002349) KJ/KG °C (T in °C) Cpl = 0.68 - 0.31 G + T (0.00082 - 0.000319) BTU/LB °F (T in °F) G = liquid specific gravity CAMPBELL (accuracy <u>+</u> 5 %)	. Cp° is a fuction	of temperature and can be calculated u	sing":					
where A, B, C are constants dependant on system composition and T is in °R (K) Values of A, B, C are cited in Kern, or Perry. Cp° can be corrected for pressure if Pr and Tr are known using Figure K = ratio of specific heats $\frac{Cp}{Cv}$ this should also be corrected for pressure if required. LIQUID MIXTURES Use Figure 21 in this section or : Calculate using Cpl = 2.96 - 1.34 G + T (0.00620 - 0.002349) KJ/KG °C (T in °C) Cpl = 0.63 - 0.31 G + T (0.00082 - 0.000319) BTU/LB °F (T in °F) G = liquid specific gravity CAMPBELL (accuracy ± 5 %)	,	$Cp^{\circ} = A + BT + CT^2$	·.		,		1	
and T is in °R (K) Values of A, B, C are cited in Kern, or Perry. Cp° can be corrected for pressure if Pr and Tr are known using Figure K = ratio of specific heats <u>CP</u> this should also be corrected for pressure if required. LIQUID MIXTURES Use Figure 21 in this section or : Calculate using Cpl = 2.96 - 1.34 G + T (0.00620 - 0.002349) KJ/KG °C (T in °C) Cpl = 0.68 - 0.31 G + T (0.00082 - 0.000319) BTU/LB °F (T in °F) G = liquid specific gravity CAMPBELL (accuracy ± 5 %)	where A, B, C ar	e constants dependant on system compo	sition					
 Cp° can be corrected for pressure if Pr and Tr are known using Figure K = ratio of specific heats CP/Cv this should also be corrected for pressure if required. LIQUID MIXTURES Use Figure 21 in this section or : Calculate using Cpl = 2.96 - 1.34 G + T (0.00620 - 0.002349) KJ/KG °C (T in °C) Cpl = 0.68 - 0.31 G + T (0.00082 - 0.000319) BTU/LB °F (T in °F) G = liquid specific gravity CAMPBELL (accuracy ± 5 %) 	and T is in °R (K Values of A B C)						
 Cp° can be corrected for pressure if Pr and Tr are known using Figure K = ratio of specific heats Cp/Cv this should also be corrected for pressure if required. LIQUID MIXTURES Use Figure 21 in this section or : Calculate using Cpl = 2.96 - 1.34 G + T (0.00620 - 0.002349) KJ/KG °C (T in °C) Cpl = 0.68 - 0.31 G + T (0.00082 - 0.000319) BTU/LB °F (T in °F) G = liquid specific gravity CAMPBELL (accuracy ± 5 %) 		are cited in Kern, of Ferry.						
 K = ratio of specific heats CP this should also be corrected for pressure if required. LIQUID MIXTURES Use Figure 21 in this section or : Calculate using Cpl = 2.96 - 1.34 G + T (0.00620 - 0.002349) KJ/KG °C (T in °C) Cpl = 0.68 - 0.31 G + T (0.00082 - 0.000319) BTU/LB °F (T in °F) G = liquid specific gravity CAMPBELL (accuracy ± 5 %) 	. Cp° can be corre	ected for pressure if Pr and Tr are known	n using F	igure				
LIQUID MIXTURES Use Figure 21 in this section or : Calculate using $Cpl = 2.96 - 1.34 \text{ G} + T (0.00620 - 0.002349) \text{KJ/KG °C (T in °C)}$ $Cpl = 0.68 - 0.31 \text{ G} + T (0.00082 - 0.000319) \text{BTU/LB °F (T in °F)}$ $G = \text{liquid specific gravity} \text{CAMPBELL}$ $(accuracy \pm 5 \%)$. K = ratio of sp	becific heats $\frac{CP}{Cv}$ this should also be correction Cv	ected for	pressure	if requi	red.		
 Use Figure 21 in this section or : Calculate using Cpl = 2.96 - 1.34 G + T (0.00620 - 0.002349) KJ/KG °C (T in °C) Cpl = 0.68 - 0.31 G + T (0.00082 - 0.000319) BTU/LB °F (T in °F) G = liquid specific gravity CAMPBELL (accuracy ± 5 %) 	LIQUID MIXTURES							
Calculate using Cpl = 2.96 - 1.34 G + T (0.00620 - 0.002349) KJ/KG °C (T in °C) Cpl = 0.68 - 0.31 G + T (0.00082 - 0.000319) BTU/LB °F (T in °F) G = liquid specific gravity CAMPBELL (accuracy ± 5 %)	Use Figure 21	in this section or :						
Cpl = 2.96 - 1.34 G + T (0.00620 - 0.002349) KJ/KG °C (T in °C) Cpl = 0.68 - 0.31 G + T (0.00082 - 0.000319) BTU/LB °F (T in °F) G = liquid specific gravity CAMPBELL (accuracy <u>+</u> 5 %)	. Calculate using						×.	
G = liquid specific gravity CAMPBELL (accuracy <u>+</u> 5 %)	Cpl = Cpl =	2.96 - 1.34 G + T (0.00620 - 0.002349) 0.68 - 0.31 G + T (0.00082 - 0.000319)	KJ/ BTI	/KG °C U/LB °F	(T in °((T in °f	C) =)		
		G = liquid specific gravity (accuracy <u>+</u> 5 %)		CAMPBE	LL		;	

