

PSV-2121-2122 Blocked Outlet Scenario

Determine relief load

The rated capacity of FT-2002 is 27180 kg/h, so the relief load is 27180 kg/h.

2.Calculate orifice area

Determine if it is in critical flow:

$$\frac{P_{\mathsf{cf}}}{P_{\mathsf{1}}} = \left[\frac{2}{k+1}\right]^{\frac{k}{k-1}}$$

where

P_{cf} is the critical flow nozzle pressure;

P₁ is the upstream relieving pressure;

k is the ratio of specific heats (C_p/C_v) for an ideal gas at relieving temperature.

If so, then:

$$A = \frac{W}{CK_{\rm d} P_{\rm l} K_{\rm b} K_{\rm c}} \sqrt{\frac{TZ}{M}}$$

Equipment & Process Design

- K_{d} is the coefficient of discharge; for preliminary sizing, use the following effective values:
 - 0.975, when a PRV is installed with or without a rupture disk in combination;
 - 0.62, when a PRV is not installed and sizing is for a rupture disk in accordance with 5.12.1.2;
- P₁ is the upstream relieving pressure, psia (kPa); this is the set pressure plus the allowable overpressure (see 5.4) plus atmospheric pressure;
- K_b is the capacity correction factor due to backpressure; this can be obtained from the manufacturer's literature or estimated for preliminary sizing from Figure 31. The backpressure correction factor applies to balanced bellows valves only. For conventional and pilot-operated valves, use a value for K_b equal to 1.0 (see 5.3). See 5.6.4 for conventional valve applications with backpressure of a magnitude that will cause subcritical flow;
- K_c is the combination correction factor for installations with a rupture disk upstream of the PRV (see 5.12.2);
 - equals 1.0 when a rupture disk is not installed;
 - equals 0.9 when a rupture disk is installed in combination with a PRV and the combination does not have a certified value;
- is the relieving temperature of the inlet gas or vapor, ${}^{\circ}R({}^{\circ}F + 460)$ [K(${}^{\circ}C + 273$)];
- Z is the compressibility factor for the deviation of the actual gas from a perfect gas, evaluated at inlet relieving conditions;
- M is the molecular weight of the gas or vapor at inlet relieving conditions; various handbooks carry tables of molecular weights of materials, but the composition of the flowing gas or vapor is seldom the same as that listed in tables. This value should be obtained from the process data. Table 10 lists values for some common fluids, lbm/lb-mole (kg/kg-mole);
- V is the required flow through the device, SCFM (Nm³/min);
- G_V is the specific gravity of gas at standard conditions referred to air at standard conditions (normal conditions); in other words, $G_V = 1.00$ for air at 14.7 psia and 60 °F (101.325 kPa and 0 °C).

Results

T	467	W	27180 kg/h
Z	0.93	A	69 cm2
M	1.2	A	10.7 inch2
C	0.0256		

Note that the relieving temperature is obtained from TOPSOE EXCEL

5.Use API-526 to determine the designation and the inlet and outlet sizing

Since it is more than 6.38 inch and less than 11.05, then Q is selected. Also, by checking its rating and temperature limitation, 6Q8 is selected.

Designation	Effective Orifice Area (in.²)
D	0.110
E	0.196
F	0.307
G	0.503
Н	0.785
J	1.287
K	1.838
L	2.853
М	3.60
N	4.34
Р	6.38
Q	11.05
R	16.00
Т	26.00

Equipment & Process Design

Table 14—Spring-loaded Pressure-relief Valves "Q" Orifice † (Effective Area = 11.05 in.2)

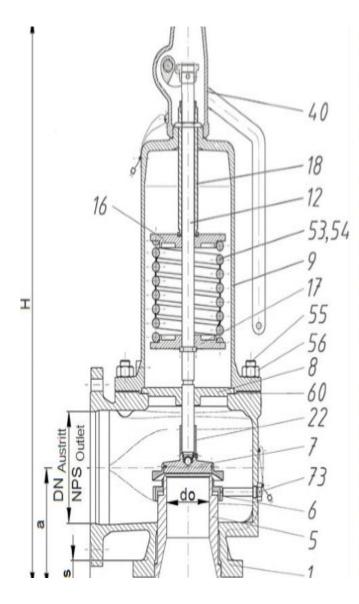
Materials ^b	Valve Size	ASME Cla	Flange ass	Ма	iximum In	let Flange (ps	(Set) Presig)	ssure Lim	iit ^a	Lin	Pressure nit ^a		nsions
			_	Conventional and Balanced Bellows Valves				(psig)		(in.)			
Body/ Bonnet	Inlet by Orifice by	N L E T	0 U T L	-450 °F	-75 °F	-20 °F	450 °F	800 °F	1000 °F	Flange Rating Limit ^a	Bellows Rating Limit ^a	I N L	0 U T
	Outlet	T	L E T	-76 °F -21 °F	-21 °F	100 °F				100 °F	100 °F	Ē L T T	
				Tempe	erature Ra	ange Incl	usive –20	°F to 80)°F				
Carbon	6Q8	150 300	150 150			(165)	(165)	80 (165)		(115) (115)	70 70	9 ⁷ /16 9 ⁷ /16	9 ¹ /2 9 ¹ /2
Steel	6Q8	300	150			(300)	(300)	(300)		(115) (115)	115 115	9 7/16 9 7/16 9 7/16	9 1/2 9 1/2
Temperature Range Inclusive 801 °F to 1000 °F								0 12					
Chrome Molybdenu m Steel	6Q8 6Q8	300 600	150 150					(165) (600)	(165) 430	(115) (115)	115 115	9 ⁷ /16 9 ⁷ /16	9 ¹ /2 9 ¹ /2
Temperature Range Inclusive −450 °F to 1000 °F													
Austenitic Stainless Steel	6Q8 6Q8¢ 6Q8 6Q8	150 300 300 600	150 150 150 150	(165) (165) (250) (300)	(165) (165) (300) (600)	(165) (165) (300) (600)	(165) (165) (300) (600)	80 (165) (300) (600)	20 (165) (300) (600)	(115) (115) (115) (115)	70 70 115 115	9 ⁷ /16 9 ⁷ /16 9 ⁷ /16 9 ⁷ /16	9 1/2 9 1/2 9 1/2 9 1/2 9 1/2

