

Part 7

Reactor Modelling in Aspen Plus

Objectives:

1.Learn to use different pressure change elements such as pumps, valves, pipe segments.

2. Become familiar with pages and Tabs of each element and how to fill in the required inputs.

3.Get to know the critical conditions and its causes for each pressure change elements.

4.Learn to use Sensitivity in Aspen Plus

5.Learn to use Design Specs in Aspen Plus

6.Understand pressure level heuristics for compressors and turbines

7. Understand the difference between heat, material, and work streams

To demonstrate the concept of particle size distribution (PSD), we consider a simple solid handling case. Figure 14.1 shows the flowsheet that is made of a crusher, one feed stream, and one output stream. The crusher, as its name suggests, will reduce the particle size of the feed stream.

Problem Definition

In a treatment of the design of an acetic anhydride manufacturing facility, it is stated that one of the key steps is the vapor-phase cracking of acetone to ketene and methane:

 $\text{CH3COCH3} \rightarrow \text{CH2CO} + \text{CH4}$

It is further stated that this reaction is first order with respect to acetone and that the specific reaction rate can be expressed by $\ln k = 34.34 - 34,222 / T$ (6.2) In this design, it is desired to feed 7850 kg of acetone per hour to a tubular reactor. If the reactor is adiabatic, the feed is pure acetone, the inlet temperature is 1035 K, and the

pressure is 162 kPa (1.6 atm), what will be the tubular reactor volume needed to achieve 20% conversion?

Acetic anhydride is prepared by the reaction of ethenone (ketene) with acetic acid at 45–55°C and low pressure (0.05–0.2 bar).

H2C = C = O + CH3COOH
$$\rightarrow$$
 (CH3CO)2O (ΔH = -63 kJ/mol) (6.3)

There are two different ways by which we can define the reaction rate constant to Aspen Plus environment. We arrange Equation 6.2 in these two forms: one form contains a reference temperature, *T*o, and another does not. However, both forms are equivalent. Take the exponent value for both sides of Equation 6.2 and we have

$$k = e^{34.34 - \frac{34,222}{T}} = e^{34.34} e^{-\frac{34,222}{T}} = e^{34.34} \times e^{-\frac{34,222 \times R}{R \times T}} = 8.1973 \times 10^{14} \times e^{-\frac{284,521.7}{R \times T}}$$

Alternatively, to can be arbitrarily chosen and k^* will be calculated accordingly. Let us use To =1000 K. We have

$$k = k^* e^{-\frac{E}{R} \left(\frac{1}{T} - \frac{I}{T_0}\right)} = k^* e^{-\frac{E}{R} \left(\frac{1}{T} - \frac{1}{1000}\right)} = k^* \times e^{-\frac{E}{R} \left(\frac{1}{T}\right)} \times e^{\frac{E}{R} \left(\frac{1}{1000}\right)}$$

Equate both expressions of *k*, we have

$$k = e^{34.34} e^{-\frac{34,222}{T}} = k^* e^{-\frac{E}{R} \left(\frac{1}{T}\right)} e^{\frac{E}{R} \left(\frac{1}{1000}\right)}$$

First, equate the exponent terms, on both sides, which contain 1/T term to calculate E:

$$-\frac{34,222}{T} = -\frac{E}{R} \left(\frac{1}{T}\right) \Rightarrow \frac{E}{R} = 34,222 \Rightarrow E = R \times 34,222 = 8.314 \times 34,222$$
$$= 284,521.7 \text{J/mol}$$

Notice that E is the same as that in Equation 6.4. Second, substitute the value of E from Equation 6.7 into Equation 6.6 and equate constants on both sides of Equation 6.6.

$$e^{34.34} = k^* e^{\frac{E}{R} \left(\frac{1}{1000}\right)} = k^* e^{\frac{284,521.7}{8.314} \left(\frac{1}{1000}\right)} = k^* e^{34.222} \Rightarrow k^* = e^{34.34 - 34.222} = e^{0.118} = 1.125$$

Notice that k^* is calculated in terms of to = 1000 K. However, *E* is fixed for a given reaction and does not depend on *T*o. Equation 6.5 becomes

$$k = k^* e^{-\frac{E}{R} \left(\frac{1}{T} - \frac{1}{T_0}\right)} = 1.125 e^{-\frac{284,521.7}{R} \left(\frac{1}{T} - \frac{1}{1000}\right)}$$

where k is in reciprocal seconds (for a 1st–order reaction) and T is in Kelvin. In general, the rate constant k can be expressed in either form, Equation 6.4 or 6.9, depending on the chemical reaction engineering textbook being used.

How to Simulate

1. Using "Specialty Chemicals with Metric Units" template, create an Aspen Plus project. Under "Properties" environment, in "Navigation" pane, go to "Setup" | "Global" sheet and enter the title: "*Production of Acetic Anhydride*".

2. In "Navigation" pane, click on "Components" folder, and you will be faced by "Selection" tab window. Use "Find" button, shown at the bottom of "Selection" tab window, to search for components by name or chemical formula. Add the following components: ACETONE (CH3COCH3), KETENE (C2H2O), METHANE (CH4),

ACETIC-ACID (CH3COOH), and ACETIC-ANHYDRIDE (ACET-ANH) as shown in Figure 6.1.

ſ	09	Selection Petro	leum Nonconventional Enterprise	Database Comment:	5								
S	Select components												
		Component IE	Туре	Сог	mponent name	Alias	CAS number						
	Þ	ACETO-01	Conventional	ACETONE		C3H6O-1	67-64-1						
	▶	KETEN-01	Conventional	KETENE		С2Н2О	463-51-4						
	Þ	METHA-01	Conventional	METHANE		CH4	74-82-8						
	Þ	ACETI-01	Conventional	ACETIC-AC	ID	C2H4O2-1	64-19-7						
	▶	ACETI-02	Conventional	ACETIC-AN	HYDRIDE	C4H6O3	108-24-7						
	*												
	Find Elec Wizard SFE Assistant User Defined Reorder Review												

3. Go to "Methods" folder | "Global" sheet and use the "Property Method Selection Assistant" wizard by clicking on the "Methods Assistant..." button shown in Figure 6.2. Select "Specify process type"; followed by selecting the type of process to be "Chemical"; and finally clicking "Carboxylic acids" as a subset of "Chemical" processes. This will guide you to either "NRTL-HOC" or "WILS-NTH" as shown in

🧭 Global	Flowsheet	t Sections	Referenced	Comments						
Property m Method filt	Property methods & options Method filter ALL				ame 'H -	Methods	Assistant			
Base metho Henry com	od ponents	WILS-NT	+ • •	Modify						
Petroleun	n calculatio	on options -]	Vapor E Data set	DS	ESNTH	1			
Water sol	ubility	3	-	Liquid g	amma	GMWILSON				
Electrolyt	e calculatio	on options	-	Liquid m	olar enthalpy	HLMX58	~			
☑ Use tr	ue compon	ients		Liquid m	olar volume of mixing	VLMX01	-			
				 Poynting correction Use liquid reference state enthalpy 						

Property Method Selection Assistant Welcome to the Property Method selection assistant. The purpose of the assistant is to help you select the most appropriate property methods for use with Aspen Plus and Aspen Properties. The assistant will ask you a number of questions which it uses to suggest one or more property methods to use. Start by selecting one of the following options: Specify component type Specify process type See the following Help topics for additional information: Process type Hayden-O'Connell model-related methods ٠ Nothnagel model-related methods Select the type of process or application: Chemical Electrolyte Environmental Gas processing Mineral and metallurgical Oil and gas Petrochemical Polymer Power Refining Pharmaceuticals

Chemical processes

In general, an activity coefficient-based property method is appropriate, such as the NRTL, WILSON, UNIQUAC, and their variances.

For preliminary designs, one of the UNIFAC-based property methods: the original UNIFAC, or the Dortmund modified UNIFAC (UNIF-DMD) can be used.

At high pressures (>10 bars), use an equation of state method with advanced mixing rules, such as the Wong-Sandler, MHV1, MHV2 or Mathias-Klotz-Prausnitz mixing rules. Options include SR-POLAR, PRWS, RKSWS, PRMVH2, RKSMVH2, SRK, PSRK, HYSGLYCO

Click one of the following options for more Help:

- Azeotropic separations
- Carboxylic acids
- Hydrogen Fluoride (HF)
- Inorganic chemicals,e.g., caustics, acids
- Liquid phase reactions, e.g., esterification
- Phenol plant
- Refrigeration
- Help for equation of state methods with advanced mixing rules
- Help for liquid activity coefficient methods
- Help for liquid activity coefficient methods with different equation of state
- Help for UNIFAC methods

You can choose either one; so, in "Global" tab window, from the "Method name" pull-down menu selects "WILS-NTH" as shown in Figure 6.4.

Under "Methods" | "Parameters" | "Binary Interaction" | "WILSON-1" sheet be sure that the "*Estimate missing parameters by UNIFAC*" option is checked. Click "Reset" followed by "Next" button to run the simulation and assure that properties analysis completed successfully.