	•			
TOTAL	PROCESS ENGINEERIN	G DESIGN MANUAL	Revision : 0	Page No :
TEP/DP/EXP/SUR	DATA SECT	NON	Date : 2/85	15 -34
	THERMAL CO	<u> DUCTIVITY</u>		
UNITS :	BTU/LB °F	1 BTU/16 °F = 1.483	► Kcal/m.h.°C	
VAPOUR MIXTUR	ES			
. Use figs 22, 23	in this section			
. Low pressure a using:	thermal conductivities of $k = \mu \left(C_{p} + \frac{2.44}{M} \right)$	pure gases and vapor	ours can be esti	mated
-	accuracy <u>+</u> 8%	k - BTU/hr - اb/hr. Cp - BTU/I	.ft°F ft b °F	
LIQUIDS				
Use fig 24 in thi	s section or :		, : , :	
Liquid hydrocart	oon mixtures can be estima	ated using :		
· ·	$k = \frac{0.0677}{sg} \left[1 - 0.000 \right]$	3 (T - 32)		
	accuracy <u>+</u> 12 %	k - BTU/hr. sg - specific T - °F	ft°F gravity .78 < > 32 < >	.95 392
SOLIDS	•			
See Perry of Ker	n for details of metals, ea	rths and building mater	rials.	

TOTAL	PROCESS ENGIN	EERING DESIGN MANUAL	Revision	: 0	Page No :	••	
TEP/DP/EXP/SUR	DAT	A SECTION	Date	: 2/85	15-36		т
						. 1	
	LATENT HE.	AT OF VAPOURISATION					
UNITS :	BTU/LB Kcal/Kg	1 BTU/15 = 0.5556 Kcal/H	ζg	-		1.	1
. Use figures : 25,	26						
. Estimate using T	routons rule :					 .	
		1				1	
	A = 21.Tb	cal/gmole 😁				1	
accuracy + 20 %		Tb = boiling point °K					
$\frac{1}{2}$		· · · · · · · · · · · · · · · · · · ·					
				2			
. For relief valve o	calculations use 50	BTU/Ib if actual Lt.ht is no	t known.	ÿ			
. For relief valve of . Detailed estimat	calculations use 50 l	BTU/Ib if actual Lt.ht is no	t known.	,			
. For relief valve o . Detailed estimat	calculations use 50 l ion methods in Perr	BTU/lb if actual Lt.ht is no y : pp 238	t known.	,			
. For relief valve of . Detailed estimat	calculations use 50 l ion methods in Perr	BTU/lb if actual Lt.ht is no y : pp 238	t known.	,			
. For relief valve o	calculations use 50 l ion methods in Perr	BTU/lb if actual Lt.ht is no y : pp 238	t known.	,			
. For relief valve of . Detailed estimat	calculations use 50 l ion methods in Perr	BTU/lb if actual Lt.ht is no	t known.	,			
. For relief valve o	calculations use 50 l	BTU/lb if actual Lt.ht is no	t known.				
. For relief valve o	calculations use 50 l ion methods in Perr	BTU/lb if actual Lt.ht is no	t known.				
. For relief valve o	calculations use 50 l	BTU/lb if actual Lt.ht is no	t known.	, , ,			
. For relief valve o	calculations use 50 l ion methods in Perr	BTU/Ib if actual Lt.ht is no	t known.	,			
. For relief valve of Detailed estimat	calculations use 50 l ion methods in Perr	BTU/lb if actual Lt.ht is no	t known.	,			
. For relief valve of Detailed estimat	calculations use 50 l	BTU/lb if actual Lt.ht is no y : pp 238	t known.	, , ,			
. For relief valve of . Detailed estimat	calculations use 50 l ion methods in Perr	BTU/Ib if actual Lt.ht is no	t known.	·			
. For relief valve of Detailed estimat	calculations use 50 l	BTU/Ib if actual Lt.ht is no y : pp 238	t known.				
. For relief valve of Detailed estimat	calculations use 50 l ion methods in Perr	BTU/Ib if actual Lt.ht is no	t known.				