Equipment & Process Design

Select proper PSV type by checking backpressure

According to licensor data, superimposed and build-up backpressure are max 10 barg. Since the backpressure is constant and it is discharged to atmosphere then a conventional type could be selected even though the percentage is high

superimposed	Build-up	Total
0 barg	10 barg	10 barg
0%	100%	100%


Backpressure		Selection			
Туре	Value (% of set)	Conventional	Balanced Spring Valve	Pilot Operated	
Constant	<30% 1	Set point increased by backpressure ³	No effect	No effect	Conventional, balanced or POSRV
	30%–50%		Lift/capacity reduced (coefficient) ⁶		
	>50% ²	Set point increased by backpressure; flow becomes subsonic ⁴	Generally unstable Do not use	Flow becomes subsonic 4	Conventional or POSRV
Variable superimposed	<10%	Set point varies with backpressure 5	No effect	No effect	Balanced or POSRV
	10%-30% 1	Unstable			
	30%–50%	Do not use	Lift/capacity reduced (coefficient) ⁶		
	>50% ²		Generally unstable Do not use	Flow becomes subsonic 4	POSRV only
Varlable built-up	<10%	No effect	No effect	No effect	Conventional, balanced or POSRV
	10%-30% 1	Unstable			Balanced or POSRV
	30%–50%	Do not use	Lift/capacity reduced (manufacturer coefficient) ⁶		
	>50% 2		Generally unstable Do not use	Flow becomes subsonic 4	POSRV only

Material Selection

Since it is Steam, A216 WCB could be used for its body

2	LESER Job No.	20329048
3	LESER Pos.	70
4	Туре	5262.6585
5	Orifice	Q
6	Inlet size	NPS 6"
7	Inlet pressure rating	300 lbs ASME B16.5
8	Inlet flange facing	Serr spiral finish, Ra=3,2-6,3
9	Outlet size	NPS 8°
10	Outlet pressure rating	150 lbs ASME B16.5
11	Outlet flange facing	Serr spiral finish, Ra=3,2-6,3
12	d0 (mm)	105,50
13	Set pressure	9,50
14	Pressure unit	bang
15	CDTP [bar-g]	9,59
16	Dimension a [mm]	240,00
17	Dimension b [mm]	241,00
18	Dimension s [mm]	57,00
19	Dimension H [mm]	1056,00
20	Weight (kg)	221,00
21	Tag No. 1 + 2	PSV-2121; PSV-2122
22	Tag No. 3 + 4	
23	Tag No. 5 + 6	
24	Tag No. 7 + 8	
25	Tag No. 9 + 10	
26	Tag No. 11+ 12	

	List of Parts Main Valve					
Pos	Description	Qty	Material			
1	Body	1	1.0619/ WCB/ WCC			
5	Nozzle	1	1.4408/ CF8M (stellited)			
6	Adjusting ring	1	1.4408/ CF8M			
7	Disc AS	1	1.4401/ 1.4404/ 316/ 316L (stellited)			
8	Guide A5	1	1.0460/ SA-105			
9	Bonnet	1	1.0619/ WCB/ WCC			
12	Spindle	1	1.4021/ Chrame Steel			
16	Spring Plate	1	1.0460/ SA-105			
17	Spring Plate	1	1.0460/ SA-105			
18	Adjusting Screw AS	1	1.4104/ 430F + PTFE/ Glas			
22	Lift stapper	1	1.4401/ 1.4404/ 316/ 316L			
40	Cap/ Lifting Device AS	1	0.7040/60-40-18			
53	Compression Spring	1	1.8159 (51CrV4) or 1.7102 (54SiCr6) or FDSiCr / High temp. Alloy Steel			
54	Compression Spring	1	1.8159 (51CrV4) or 1.7102 (54SiCr6) or FDSiCr / High temp. Alloy Steel			
		_				