	🥑 İnj	out Databanks Co	mments												1
Pa	Varameter WILSON Help Data set 1 Swap Enter Dechema Format 🗹 Estimate using UNIFAC View Regression Information Search BIP Completeness														
	Tem	Component i	Component i	Source V	Temp Units 🕏	AIL 🔽		BIL VA	BII 🕏	CII 🛛					
	1		component) ii	Source II	iemp. omits 🗤	AU II	AJI II	•••	175 705	0	01 1	00 1	1,		
	P	ACETO-01	METHA-01	R-PCES	C	0	0	-/01./53	176.706	0	0	0	0	25	25
		ACETO-01	ACETI-01	R-PCES	c	0	0	364.74	-793.408	0	0	0	0	25	25
	Þ	ACETO-01	ACETI-02	R-PCES	c	0	0	39.1984	-104.338	0	0	0	0	25	25
	•	METHA-01	ACETI-01	R-PCES	с	0	0	86.3674	-782.409	0	0	0	0	25	25
	•	METHA-01	ACETI-02	R-PCES	с	0	0	115.325	-1166.03	0	0	0	0	25	25
	•	ACETI-01	ACETI-02	R-PCES	с	0	0	- 1075.92	446.799	0	0	0	0	25	25
	*														

4. At the start, the flowsheet consists of one inlet stream, a plug-flow reactor ("PFR"), and one product stream. It should resemble Figure 6.5. This can be done by adding the "RPlug" reactor found under "Reactors" tab in "Model Palette".

 Click on "Next" button, and Aspen Plus will bring the user to entering feed stream properties Temperature: 1035K (change units if necessary) Pressure: 1.6 atm (change units if necessary) Total flow: Change to Mass kg/h

For the total mass flow rate of "FEED" stream, type 7850. Leave ketene and methane at zero (no mass flow in the feed stream). For "Composition" drop-down menu, use "*Mass-Frac*" and enter 1.0 for acetone (CH3COCH3).

🥑 Mixed	Cl Solid	NC Solid	Flash Opt	tions	EO Options	Costi	ng	Comments		
 Specifi 	cations									
Flash Type	Т	emperature	-	Press	ure	•	Com	position		
State var	iables —						Ma	ss-Frac	•	
Tempera	ture		1035	K	•			Component	v	alue
Pressure			1.6	atm	•		-	ACETO-01		1
Vapor fra	action						•	KETEN-01		
Total flo	w basis	Mass	-				•	METHA-01		
Total flo	w rate		7850	kg/hr	•		•	ACETI-01		
Solvent					*		•	ACETI-02		
Reference	e Temperat	ture								
Volume f	flow referer	nce temperat	ure							
	С	-								
Compon	ent concen	tration refere	ence tempe	erature						
	С	~							-1	
								lota	аг	

6. Click on "Next" button.7.Reactor Specification

Specificat	ions	Configuration	Streams	Reactions	Pressure	Holdup	Catalyst	Diameter	PSD	Comments
Reactor type Operating co No addition	Adial Reac Adia Reac Reac Reac Reac	batic reactor tor with specified to batic reactor tor with constant to tor with co-current tor with counter-cu tor with specified to tor with specified e	emperature hermal fluid thermal flu rrent therr hermal fluid xternal hea	e I temperature Iid nal fluid d temperature j t flux profile	profile					

Specifications	Configuration	Streams	Reactio	ns Pressure	Holdup	Catalyst	Diameter	PSD	Comments
Multitube reactor	Number of	tubes							
Diameter varies all Reactor dimensions	ong the length of	the reactor							
Length	3	meter	•						
Diameter	1	meter	•						
Elevation									
 Reactor rise 	0	meter -							
O Reactor angle	0	deg –							
- Valid phases									
Process stream	Vapor-Only		-						
Thermal fluid stream	Vapor-Liquid		-	2nd	Liquid				

If you click on "Reactions" tab, you will notice that you need to associate a reaction set to "PFR" block; however, since we did not define any reaction yet, the available reaction sets side will be empty.

Click on "Next" button to create the reaction set as shown in Figure 6.9, which will be added later to the "Reactions" tab here. Figure 6.9 shows that we created "R-1" reaction set with "POWERLAW" type. The reason for describing "R-1" as a reaction set is simply because it may contain more than one reaction. Here, we have only one reaction as given by Equation 6.1.

🕂 Create New ID	×
Enter ID:	i
R-1	
Select Type:	
	•
CRYSTAL	A
EMULSION	
FREE-RAD	=
GENERAL	
IONIC	
LHHW	
POWERLAW	
REAC-DIST	

Click on "New…" button and the "Edit Reaction" window will pop up where the user will be required to define the reaction equation, its type whether kinetic or equilibrium, and the reaction order (*i.e.*, exponent) if it is of kinetic type, as shown in Figure 6.11.

	New	Co	ру	Paste	Exp	port	Edit Input	View Results	Reconc	ile		
Name Type		Status					Description	Delete				
	R-1		POWER	RLAW		Results	Available				×	

Under "Reaction type", select "Kinetic".

Under "Reactants", select acetone (CH3COCH3) from the components pull-down menu and set the "Coefficient" to -1 and the "Exponent" to 1.

Under "Products", select ketene and methane and set both coefficients to 1.

Click on "Next" button or "Close" button shown at the bottom of the "Edit Reaction" window.

0	Ec	lit Reaction								×
F	eac	tion No. 🥑 1	-		Rea	ction type	Kinet	ic	-	i
ſ	Rea	ctants			Pr	oducts —				
		Component	Coefficient	Exponent		Compor	nent	Coefficient	Exponent	
		ACETO-01	-1	1		KETEN-0	1	1		
						METHA-	01	1		
								K	Close	

Figure 6.12 shows that the reaction stoichiometry is defined; however, the kinetic parameters are not yet defined.

	Rxn No.	Reaction type	Stoichiometry	Delete
*	1	Kinetic	ACETO-01> KETEN-01(MIXED) + METHA-01(MIXED)	×

Note : Based on Aspen Plus built-in help, here is how to enter kinetic parameters for a reaction: If To is specified, then the general law expression will be

$$r = k(T/T_{o})^{n} e^{(-E/R) \left[\frac{1}{T} - \frac{1}{T_{o}}\right]} \prod_{i=1}^{N} C_{i}^{\alpha_{i}}$$

On the other hand if To is not specified, the general law expression will reduce to

$$r = k(T)^{n} e^{(-E/R)\left[\frac{1}{T}\right]} \prod_{i=1}^{N} C_{i}^{\alpha_{i}}$$

The rate is expressed in kmol/(s \cdot basis) where the basis is either m3 for "Rate Basis: Reac (vol)", or kilogram catalyst for "Rate Basis: Cat (wt)". The reactor volume or catalyst weight is determined by specifications in the reactor where the reaction is used

Next, click on the "Kinetic" tab where the user needs to input the kinetic parameters. Change "Reacting phase" to "*Vapor*". The "Rate basis" will be left as "*Reac(vol)*". Enter *1.125* for *k* (*i.e.*, *k** in Eq. 6.9) Enter *1000*K for To Enter the activation energy E of the Arrhenius equation, E = 284,521.7 J/mol (Eq. 6.4 or Eq. 6.7). Notice E is also equal to 284,521.7 kJ/kmol.

Figure 6.13 shows the "Kinetic" tab window, after inputting the required data.

Stoichiometry	Skinetic Ed	quilibrium	Activity	Com	ments						
1) ACETO-01>	1) ACETO-01> KETEN-01(MIXED) + METHA-01(MIXED)										
Reacting phase Vapor Rate basis Reac (vol)											
Power Law kinetic expressionIf To is specifiedKinetic factor $=k(T/To)$ $n e^{-(E/R)[1/T-1/To]}$ If To is not specifiedKinetic factor $=kT$ $n e^{-E/RT}$ Edit Reactions											
k n	1.125					Solids					
E	284522	kJ/kmol		-							
То	1000	К		•							
[Ci] basis	Molarity			•							

Notice that in Figure 6.8 "PFR" block still lacks some information (*i.e.*, a half-filled red circle). Click on "Next" button and Aspen Plus will move to the "Setup" window of "PFR" block as shown in Figure 6.15.

Specifications	Configuration	Streams	Reactions	Pressure	Holdup	Catalyst	Diameter	PSD	Comments			
🔽 Reactive system	Reactive system											
Select reaction set	(s) to be included in	the model -										
Available reaction	sets Se	lected react	tion sets									
	>> >> < New	k-1										
Define activity												
Name												
> Value												

8. Click on "Next" and "OK" buttons. When the simulation is complete, go to "Blocks" | "PFR" | "Stream Results". Figure 6.16 shows the stream properties from and to "PFR" block.

Results

Material	Heat Load	Vol.% Curves	Wt. % (Curves	Petroleum	Polymers	Solids	5
					Units	FEED	•	PFR-PRD •
•	Molar Enthalpy			cal/mol		-2	8879	-23873.7
•	Mass Enthalpy			cal/gm		-497	7.228	-497.228
•	Molar Entropy			cal/mol	-К	-16.	9893	-10.6936
•	Mass Entropy			cal/gm-	К	-0.29	2515	-0.222721
•	Molar Density			mol/cc		1.88196	e-05	2.12943e-05
•	Mass Density			gm/cc		0.0010	9304	0.00102241
•	Enthalpy Flow			kcal/hr		-3.90324	e+06	-3.90324e+06
•	Average MW						58.08	48.0135
► -	Mole Flows			kmol/h	r	135	.158	163.496
•	ACETO-01			kmol/h	r	135	5.158	106.821
•	KETEN-01			kmol/h	r		0	28.3373
•	METHA-01			kmol/h	r		0	28.3373
•	ACETI-01			kmol/h	r		0	0
	ACETI-02			kmol/h	r		0	0

Check the conversion (*X*=moles reacted/moles fed). Does *X*=20%? If *X*<20%, you must increase the length of "PFR". If *X*>20%, you must decrease the length of "PFR". For our case, it is found that X=(27.89)/135.16=0.206 (20.6%). Luckily, the tube length is satisfactory.