	Ph	ysical propertie	es of gas treatin	ng chemicals						
	Monoethanolomine	Diethanelamine	Triethanalamine	Diglycalamine®	Diisoproponalumine	Selexol ⁴	Propylene Carbonale		TEP	
ormulu	HOC2H4NH2	(HOC2H4)2NH	(HOC2H4)3N	H(OC2H4)2NH2	(11003116)21411	Dimethylether of	ColloCOo		VDP.	
Aolecular mass	61 08	105.14	148.19	105.14	133.19	280	102.00		m l	
loiling point @ 101.3 kPa (ubs), *C	170.5	269	360 (Decomposes	i) 221	249	220	102.09		I X	
reezing point, *C	10.5	28	22.4	-12.5	42		142		l Š	
ritical constants						10 0	49.2		ΪË	
Pressure, \$Pa (abs)	5985	3273	2448	3772	3770	•				
	120	442	514	403	109					-
Anniny @ 20-C, kg/m	1018	1095	1124	1058 @ 15.6*C	999 @ JO•C	10JI @ 25*C	1205 7			
elolive denily, 20°C/20°C	1.0179	1.0919 (30/20*0	1.1258	1.0572	0 989 @ 45/20°C		1 201		1	
pecilic heat copacity, kJ/(kg·*C) @ 15.6*C	2.546 @ 20°C	2.512	2.931	2,391	2.889 @ 30•C	2.052 @ 5-C	1.403		1	
hermal conductivity, J/(irin***C/in) @ 20*C	0.256	0.220		0.209		0.190 @ 25 .C	0 208 @ (7)*C		1	
atent heat of vaporization, kJ/kg of kPa (ubs). , .	826 @ 101,3 kPa	670 @ 9.73 kPa	535 @ 101.3 kPa	510 @ 101.3 kPo	430 @ (?) kPa	•	484 00 101 114		{	
leat of reaction, kJ/kg of acid gas					•	•				
CO3			-930	-1568	-	442 @ 25+C	•••			
iscosity inPort	241@20+0	160 @ 20.00	-1403	-1977		-372 @ 25*C	4		1 2	
,	14.7 6 10 6	(90 mass % solution	(013 @ 20°C)} (95 mass % solu)	40 @ 13.6*C non)	198 @ 45*C 86 @ 54*C	58@25°C	108/@ 25*C 45@ 0*C 25@ 25*C		TA SE	
eleactive index, Mg, 20°C	1.4539	1.2776	1 4852	1 4500			، ℃100 ف 0 اف		1 3	
lash point, COC, *C	93	138	185	1.4370	1.4342@45*C		1 4209		1 2	
				127	124	151	132		Ĭ	
	EINYI	ina Giycal Di	ethylene Glycel - T	risthylene Glycol	Tetraethylene Glycol	Sullalune	Methunol	17		
יייייט איז איז איז איז איז איז איז איז איז איז	нос	2H4OH H	IO(C2H4O)2H	HO(C2H4O)3H	HO(C2H4O)4H	CattesOs		ភ្	1	
olecular mass	•••••• ف	2.07	106.12	150.17	194.32	120.17	12.04		}	
oiling point @ 101.3 kPa (abs), *C	• • • • • • • • • • •	197	245	287	327	285	J2 04	<i>6</i> .		
eezing point, *C	• • • • • • • • • •	-13	- 8	-7.2	-6.2 **	27 A	4 5			
ritical canstants Pressure, SPa (abs)		1696	4661	3304	1 2504					
Temperature, *C	• • • • • • • • • •	372	408	442	474	5290	7456		1	
ensity @ 20°C, kg/m³	· · · · · · · · · · · · · · · · · · ·	113	1116	1123	1246	1744	240			-
elative density, 20*C/20*C	1.	.1155	1.1184	1.1254	1 248	1203	790	•	Ö	
pecific meat capacity, kJ/(kg·*C) @ 15.6*C		311	2.240	2 060	2 1 7 2	1 200	0 7917			
nermal canductivity, J/(s·m ^{2, e} C/m)@ 20*C		@ 15.6*C 0.	249@156*0 0	241 @ 15 4+0	4.177	1.207 @ 30•C	2.470 (5*- 10*C)		1	
stent heat of vaparization, kJ/kg at kPa (abs)	800 @	101 3 kPa 54	0 @ 101 3 60 4			0197@378•C	0415			
scosity, mPars		@ 20 °C	157 @ 20•C	17 0 @ 204C	374 @ 101.3 kPo	525 @ 100 °C	1103 (# 101 3 kPo			
•			13.7 @ 20 C	47.9 @ 20°C	60.0 @ 20 °C	103@ 30*C	0 6 (w 20 • C		2	
						2 5 @ 100*C			85	
						14@150.0				
atractive index No. 20°C			h			0 97 @ 200 •C				
ath agint COC *C	· · · · · · · · · · · · · · · · · · ·	4110	1 4472	1.4559	1.4595	1 481 @ 30 °C	1 3786		И	
	• • • • • • • • • •	116	140	100	17'	177	14		Ň	
Vis. i incure - i centipolite									4-)	
I								- 1	5	
								1	-	
· · · · · · · · · · · · · · · · · · ·		• •	•			- · ·		·		-
		, 777 7 10 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	╌╌┠╌╂╌┨╶╌╴╊╛┇╼╏						L.	
								110		