On the other hand, if we look at the outlet composition of the reactor product stream (PFR-PRD), we will find that it contains an excessive amount of acetone, which means that we need to separate acetone from the products ketene and methane prior to sending ketene to the second reactor that will be installed later. So, we have to add an absorption tower that will basically split acetone from ketene and methane. Figure 6.17 shows the addition of two pieces of equipment: the first is the gas compressor and the second is "RadFrac" type absorption tower (rectifier). The rectifier is basically the upper half of a distillation tower with a condenser and no reboiler.

9. Figure 6.18 shows that the discharge pressure for the compressor is 3 bar and the convergence condition is such that we have vapor only while performing vapor–liquid (VL) check. Of course, an error will be issued if a two-phase system coexists within the compressor.

Specifica 🎯	ations	Calcula	tion Options	Power Loss	Convergence	e Integratio	on Parameters	Utility	Comments
Model and Model Type	type – © Con Polyte	npressor r opic us	ing ASME met	urbine		•			
Outlet spec	cificatio	n							
Oischarg	ge pres	sure	3	bar	•				
Pressure	increa	se		atm	-				
Pressure	ratio								
O Power re	equired			kW	-				
🔘 Use per	forman	ce curve	s to determine	discharge cor	nditions				
Efficiencies									
Isentropic			Polytropic	M	echanical				

10. On the other hand, Figure 6.19 shows "RECTIF" | "Specifications" | "Setup" | "Configuration" tab window. The user must specify the number of stages, reboiler type (if any), condenser type, and one of "Operating specifications", such as "*Bottoms rate*". It is to be mentioned here that a bottoms mass flow rate of 6250 kg/h is a matter of trial-and-error approach because it affects the composition of both the top and bottom streams. Obviously, the value has to be somewhere between zero and that of the feed stream entering the tower.

Configuration Str	reams 🛛 🥑 Pressure	Condenser	Reboiler	3-Phase	Comments	
Setup options						
Calculation type		Equilibrium		•		
Number of stages			18	Stag	e Wizard	
Condenser		Partial-Vapor-Liq	uid		-	
Reboiler		None			•	
Valid phases		Vapor-Liquid			-	
Convergence		Standard			-	
Operating specifications						
Bottoms rate	•	Mass	•	6250	kg/hr	•
	~		~			~
Free water reflux ratio		0		Feed	Basis	
Design and specify colu	mn internals					

Click on "Next" button and Aspen Plus will move to the "Streams" tab window as shown in Figure 6.20. Here, the location of the feed stream (or feed tray) must be defined with respect to the top tray (#1). Notice that the location of the feed tray is way down at the bottom of the rectifier. This makes sense as we need not have a reboiler; the feed stream will be available as the vapor phase throughout the entire rectifying column.

9C	Configuration	Streams 🎯	🕜 Pr	ressure	Condenser	Reboiler	3-Phase	Comments	5			
ee	d streams											
	Name	Stage			Convention							
Þ	COMPRPRD		18	Vapor								
roc	duct streams	Change		Dhaa	-	Denia	<u>Elevy</u>	Unit	ta Eleve	Datia	Fred Cases	
roo	duct streams Name	Stage		Phase	9	Basis	Flow	Unit	ts Flow	Ratio	Feed Specs	
Proc	duct streams Name TOPFEED	Stage 1	Vapo	Phase or	e Mass	Basis	Flow	Unit kg/hr	ts Flow	Ratio	Feed Specs Feed basis	
Proc	duct streams — Name TOPFEED DIS	Stage 1	Vapo	Phase or id	e Mass Mass	Basis	Flow	Unit kg/hr kg/hr	ts Flow	Ratio	Feed Specs Feed basis Feed basis	
Proc	duct streams	Stage 1 1 1 18	Vapo Liqu Liqu	Phase pr fid id	e Mass Mass Mass	Basis	Flow	Unit kg/hr kg/hr kg/hr	ts Flow	Ratio	Feed Specs Feed basis Feed basis Feed basis	
Proc	duct streams Name TOPFEED DIS BOTTOMPR	Stage 1 1 18	Vap Liqu Liqu	Phase or id id	e Mass Mass Mass	Basis	Flow	Unit kg/hr kg/hr kg/hr	ts Flow	Ratio	Feed Specs Feed basis Feed basis Feed basis	
oroc	duct streams Name TOPFEED DIS BOTTOMPR Jdo streams	Stage 1 1 18	Vap Liqu Liqu	Phase pr iid	e Mass Mass Mass	Basis	Flow	Unit kg/hr kg/hr kg/hr	ts Flow	Ratio	Feed Specs Feed basis Feed basis Feed basis	

Click on "Next" button and you will be prompted by "Pressure" tab window as shown in Figure 6.21. Here, the pressure at the top stage (condenser stage) must be defined. Enter *1.8 bar* for the condenser pressure.

Configura	ation	Streams	🥑 Pressure	Condense	er Reboiler	3-Phase	Comments
View	Top /	Bottom		•			
- Top stage /	Conde	nser pressure -					
Stage 1 / Co	ondens	er pressure	1.	.8 bar	-		
- Stage 2 pre	ssure (a	optional) —					
Stage 2 provide the second	oressur	e		atm	•		
Condens	er pres	sure drop		atm	-		
Pressure dro	p for r	est of column	(optional) —				
Stage pr	essure	drop		atm	•		
Column	oressur	e drop		atm	-		

Click on "Next" button and you will be prompted by "Condenser" tab window as shown in Figure 6.22. Here, the temperature of the condenser must be defined. Alternatively, the distillate vapor fraction can be defined. Enter $-130 \circ C$ for the condenser temperature.

Configuration	Streams	🕜 Pressure	Condenser	Reboiler	3-Phase	Comments
Condenser specific	ation —					
Temperature			-130	С	•	
Oistillate vapor	fraction		Mass -			
Subcooling specifi	ication					
Subcooled tempe	erature	.		С	-	
Both reflux and	liquid distillate	e are subcool	ed			
Only reflux is su	lbcooled					
Utility specification	n ———					
Utility		(-	

11. Click on "Reset" followed by "Next" and by "OK" button to allow Aspen Plus to do the calculations on your behalf. Figure 6.23 shows a portion of the results, which pertains to the absorption column. As you can see that the bottom (RECT-BTM) stream is 99.7wt% acetone and the top (RECT-TOP) stream is mainly composed of methane and ketene. The acetone stream will be recycled to the inlet of PFR. Moreover, the vapor portion of the top stream is 99.8wt% methane gas, which can be combined with another stream and be sent to a storage facility for methane. Here, we have a partial condenser (see Figure 6.19), which means not all of the rising vapor up the column will be condensed; a small portion will remain as is and the rest will be condensed and split into the top liquid (distillate) and returning (*i.e.*, reflux) stream.

Mat	terial	Heat	Load	Vol.% Curves	Wt. %	Curves	Petroleum	Polymers	Solid	s		
							Units					
								COMPPRD	•	BOITOMPR •	DIS 🔻	TOPFEED •
	١	Mass Enti	гору			cal/gm	-K	-0.21	2813	-1.2083	-0.901552	-1.64362
	١	Molar De	nsity			mol/cc		3.72759	e-05	0.012708	0.0224218	0.000155468
	١	Mass Der	nsity			gm/cc		0.0017	8975	0.735754	0.789438	0.00249754
	E	Inthalpy	Flow			kcal/hr		-3.64191	e+06	-6.19605e+06	-694104	-354393
•	ļ	Average	MW					48.	0135	57.897	35.2084	16.0647
	+ 1	Nole Flo	ws			kmol/ł	ır	163	.496	107.95	36.9669	18.5783
	+ 1	Mole Fra	ctions									
•	+ 1	Mass Flo	ws			kg/hr			7850	6250	1301.55	298.455
	- 1	Mass Fra	ctions									
		ACET	O-01					0.7	9034	0.992667	0	0
		KETE	N-01					0.15	1748	0.00717055	0.880299	0.00220445
		METH	IA-01					0.057	9119	0.000162504	0.119701	0.997796
		ACET	I-01						0	0	0	0
•		ACET	1-02						0	0	0	0

12. As was done in the previous step, the top "RECT-TOP" stream will be sent to another "RadFrac" type distillation tower where methane will be separated from ketene, as shown in Figure 6.24.

Figures 6.25–6.27 show the specifications of the "RadFrac" type distillation column (DSTL).

Configuration	Streams	Pressure	Condenser	Reboiler	3-Pha	se Com	ments	
Setup options —								
Calculation type			Equilibrium	•]			
Number of stages				12 😂	Stag	ge Wizard		
Condenser			Total			•		
Reboiler			Kettle			•		
Valid phases			Vapor-Liquid			•		
Convergence			Standard			•		
Operating specific	ations							
Distillate rate		•	Mass	•	150	kg/hr		•
Reflux ratio		•	Mass	-	3			-
Free water reflux r	atio		0		Feed	Basis		
Design and specif	fy column inter	nals						

0	Configuration	Streams	Pressure	Condenser	🕜 Reboiler	3-Phase	Comments				
ee	ed streams										
	Name	Stage		Convention							
	DIS		6 Above-S	itage							
0	oduct streams – Name	Stage	Phas	se l	Basis	Flow	Units	Flow F	Ratio	Feed Specs	
0	oduct streams – Name DSTL-TOP	Stage 1	Phas	se I Mass	Basis	Flow	Units kg/hr	Flow F	Ratio	Feed Specs Feed basis	
0	Douct streams	Stage 1 12	Phas Liquid Liquid	se I Mass Mass	Basis	Flow	Units kg/hr kg/hr	Flow F	Ratio	Feed Specs Feed basis Feed basis	
e	Name DSTL-TOP DSTL-BTM Name	Stage 1 12	Phas Liquid Liquid	se I Mass Mass	Basis	Flow	Units kg/hr kg/hr	Flow F	Ratio	Feed Specs Feed basis Feed basis	

Configur	ation	Streams	🥝 Pressure	Condenser	Reboiler
View	Top /	Bottom		•	
- Top stage /	Conde	nser pressure -			
Stage 1 / C	ondens	er pressure	1.	.8 bar	-
Stage 2 pre	ssure (o	optional) —			
Stage 2	pressur	e		atm	•
Condens	er pres	sure drop		atm	•
Pressure dro	op for r	est of column ((optional) —		
Stage pr	essure	drop		atm	•
Column	pressur	e drop		atm	-

13.Reinitialize, click on "OK" button twice, click on (Next) button, and on "OK" button. See "Control Panel" if there is an error or serious warning regarding the process simulation. Figure 6.28 shows a portion of the results, which pertains to the recently added piece of equipment (*i.e.*, "DSTL").

Mat	erial	Heat	Load	Vol.% Curves	Wt. %	Curves	Petroleum	Polymers	Solid	5	
							Units	DIS	•	DSTL-BTM •	DSTL-TOP -
	E	nthalpy i	low			kcal/hr		-6	94104	-464336	-198013
•	A	verage N	WN					35	5.2084	41.6972	16.0428
	+ N	/lole Flow	vs			kmol/h	ır	36	.9669	27.6168	9.35001
	+ N	/lole Fra	tions								
•	+ N	lass Flo	NS			kg/hr		13	01.55	1151.55	150
	- 1	/lass Fra	ctions								
•		ACETO	D-01						0	0	0
•		KETEN	J-01					0.8	80299	0.994967	5.24209e-22
•		METH	A-01					0.1	19701	0.00503333	1
		ACETI	-01						0	0	0
•		ACETI	-02						0	0	0
	V	/olume Fl	ow			l/hr		1	648.7	1468.17	365.034

Of course, methane can be used either as a precursor for other chemical industries or as a fuel (*i.e.*, source of energy). On the other hand, ketene will be finally sent to the second reactor where it reacts with acetic acid to form acetic anhydride.

14. Figure 6.29 shows that a rigorous CSTR ("RCSTR") is added for carrying out the second reaction, that is, reaction of ketene with acetic acid to form acetic anhydride. In addition, acetic acid ("ACETACID") stream is also added to the inlet of the new reactor.

Click on "NEXT" button and Aspen Plus will bring you to the input form of "ACETACID" stream. Here, the molar flow rate (kmol/h) of acetic acid will be equal to that of ketene present in "DST-BTM" stream. Figure 6.30 shows the "Mixed" tab input form of "ACETACID" stream.

Mixed CI Solid	NC Solid	Flash Opt	ions	EO Options	Costir	ng	Comments		
 Specifications 									
Flash Type	Temperature	-	Press	sure	•	Com	position —		
State variables —						Mo	le-Flow	▼ km	ol/hr 🔻
Temperature		25	С	•			Componen	t	Value
Pressure		1	bar	•		-	ACETO-01		
Vapor fraction						•	KETEN-01		
Total flow basis	Mole	•				•	METHA-01		
Total flow rate			kmol,	/hr 🔹		•	ACETI-01		27.44
Solvent				~		•	ACETI-02		
Reference Tempera	ature								
Volume flow refere	ence temperat	ture							
С	-								
Component conce	ntration refere	ence tempe	erature						
С	Ŧ						_		
							To	otal	27.44

Click on "Next" button and Aspen Plus will bring you to "RCSTR" | "Setup" window. Figure 6.31 shows that a temperature of 50°C and a pressure of 0.1 bar were entered for the reactor condition. As a result of very low pressure, the reaction will be carried out in vapor phase (see Exercise 6.3). Twenty cubic meter is assumed as the reactor volume.

Specifications Stre	eams 🛛 🥑 Kinet	i cs Vessel	PSD	Component Attr.	Utility	Catalyst	Comments					
Model fidelity —												
Conceptual mode												
Equipment based n	nodel											
Operating conditions												
Pressure 0.1 bar -												
Temperature		50	С	-								
🔘 Duty			kcal/hr									
Vapor fraction												
- Holdup												
Valid phases Va	por-Only			-	2nd Liquid							
Specification type Re	actor volume			•								
Reactor		Pha	se									
Volume	20 cum	 Phase 	se			-						
Resi. time	hr	- Volu	ime			-						
		Volu	ime frac									
		Resi	dence time		hr	-						

Now, it is time for defining the type of reaction in this reactor. Since we do not have the reaction kinetics (the rate constant, activation energy, and reaction order), then we will assume that the reaction attains equilibrium. If the reaction kinetic data is available, then the reaction type must be converted from equilibrium to kinetic so that reaction products will be better estimated.

For equilibrium reactions, ASPEN can predict or calculate equilibrium data. Let us go and define the reaction first, and then get back to "Reactions" tab under "RCSTR" | "Setup" window (shown as a half-filled red circle in Figure 6.31). Go to "Reactions" folder in "Navigation" pane so that we can define a new reaction that will account for the

conversion of acetic acid and ketene into acetic anhydride. The "Reactions" window has already "R-1" reaction set.

As we have dealt with the previous reaction "R-1" set, click on the "New..." button and you will be prompted by a window similar to that shown in Figure 6.32.

Create New ID	×
Enter ID:	i
R-2	
Select Type:	
POWERLAW	•
OK Cance	:I

Click on "OK" button shown in Figure 6.32 and Aspen Plus will revert to "Stoichiometry" tab window where we need to define the stoichiometry of the equilibrium reaction. Click on "New..." button at the bottom of the "Stoichiometry" tab window, the "Edit Reaction" window will pop-up as shown in Figure 6.33, where we enter the stoichiometry of each reacting species, whether it is reactant or product, and the reaction type.

0	Ed	lit Reaction								×
R	eact	ion No. 🥑 1	•		Reac	tion type	Equil	ibrium	•	Ì
	Rea	ctants —			Pro	ducts —				
		Component	Coefficient	Exponent		Compor	nent	Coefficient	Exponent	
		ACETI-01	-1			ACETI-02	2	1		
		KETEN-01	-1		•					
	Þ									
								K	Close	

	Rxn No.	Reaction type	Stoichiometry	Delete
•	1	Equilibrium	ACETI-01 + KETEN-01 <> ACETI-02(MIXED)	×

Click on "N \rightarrow " button at the bottom of the "Edit Reaction" window and Aspen Plus will bring you back to reaction R-2 window. Click on "Equilibrium" tab and its window will show up as in Figure 6.34. Select the reacting phase as vapor and select the first choice.

If Keq=f(T) is given, then you may go with the second option.

Stoichiometry	Kinetic	🥝 Equili	brium	Activity	Comments						
1) ACETI-01 + KETEN	N-01 <	-> ACETI-	02(MIX	-D)		•					
- Equilibrium parameters											
Equilibrium parame	Equilibrium parameters										
Reacting phase			Vapor			•					
Temperature approa	ach to eq	uilibrium		0	С	•					
Compute Keq from	m Gibbs	energies									
Compute Keq fro	m built-i	n expressi	on								
- Built-in Keg expres	ssion —										
InKeq=A + B/T + C	C In(T) + I	DT, T in (K)								
Concentration bas	is for Keq	1				-					
A:	B:	0	C:		0 D:	0					

You will notice that everything is now defined for Aspen Plus except for "RCSTR" block where we need to associate "R-2" reaction set with "RCSTR" block. Click on "Next—" button and Aspen Plus will bring you to "RCSTR" block as shown in Figure 6.35. Highlight R-2 from the "Available reaction sets" and move it to the "Selected reaction sets" side.

After selecting "R-2" reaction set, the blue checkmark will replace the half-filled red circle.

Specifications	Streams	Kinetics	Vessel	PSD	Component Attr.	Utility	Catalyst	Comments				
Reaction					Crystallization							
Select reaction set(s) to be inc	luded in the r	nodel		Select crystallizat	ion set(s)) to be inclu	uded in the mo	odel			
Available		Selected			Available		Se	lected				
R-1	>> < < < Nev	R-2					> >> << New					
Define activity												
Name		Edit										
Value												
Crystallization	on											

15. Aspen Plus is ready to start the simulation. Click on "Reset" followed by "Next \rightarrow " button and Aspen Plus will start the process of simultaneously solving the set of steady-state total mass-balance, component mass-balance, and energy-balance equations around each block, augmented by all thermodynamic and equation of state relationships.