TOTAL	PROCESS ENGINEERING DESIGN MANUAL	Revision : 0	Page No :
TEP/DP/EXP/SUR	DATA SECTION	Date : 2/85	15-48
	Thermal Conductivity of Air* Thermal Jondia traits & Bit a 15 hr 11F	<u></u>	- I
ip ad bicz	iure Temp 15 in abs = 250 = 200 = 150 = 100 = 30 (0 30 (01) (30)		ł

			- :	- [147	- 30		50	24.83	1541	2141	150
n	0.615	0 -63	0.413	1 242	1 175	1 05	1 1 1 1	1 3 3 3			
14 7	0.621	0.766	()	1045	1 151	1.111	1.175	1 337	1 2 * 1		
50	0.629	0.774	9414	1 055	1 155	1.35	1 1 1 1	1 147	1 2 4 1		
100	0.647	2757	a 927	1.355	1 104	1.325	3 45 7	1 144	10.2		1
150	a 57a	0 -35	0441	1077	1 210	1 555	1 461	575	10.0	: "*3	1 :4!
200	0 763	0 524	0 553	1.090	1.223	1 350	1.470	1554	1.663	1 *65	r sen
250		9.549	0977	1 107	1 226	1.365	1.450	1 591	1 491	1 102	
300		11-62	1) -444	1.125	1.234	1.377	1 441	1 mi)?	Levin 1	1 501	1
400		0.5	1935	1 155	1.253	1 405	1.512	1.630	1.712	1 613	1 44 1
500		1 125	1145	1 195	1.319	1 434	1335	1 6 5 5	1 750	324	1.42
600			1 15	1.25	1.38	1.46	1.54	1.65	13	164	1 41
700			1.20	1.30	1.40	1 50	1 35	1.68	1	156	1
500			1.27	1.15	1.45	135	1.60	1 70	1.75	114	1.56
900			1.35	1 41	1.50	1 56	1 63	1.72	1.50	1.94	197
1000			1 44	1 44	1.55	1 39	1 63	174	1 12	191	1 44
					_				_		

*Compiled by P. E. Liley. To obtain actual thermal-conductivity values divide the table values by 100. For tables in SI units from 40° to 1300°K. I to 1000 bars, see Vasterman, KazavEhinskii, and Rahinovich. "Thermophysical Properties of Air and Air Components." Modew, 1466, and NBS-NSF trans. TT 70-50095, 1971. This source discusses present-day accuracy.