Check "Control Panel" to see if there is any error or serious warning.

Figures 6.36 and 6.37 show the simulation results pertaining to "RCSTR" block.

Su	mmary Balance Reaction	on Kinetics Compone	ent Generation Rates	Custom
	Outlet temperature	50	С	
	Outlet pressure	0.0986923	atm	
	Outlet vapor fraction	1		
	Heat duty	-142.111	kW	
	Net heat duty	-142.111	kW	
	Volume			
	Reactor	20	cum	
	Vapor phase	20	cum	
	Liquid phase			
	Liquid 1 phase			
	Salt phase			
	Condensed phase			
	Residence time			
►	Reactor	9.72784	sec	

Material	Heat	Load	Vol.% Curves	Wt. %	Curves	Petroleum	Polymers	Solid	S			
						Units	ACEAC	•	DSTL-BTM •	CSTRPRO -		
•	Mass Entr	ору			cal/gm-K -1.27544			-0.552987	-0.713057			
•	Molar De	nsity			mol/cc		0.017	8597	0.0188104	3.75626e-06		
•	Mass Density						1.0	7252	0.78434	0.000378222		
	Enthalpy Flow						-3.16756	e+06	-464336	-3.75409e+06		
•	Average MW						60.0526		41.6972	100.691		
→ +	+ Mole Flows				kmol/h	nr	2	27.44	27.6168	27.8017		
► +	Mole Fra	ctions										
+	Mass Flo	ws			kg/hr		164	47.84	1151.55	2799.39		
-	Mass Fra	ctions										
•	ACET	D-01						0	0	0		
•	KETE	V-01						0	0.994967	6.78086e-06		
	METHA-01							0	0.00503333	0.00207049		
	ACETI-01					1		1 0				
	ACETI-02							0	0	0.993956		

Finally, notice that the mass fraction of acetic anhydride in the product stream is 0.997 with trace amounts of other chemical species.

Part 2:

Problem Definition:

From Appendix

How to Simulate

1. Choose "Chemicals with Metric Units" template to create a steady-state flowsheet. The default property model will be "NRTL". However, as mentioned in NOTE #2, "NRTL" will be replaced by "SRK". Moreover, in "Methods" | "Specifications" | "Global" tab window set the "Free-water method" to "*STEAMNBS*". Give a title for the project and add the five components: CO, CO2, H2, H2O, and CH3OH.Under "Properties" environment, go to "Methods" | "Parameters" | "Binary Interaction" | "SRKKIJ -1" sheet and ensure that the "*Estimate missing parameters by UNIFAC*" option is selected. Click on "Reset" followed by "Next" button to run the simulation and assure that properties analysis completed successfully. Switch to "Simulation" environment.

2. In general, a multitubular non-adiabatic packed-bed reactor, with the heat transfer fluid flowing on the shell side, is used. Let us add one "**RPLUG**" block and hook one feed and one product stream to it, as shown in Figure 7.1.

3. Click on "Next \rightarrow " button where you will be gliding at "FEED" stream specifications; enter the input parameters (in terms of *T*, *P*, flow rate, and composition) as shown in Figure 7.2. Such numbers were quoted from [3].

	🥑 Mixed	CI Solid	NC Solid	Flash Opt	ions	EO Options	Costir	ng	Comments	
(Specifi 	cations								
	Flash Type		Temperature	•	Pres	sure	•	Com	position —	
	State var	riables				Мо	le-Flow •	kmol/hr •		
	Tempera	iture		150			Component	Value		
	Pressure			110	bar	•			со	4066
	Vapor fra	action						•	CO2	3976
	Total flo	w basis	Mole	•				•	HYDRO-01	28920
	Total flo	w rate			kmol	/hr 🔹		•	WATER	
	Solvent					▼		•	METHANOL	
	Reference	e Tempera	ature							
	Volume	flow refere	ence tempera	ture						
	Compon	ent concer	ntration refere	ence tempe	erature	•				
		С	v						Total	36962
									TOtal	50902

4.Figure 7.3 shows RPLUG specifications in terms of *heat transfer mode and temperature profile*. Again, numbers were taken from [3]. However, it will be left as an exercise for the user to try other numbers as well as other configurations of heat transfer and temperature profile.

\bigcap	🥑 Sp	ecifications	🔮 Configura	ation	Streams	Reactions	Pressure	Holdup	🔮 Catalyst	Diameter	PSD	Comments
	Reacto	r type Reac	tor with spec	ified te	mperature			•				
	Operating condition											
	Constant at inlet temperature											
	○ Constant at specified reactor temperature											
	🔘 Te	emperature p	rofile									
		Locatio	n Tempe	rature								
			С	•								
	▶		0	150								
			0.9	280								
				207								

Click on "Next \rightarrow " button or directly go to "Configuration" tab so that we can enter reactor dimensions as shown in Figure 7.4.

Specifications	Configuration	Streams	Reactions	Pressure	Holdup	Catalyst	Diameter	PSD	Comments
Multitube reactor	Number of t	tubes	8000 😴						
📃 Diameter varies alo	ng the length of	the reactor							
Tube dimensions —									
Length	12.2	meter	•						
Diameter	0.0375	meter	•						
Elevation									
Reactor rise	0	meter 👻							
O Reactor angle	0	deg 👻							
Valid phases									
Process stream	Vapor-Only		-						
Thermal fluid stream	Vapor-Liquid		-	2nd L	iquid				

The combination of number of tubes, the pipe diameter, and its length, will be merely judged by the ability of Aspen Plus to converge to a "reasonable" solution without having any simulation errors. Of course, we have to assume reasonable values for length and diameter. We have the choice to use a multitube reactor or a single-tube reactor but with a different pipe length and diameter for each case. Luyben [3] data were used for the sake of comparison; nevertheless, this does not prevent the user from trying other geometrical configurations, as well. We will leave the "Reactions" tab for a while and go to "Catalyst" tab window where we define the catalyst properties. Figure 7.5 shows the properties of catalyst in terms of its particle density and bed voidage. Alternatively, the catalyst loading could be entered instead of one of the aforementioned properties.

	Specifications	Configuration	Streams	Reacti	ons I	Pressure	Holdup	Catalyst	Diameter	PSD	Comments	
J	Catalyst present in reactor											
	Ignore catalyst volume in rate/residence time calculations											
C	C Specifications											
	Bed voidage			-	0.5		Ŧ					
	Particle density			•	2000	kg/cum	•					
	Particle geometry -											
	Diameter		0.1 meter		*							
	Shape factor		1									

Notice that the "Reactions" tab (see Figure 7.5) is labeled by a half-filled red circle, indicating that we must associate a reaction set to the reactor. Both Equations 7.1 and 7.4 will be defined as "LHHW" type. Go to "Reactions" folder; click on "New..." button, and the "Create New ID" window will pop-up. Choose the default ID (R-1) and select "*LHHW*" for the reaction type. Click on "OK" button and Aspen Plus will bring you to "Stoichiometry" tab window. At the bottom of "Stoichiometry" tab window, click on "New..." button and

the "Edit Reaction" window will show up where you need to plug in the stoichiometric data as shown in Figure 7.6. Unlike the case for a simple kinetic expression, used in Chapter 6, the exponents will be defined later in "Driving Force Expression" window. Click on "Close" or "Next" button at the bottom of the Edit Reaction window (Figure 7.6). Go to "Kinetic" tab window where you need to enter the kinetic data for the first reaction (Eq. 7.3b). Enter the data as shown in Figure 7.7. The kinetic factor will reduce to unity as we merge it into the driving force expression.

New Edit Copy Paste Rxn No. Reaction type Stoichiometry 1 Kinetic CO2 + 3 HYDRO-01> METHANOL(MIXED) + WATER(MIXED) Image: Color by the store of the	Delete	×
Rxn No. Reaction type Stoichiometry 1 Kinetic CO2 + 3 HYDRO-01> METHANOL(MIXED) + WATER(MIXED) Image: Color bype Edit Reaction Reaction No. Image: Color bype Image: Color bype Kinetic	Delete	X
1 Kinetic CO2 + 3 HYDRO-01> METHANOL(MIXED) + WATER(MIXED) Image: Color base of the section with the section wit	×	×
 ⊘ Edit Reaction Reaction No. ⊘1 Reaction type <i>Kinetic</i> 		×
Reaction No. 🔇 1 - Reaction type Kinetic		
	-	i
Reactants		
Component Coefficient Component	Coefficient	
CO2 -1 METHANOL		1
HYDRO-01 -3 WATER		1

Stoichi	iometry 🧹 🥑	Kinetic	Equilibrium	Activity	Com	ments	
1) CO2 +	3 HYDRO-01	> ME	THANOL(MIXE	D) + WATE	R(MIXE	ED)	-
Reacting pl	hase Vapor		-	▼ Rate I	hasis	Cat (wt)	
	nase vapor	0.0		nuter	54313	cut (ivt)	
	[Kinetic 1	factor][D	riving force exp	ression]			
r =		[Adsorpt	ion expression]			-	
⊂ Kinetic fa	ctor						
If To is sp	ecified	Kinetic	factor =k(T/To)	n _e -(E/R)[1/T-′	1/To]	Solids
If To is no	ot specified	Kinetic	factor =kT ⁿ e	-E/RT			
k	1	1					Driving Force
n	6	2					Adsorption
E	0	kcal/n	nol -				
То		С	-				

Based on Equation 7.3b form, the driving force expression is represented by the reversible case (Eq. 7.14), where $kf = 1.07 \times 10-13 \times e(4413.76/T)$ and $kb = 4.182 \times 107 \times e(-(2645.966/T))$. Click on "Driving Force" button (shown in Figure 7.7) and the "Driving Force Expression" window will show up as shown in Figure 7.8. Enter [Ci] basis, which is the partial pressure of component in the gas-phase. From the drop-down list, select "*Term1*" first and fill the concentration exponent for each component involved in the forward direction and leave the exponent for others empty or make it zero.

🥝 Dr	iving Force E	xpressio	n								×	
React	ing phase	Vapor	Vapor									
[Ci] b	asis	Partial	Partial pressure									
Enter	r term Term 1											
Terr	n 1 ———											
Con for	centration e reactants	xponents	5	(1	Con for J	centration products	expo	nents				
	Compone	nt E	xponent			Compor	nent	Exp	oonent			
	CO2		1			METHAN	IOL			0		
	HYDRO-01	L	1			WATER				0		
Coe	efficients for	driving fo	orce constan	ıt								
A:	-29.86	6 B:	4413.7	76 (C:		0	D:			0	
			N		(Close						

For "Term 1": $A + BT = \ln (1.07 \times 10 - 13 \times e(4413.76/T)) \Rightarrow A = -29.866$; B = 4413.76. While the "Driving Force Expression" windowis still active, select "*Term 2*", instead of "*Term1*", and fill the concentration exponent for each component involved in the backward direction. For CO2, you may enter zero for the exponent or leave it empty.

For "Term 2": $A + BT = \ln(4.182 \times 107 \times e(-2645.9667)) \Rightarrow A = 17.5489; B = -2645.97$. Figure 7.9 shows the "Driving Force Expression" window for "Term 2".Click on "Adsorption" button (see Figure 7.7) and the "Adsorption Expression" window will show up as shown in Figure 7.10. The bracketed term in the denominator of Equation 7.3b is raised to power 3; hence, the "Adsorption expression exponent" is set to 3. Table 7.1 will reduce to Table 7.2 (see below), simply because the denominator of Equation 7.3b, which represents the adsorption term, can be put in a form similar to that of Adsorption = $\{1 + Kw[W] + KX[X] + KY[Y] + Kz[Z]\}n7.19$: $\{1(H2)0(H2O)0 + KH2O/H2 (H2) - 1(H2O)1 + KH2 (H2)0.5(H2O)0 + KH2O[H2]0[H2O]1\}$

Oriving Formatting Formatting Formatting	rce Expre	ession				×					
Reacting pha	se Vap	oor				i					
[Ci] basis	Par	Partial pressure									
Enter term	Ter	rm 2		•							
Concentrati	on expo	nents	Cor for	ncentration expo products	nents						
Com	oonent	Exponent		Component	Exponent						
> CO2		0		METHANOL	1						
HYDR	0-01	-2		WATER	1						
Coefficients	for drivi	ing force constar	nt 97 C·	0	D	0					
A. 17.	.5405	-2045.	, C.	0	D.						
		<mark>∥ N</mark> ⇒		Close							

TABLE 7.2The concentration exponent, as explained by Equation 7.20, for H_2 and H_2O as
the only components appearing in the denominator of Equation 7.3.

Component	Term no. 1	Term no. 2	Term no. 3	Term no. 4
H ₂	0	-1	0.5	0
H ₂ O	0	1	0	1

🧿 Ac	dsorption Exp	pressior	n					>
React	ing phase	Vapor						ł
[Ci] b	asis	Partial	pressure					
Adsoi	rption expre	ssion ex	ponent		3			
Con	centration e	xponen	ts —					
	Compone	nt Ter	m no. 1		Term no. 2	Term no. 3	Term no. 4	
	HYDRO-01	I		0	-1	0.	5	0
	WATER			0	1		0	1
•								•
Ada	oration con							
Ads	orption cons	stants –						
	Term no.		1		2	3	4	
	Coefficient	А		0	8.14711	-6.4516	-34.9513	
	Coefficient	В		0	0 0	2068.44	14928.9	
	Coefficient	С		0	0 0	0	0	
	Coefficient	D		C	0 0	0	0	
•	1							•
				₩	Close			

This explains why the exponent is 0 for both components in "**Term no. 1**"; -1 for H2 and 1 for H2O in "**Term no. 2**"; 0.5 for H2 and 0 for H2O in "**Term no. 3**"; and finally 0 for H2 and 1 for H2O in "**Term no. 4**".

For "**Term no. 1**": *A*=ln(1)=0; *B*=*C*=*D*=0.

For "**Term no. 2**": $A=\ln(3453.38)=8.1471087$; B=C=D=0. For "**Term no. 3**": $A + BT = \ln(1.578 \times 10^{-3} \times e(2068.44/T)) = -6.4516 + 2068.44T \rightarrow A=-6.4516$; B=2068.44; C=D=0.

For "**Term no. 4**": $A + BT = \ln(6.62 \times 10 - 16 \times e(14\ 928.915/T)) = -34.9513 + 14\ 928.915$ $T \rightarrow A = -34.9513$; B = 14,928.915; C = D = 0.

Let us define the second reaction (Eq. 7.4) also as "LHHW" type. Go to "Reactions" folder; click on "New..." button, and the "Create New ID" window will pop-up.

Choose the default ID (**R-2**) and select "*LHHW*" for the reaction type. Click on "**OK**" button and Aspen Plus will bring you to "**Stoichiometry**" tab window. At the bottom of "**Stoichiometry**" tab window, click on "**New**..." button and the "**Edit Reaction**" window will show up where you need to plug in the stoichiometric data (coefficients only) as shown in Figure 7.11. The exponents will be defined later in "**Driving Force Expression**" window.

	Stoichiome	try 🕜 Kineti	c Equilibri	um Activit	y Com	ments					
	New	Edit	Сору	Paste							
	Rxn No.	Reaction t	ype Stoid	hiometry					Delete		
►	1	Kinetic	CO2	+ HYDRO-0	1> W	ATER(M	IXED) + CO(MIXED)	×		
0	Edit React	ion									×
F	Reaction No.	⊘1		•		Read	tion type	Kinetic		-	i
	- Reactants					Pro	oducts —				
	Co	omponent	Coe	fficient			Comp	onent	Coet	fficient	
	> CO2				-1	►	WATER			1	
	> HYDR	0-01			-1	▶	со			1	
	•										
											Close

Click on "Close" or "Next" button at the bottom of the "Edit Reaction" window. Go to "Kinetic" tab window where you need to enter the kinetic data for the second reaction (Eq. 7.4). Enter the data as shown in Figure 7.12. Again, the kinetic factor will reduce to unity as we merge it into the driving force expression.

Stoichi	iometry 🔗	Kinetic	Equilibrium	Activity	Com	ments		
1) CO2 +	HYDRO-01	-> WAT	ER(MIXED) + C	D(MIXED)				-
Reacting p	hase Vapor			▼ Rate I	oasis	Cat (w	rt)	•
LHHW kir	netic expressio	n —						
r =	[Kinetic fa	actor][D	riving force exp	ression]		-		
	[/	Adsorpti	ion expression]					
Kinetic fa	ictor							
If To is sp	ecified	Kinetic	factor =k(T/To)	n _e -(E/R)[1/T-1	1/To]		Solids
If To is no	ot specified	Kinetic	factor =kT ⁿ e	-E/RT				
k	1]						Driving Force
n	0							Adsorption
E	0	kcal/n	nol 🝷					
То		С	•					

Based on Equation 7.6b form, the driving force expression is represented by a reversible case (Eq. 7.14), where $kf = 122 \times e(-11,398.24/T)$ and $kb = 1.1412 \times e(-6624.98/T)$. Click on "Driving Force" button (shown in Figure 7.12) and the "Driving Force Expression" window will show up as shown in Figure 7.13. Enter [Ci] basis, which is the partial pressure of component in the given gas phase. Select "Term1" first and fill the concentration exponent for each component involved in the forward direction and leave the exponent for others empty or make it zero. For "Term 1": $A + BT = \ln(122 \times e(-(11,398.24/T))) \Rightarrow A = 4.804; B = -11, 398.24$.

While the "Driving Force Expression" window is still active, select "Term 2", instead of "Term1", and fill the concentration exponent for each component involved in the backward

direction. For CO2, you may enter zero for the exponent or leave it empty. For "Term 2": A + B $T = \ln(1.1412 \times e(-6624.98/T)) = 0.13208 + -6624.98T$

. This implies that A=0.13208 and B = -6624.98.

Figure 7.14 shows the "Driving Force Expression" window for "Term 2".