Viscosity of Air* Viscosty, 15 //ft thr.1 x 10-2

Pressure.		_		Тетр.	•F			
lb/sq in abs	- 100	- 50	: 0	50	100	150	200	250
200	3.27	J.64	3 95	4.29	1.57	4.78	5.12	5.45
400	3.39	3 73	4.06	4.36	4.63	4.86	: 5.19	5.51
600	3.54	3.83	4.14	4.43	4.69	4.94	: 5.25	5.56
500	3.72	3.95	4.22	4.50	4.76	5.02	5.31	5.61
1,000	3.90	4.07	4.31	4.55	4.84	5.10	5.38	5 67
1,200	4.05	4.20	. 4 42	4.66	4.92	5.16		5.72
1,400	4.26	4.15	4.54	4 77	5.00	5.24	5.50	3 77
1,600	4.47	4.53	4.65	4.57	5 06	5 31	5.57	5 54
1,500	4.70	4.73	4.85	5.00	5.17	5.39	5.63	5.50
2.000	5.10	4.95	4.97	5.10	5.27	5 47	5.70	5.97
2,500	605	5.52	5.36	5.36	5.51	5 65	5.57	6.07
3,000	6.82	6.14	5.77	5 70	5.76	5.91	6.06	6 19
3,500	7.62	6.76	ت2.6	6.06	6.05	6.12	6.25	6 43
4,000	\$.35	7.34	6.65	6.42	6.35	6.42	6.43	6.67
4,500	9.10	7.91	7.09	6 76	6.66	6.69	6.71	6 82 '
5.000	9.66	5.49	7.55	7.16	: 6.99	6.99	6.97	7.02
6 000	11.33	9.66	6.39	7.90	7.66	7.52	7.43	7.60
7,000	12.63	10 75	9.17	5 61	8.26	8.03	7.92	\$ 10
8,000	14.56	11.94	10.16	942	5.89	5.56	6.39	5 52
9,000	16.09	12.94	11.05	10.11	9.46	9.07	5.83	5.90
10.000	17 70	14.03	11.55	10.79	10.10	9 63	9.37	9.17

*Compiled by P. E. Liley. For tables in SI units from 30° to 1300° K., 1 to 1000 bars, see Vasserman, Kazavchunskii, and Rahinovich. "Thermsphysical Properties of Air and Air Components." Moscow. 1966, and NBS-NSF trans. TT 70-50095, 1971. This source contains a discussion of present accuracy.

COMPOSITION OF THE ATMOSPHERE

The composition of dry air is remarkably constant all over the globe and throughout the entire troposphere. The proportions by volume of the various components are given below (after A. F. Paneth, 1939, 1952).

Substance	Substance % by volume		% by volume
N,	78-09	CH,	$2-0 \times 10^{-4}$ 1×10^{-5} 5×10^{-5} 5×10^{-5} 9×10^{-6} 6×10^{-18}
O,	20:95	Kr	
Ar	0:93	H,	
®O,	0:03	N,O	
Ne	1:8 × 10-3	Xe	
He	5:2 × 10-4	Rn	

"This versus somewhat near towns and industrial areas.

. Specific Heat of Air at High Pressures Col./g *C.

-

.

1

1

ť,

ì

1

i

t

1

3

i

2

ł

+ ;

•

.,

Temp.	1		Atasa	-		
<u> </u>	1	10	j 20	40	70	100
100 8 50 160 150	0.237 .238 .234 .234 .239 .299	0.259 .242 .246 .259 .311	0.240 .247 .257 .285 .505	0.245 .251 .279 .378	0.250 .277 .332 .844	0.254 .278 .412

For the specific heats of other materials as a function of the pressure, see "International Critical Tables," vol. 5, pp. 82-83. See Figs. 3-11 and 3-14.

PHYSICAL PROPERTIES OF AIR