🥝 Di	riving Force I	Expression						×			
React	ting phase	Vapor						i			
[Ci] b	asis	Partial pressure 🔻									
Enter	term	Term 1	Term 1 🔹								
- Terr Cor for	- Term 1										
	Compone	ent Exp	onent			Component	Exponent				
	CO2		1			WATER	(>			
	HYDRO-01	1	0			со)			
Coe A:	efficients for 4.80	driving ford 4 B:	e constan -11398	t .2	C:	0	D:	0			
			N			Close					

Oriving Fo	rce Expre	ession							×		
Reacting phas	e Vap	/apor									
[Ci] basis	Par	Partial pressure									
Enter term	Ter	m 2				-					
Term 2 Concentration	on expor	nents			Con for J	centration exp products	onent	s			
Comp	onent	Exp	ponent			Component	E	xponent			
► CO2			0			WATER		1			
> HYDR	D-01		-1			со		1			
Coefficients	for drivi	ng for	ce constant	t							
A: 0.1	3208	B:	-6624.9	8 (C:	0	D:		0		
					(Close					

Click on "Adsorption" button (see Figure 7.12) and the "Adsorption Expression" window will show up as shown in Figure 7.15. The bracketed term in the denominator of Equation 7.6b is raised to power 1; hence, the "Adsorption expression exponent" is equal to *1*. Notice that other entries for the "Adsorption Expression" window are exactly the same as those shown in Figure 7.10, for the first reactor. This is simply because, the bracketed term appearing in the denominator of Equation 7.3b is identically the same as that in the denominator of Equation 7.6b.

Ac	dsorption Exp	pression						>			
React	ing phase	Vapor									
Ci] b	asis	Partial p	ressure								
dsoi	rption expres	sion exp	onent		1						
Concentration exponents											
	Compone	nt Tern	n no. 1	Т	erm no. 2	Term no. 3	Term no. 4	-			
	HYDRO-01			0	-1	0.5	;	0			
	WATER			0	1	C)	1			
								•			
Ada											
AUT	orntion conc	tante									
	orption cons	tants —									
	Term no.	stants —	1		2	3	4				
	Term no.	tants —	1	0	2 8.1472	3 -6.4516	4 -34.9513				
> >	Term no. Coefficient	A B	1	0 0	2 8.1472 0	3 -6.4516 2068.44	4 -34.9513 14928.9				
> > >	Term no. Coefficient Coefficient Coefficient	A B C	1	0 0	2 8.1472 0 0	3 -6.4516 2068.44 0	4 -34.9513 14928.9 0				
> > >	Term no. Coefficient Coefficient Coefficient Coefficient	A B C D	1	0 0 0	2 8.1472 0 0 0	3 -6.4516 2068.44 0 0	4 -34.9513 14928.9 0 0				
	Term no. Coefficient Coefficient Coefficient Coefficient	A B C D	1	0 0 0	2 8.1472 0 0 0 0	3 -6.4516	4 -34.9513 14928.9 0 0	•			
	Term no. Coefficient Coefficient Coefficient Coefficient	A B C D	1	0 0 0	2 8.1472 0 0 0	3 -6.4516 2068.44 0 0 0	4 -34.9513 14928.9 0 0	Þ			

After defining both reactions, associate them to "RPLUG" block under "Reactions" tab. The simulator is now ready via noticing that life is blue like the sky and ocean and no red (hell) signs are present. Click on "Reset" followed by "Next" button to run the show and watch for any simulation error/warning. Figure 7.16 shows summary results for "RPLUG" block where it shows

Educational Institute for Equipment and Process Design

Summary	Balance	Distributions	Poly	ymer Attributes	Status
Heat duty		-63.3	919	MW	•
Reactor tem	perature				
Minimum			150	С	•
Maximum		â	280	С	-
Residence tir	me	13.90	069	sec	•
Thermal fluid	d inlet				
Temperature					-
Vapor fractio	on				

a relatively very large heat duty, indicating the presence of highly exothermic reactions. To verify which direction is exothermic for a given reversible reaction, select one reaction at a time in the reactor unit, reinitialize, and rerun the show. Performing such a procedure will reveal to us that the first reaction is exothermic in the forward reaction (i.e., formation of methanol), whereas the second reaction is exothermic in the backward direction (i.e., consumption of CO and H2O). The molar flow rate of each component in the feed and in the product stream, as shown in Figure 7.17, will tell us that the first reaction went in the forward direction (i.e., in favor of methanol formation) and the second reaction in the backward direction (i.e., in favor of CO consumption); hence, it explains why CO flow rate in the product stream is less than that in the feed stream.

Figure 7.17 shows stream results summary for the reactor inlet and outlet streams, where methanol is present in the product stream. For the sake of comparison, Luyben's data [3] for the product stream were 1468, 21,673, and 3292 kmol/h for CO, H2, and CO2, respectively. The data here are 1234, 20,716, and 3129 kmol/h for CO, H2, and CO2, respectively.

The difference in results in my judgment is due to: first, the kinetic model being used; for example, the adsorption term in our case is made of four terms but in Luyben's case the first two terms were only incorporated (see table 11.1 on page 190 [3]); second, the thermodynamic property method used in simulation; and third, the version of Aspen Plus itself.

A useful source of information about a plug-flow reactor performance is provided by Aspen Plus via what is called the reactor profile. Go to "Blocks" | "RPLUG" | "Profiles" and select "Process Stream" tab window, if it is not already selected by Aspen Plus, where it shows properties, such as pressure, temperature, residence time, molar vapor fraction, and molar composition as function of either reactor length or residence time. Figure 7.18 shows such reacting medium properties as a function of both reactor length and residence time. You can at this stage ("Process Stream" tab window is active), make use of the "Plot" group, found in "Home" ribbon, and choose any combination of *x* and *y* variables to generate y=f(x) or generate a parametric plot where you show y=f(x) evaluated at different z

values, where z is the parametric variable. You may wish to see the molar composition for each component as a function of the reactor length via selecting "*Molar composition*" option from the drop-down list of the "View" item shown in Figure 7.18. Figure 7.19 shows the molar composition profile in the axial direction. Again, you may wish to generate a profile plot making use of "Plot" group found in "Home" ribbon, while the "Process Stream" tab window is active.

		Units		
		onita	FEED 🔻	PRODUCT -
•	Molar Vapor Fraction		1	1
•	Molar Liquid Fraction		0	0
÷	Molar Solid Fraction		0	0
•	Mass Vapor Fraction		1	1
•	Mass Liquid Fraction		0	0
•	Mass Solid Fraction		0	0
÷	Molar Enthalpy	kcal/mol	-11.7918	-16.5632
•	- Mole Flows	kmol/hr	36962	29605.1
•	со	kmol/hr	4066	1234.42
•	CO2	kmol/hr	3976	3129.14
•	HYDRO-01	kmol/hr	28920	20716.3
	WATER	kmol/hr	0	846.858
	METHANOL	kmol/hr	0	3678.43

Proce	ess Stream	Rea	ction Kinetics	Component G	Generation Rates	Custom Reacti	on Variables	Thermal Fluid Stream	
Process stream profiles									
View Summary Substream MIXED									
	Reactor len	gth	Pressure	Temperature		Duty	Residence	^	
		_			fraction		time	Liquid holdup	
	meter	•	bar 🔻	C •		MW •	sec		
•	1.2	22	110	164.444	1	3.26382	1.44053	0	
•	2.4	44	110	178.889	1	6.60605	2.84875	0	
•	3.6	56	110	193.333	1	9.62316	4.22668	0	
•	4.8	38	110	207.778	1	11.612	5.57764	0	
•	6	i.1	110	222.222	1	10.4906	6.90792	0	
•	7.3	32	110	236.667	1	1.87174	8.23184	0	
•	8.	54	110	251.111	1	-17.7714	9.57732	0	
•	9.3	76	110	265.556	1	-41.3251	10.9759	0	
•	10.9	98	110	280	1	-52.3506	12.4231	0	
•	12	.2	110	267	1	-63.3919	13.9069	0 🖵	

Proce	ss Stream	Reaction Kinetics		Component Ge	neration Rates	Custom Reacti	on Variables	The
Process stream profiles								
View	Molar cor	npos	ition	▼ S	ubstream MIXE	D	-	
	Length meter	•	со	CO2	HYDRO-01	WATER	METHANOL	
		0	0.110005	0.10757	0.782425	0	0	
•	1.	22	0.11022	0.107004	0.781456	0.000699079	0.000620888	
	2.	44	0.1105	0.106357	0.780386	0.00148631	0.00127045	
•	3.	66	0.110892	0.105265	0.778488	0.00284465	0.00250979	=
	4.	88	0.110894	0.103819	0.77538	0.00484078	0.00506598	
•	6	5.1	0.108644	0.102728	0.770443	0.00720422	0.0109809	
	7.	32	0.10038	0.103024	0.761566	0.00994276	0.0250874	
•	8.	54	0.0826499	0.104956	0.74531	0.0140282	0.053056	
•	9.	76	0.0607348	0.106035	0.7224	0.0208856	0.0899443	
	10.	98	0.0498582	0.103721	0.704902	0.0282229	0.113296	
•	12	2.2	0.0416963	0.105696	0.699753	0.0286051	0.12425	-

It is worth mentioning that instead of using Reactor with specified temperature option as shown in Figure 7.3, one may also attempt to use "Reactor with constant thermal fluid temperature" option with a specified overall heat transfer coefficient between the tube and shell sides of the reactor (also as a heat exchanger), as shown in Figure 7.20 and obtain another convergent solution (i.e., no simulation error/warning).

🥝 Specificat	ions	Config	uration	Strea	ams		Reactions	Pressure	Holdup	🕜 Catalyst
Reactor type Reactor with constant thermal fluid temperature										
Operating co Heat trans	onditio fer spe	on								
Specify	heat t	ransfer par	ameters							
U (the	rmal f	luid-proces	s stream)			200	kcal/hr-so	qm-K 🔫		
Calculate in user subroutine										
Thermal flui	d tem	perature		254	С			•		

SENSITIVITY ANALYSIS: EFFECT OF TEMPERATURE AND PRESSURE ON SELECTIVITY

Create "S-1" set under "Model Analysis Tools" | "Sensitivity" subfolder. Figure 7.21 shows the first manipulated variable, that is, the specified temperature of the reactor at which the gas-phase reaction takes place.

	e 🛛 🥝 Tabulate 🗍	Options (Cases 🛛 🥝 Fortran	Declar	ations C	omments	
Active	Case study			1			
 Manipulated va 	ariables (drag and o	drop variable	s from form to the	grid belov	W)		
Variable	Active		Manipula	ted variab	le		Units
1	v	Block-V	/ar Block=RPLUG V	ariable=SF	PEC-TEMP S	Sente C	:
2	✓	Block-V	/ar Block=RPLUG V	ariable=Pf	RES Sentend	ce=P b	ar
New	Delete		Сору	F	Paste		
 Edit selected va 	Edit selected variable						
Manipulated va	riable		Manipulated	variable lii	mits —		
Variable	1	-	Equidistan	t 🔘 Lo	garithmic	🔘 List of	values
Туре	Block-Var	-	Start point		2	2 00 C	-
Block:	RPLUG	-	End point		3	50 C	~
Variable:	SPEC-TEMP	- 🏔	Number c	of points	7		
Sentence:	T-SPEC		Increment			25 C	÷
ID1:		1	💌 Report lab	els			
Units:	c	-					
🛛 🖉 Vary 🛛 🖉 Define	🛛 🥑 Tabulate 🗍 Op	tions Cases	Sortran Dec	clarations	Comments	;	
Active Case study							
Active	Case study	variables from	n form to the grid he				
Active	Case study ables (drag and drop	variables fron	n form to the grid be	elow)			_
Active Active Manipulated varia Variable	Case study ables (drag and drop Active	variables fron	n form to the grid be Manipulated var	iable		Units	
Active Manipulated varia Variable 1	Case study ables (drag and drop Active	o variables from Block-Var Blo	n form to the grid be Manipulated var ock=RPLUG Variable	iable SPEC-TEN	1P Sente	Units C	
Active Active Manipulated varia Variable 1 2	Case study ables (drag and drop Active	b variables from Block-Var Blo Block-Var Blo	n form to the grid be Manipulated var ock=RPLUG Variable: ock=RPLUG Variable:	iable SPEC-TEN PRES Sent	1P Sente tence=P	Units C bar	*
Active Manipulated variable 1 2 New	Case study ables (drag and drop Active	b variables from Block-Var Blo Block-Var Blo	n form to the grid be Manipulated var ock=RPLUG Variable ock=RPLUG Variable	iable =SPEC-TEM =PRES Sent Paste	1P Sente tence=P	Units C bar	•
Active Manipulated variable Variable 1 2 New	Case study ables (drag and drop Active	Block-Var Blo Block-Var Blo Block-Var Blo	n form to the grid be Manipulated var ock=RPLUG Variable: ock=RPLUG Variable:	elow) iable =SPEC-TEM =PRES Sent Paste	1P Sente tence=P	Units C bar	•
Active Manipulated variable 1 2 New Edit selected variable	Case study ables (drag and drop Active V Delete able	Block-Var Blo Block-Var Blo	n form to the grid be Manipulated var ock=RPLUG Variable ock=RPLUG Variable	elow) iable =SPEC-TEM =PRES Sent Paste	IP Sente tence=P	Units C bar	
Active Manipulated variable New Control Cont	Case study ables (drag and drop Active	Block-Var Blo Block-Var Blo Block-Var Blo	n form to the grid be Manipulated var ock=RPLUG Variable ock=RPLUG Variable Copy	elow) iable =SPEC-TEM =PRES Sent Paste	1P Sente tence=P	Units C bar	
Active Manipulated varia Manipulated varia L L L L L L L L L L L L L L L L L L L	Case study ables (drag and drop Active	Block-Var Blo	n form to the grid be Manipulated var ock=RPLUG Variable ock=RPLUG Variable Copy Manipulated variable © Equidistant	elow) iable =SPEC-TEM =PRES Sent Paste e limits Logarithm	IP Sente tence=P	Units C bar	
Active Manipulated variable 1 2 New Control Edit selected variable Variable Variable Variable Type B	Case study ables (drag and drop Active	Block-Var Blo Block-Var Blo	n form to the grid be Manipulated var ock=RPLUG Variable: ock=RPLUG Variable: Copy Manipulated variable © Equidistant Start point	elow) iable =SPEC-TEM =PRES Sent Paste e limits Logarithm	IP Sente tence=P ic © List	Units C bar	
Active Manipulated variable 1 2 New Control Edit selected variable Variable Variable Type Block: R	Case study ables (drag and drop Active	Block-Var Block-	n form to the grid be Manipulated var ock=RPLUG Variables ock=RPLUG Variables Copy Manipulated variable © Equidistant Start point End point	elow) iable =SPEC-TEM =PRES Sent Paste e limits	IP Sente tence=P ic C List	Units C bar	
Active Manipulated variable 1 2 New Control Edit selected varia Variable Variable Type Block: Variable: P	Case study ables (drag and drop Active	Block-Var Blo Block-Var Blo C	n form to the grid be Manipulated var ock=RPLUG Variables ock=RPLUG Variables Copy Manipulated variable © Equidistant Start point End point © Number of point	elow) iable =SPEC-TEM =PRES Sent Paste e limits	IP Sente tence=P ic C List of 50 bar 150 bar 6 😭	Units C bar	
Active Manipulated variable 1 2 New Control Edit selected variable Variable Variable Type Block: Variable: P Sentence: P	Case study ables (drag and drop Active	Block-Var Blo Block-Var Blo	n form to the grid be Manipulated var ock=RPLUG Variable: ock=RPLUG Variable: Copy Manipulated variable © Equidistant © Equidistant Start point End point © Number of point @ Increment	elow) iable =SPEC-TEM =PRES Sent Paste Paste Logarithm s	IP Sente tence=P ic C List	Units C bar	
 Active Manipulated variable 1 2 New Edit selected varia Variable Type Block: Variable: Sentence: Units: b 	Case study ables (drag and drop Active	Block-Var Blo Block-Var Blo	n form to the grid be Manipulated vari ock=RPLUG Variables ock=RPLUG Variables copy Manipulated variable e Equidistant Start point End point Number of point Increment	elow) iable =SPEC-TEM =PRES Sent Paste e limits Logarithm s	IP Sente tence=P ic C List of 50 bar 150 bar 6 20 bar	Units C bar	

We will define the mole fraction of CH3OH and CO in the product stream. Figure 7.23 shows the definition of two variables: "YCH3OHP" the mole fraction of methanol and "YCOP" the mole fraction of CO in the product stream.

✓Vary ✓Define ✓Tabulate Opt	tions Cases 🥝	Fortran Declarations	Comments	
Sampled variables (drag and drop var	iables from form to	the grid below)		
Variable		Definition		
YCH30HP Mole-Frac Stre	am=PRODUCT Sub	stream=MIXED Compone	nt=METHANO	L
	DDODUCT C I			•
New Delete Copy	/ Paste	Move Up	ove Down	View Variables
Edit selected variable				
Variable VCH30HP	Reference	Mole-Frac	•	
Category	Stream:	PRODUCT	•	
All	Substream:	MIXED	-	
Blocks	Component:	METHANOL	-	
© Streams				
Model Utility				
Property Parameters				
© Reactions				
			~	
Vary Optine Vabulate Option	tions Cases 🤇	>Fortran Declarations	Comments	
Vary Define I labulate Op	tions Cases Cases	Fortran Declarations	Comments	
Sampled variables (drag and drop var	tions Cases Cases	Fortran Declarations	Comments	
Vary Define I labulate Op Sampled variables (drag and drop var Variable	tions Cases Cases	Fortran Declarations the grid below) Definition	Comments	
Vary Define Iabulate Op Sampled variables (drag and drop var Variable YCOP Mole-Frac Stree	tions Cases Cases	Fortran Declarations the grid below) Definition Destream=MIXED Compone	Comments	
Vary Define I abulate Op Sampled variables (drag and drop var Variable Variable Vcop Mole-Frac Stree	tions Cases Cases	Fortran Declarations o the grid below) Definition ostream=MIXED Compone	Comments ent=CO	
Vary Define labulate Op Sampled variables (drag and drop var Variable Vore Variable New Delete Copy	tions Cases c riables from form to eam=PRODUCT Sub y Paste	Fortran Declarations the grid below) Definition ostream=MIXED Compone	Comments ent=CO love Down	View Variables
Vary Define labulate Op Sampled variables (drag and drop var Variable Vor Mole-Frac Stree New Delete Copy Edit selected variable	tions Cases Cases can a case case case case case case case ca	Fortran Declarations the grid below) Definition ostream=MIXED Compone Move Up	Comments ent=CO love Down	View Variables
Vary Define labulate Op Sampled variables (drag and drop var Variable Vor Variable Vor Mole-Frac Stree New Delete Copy Edit selected variable Variable Variable Variable	tions Cases Cases ciables from form to came PRODUCT Sub	Fortran Declarations to the grid below) Definition ostream=MIXED Compone Move Up	Comments ent=CO	View Variables
Vary Define labulate Op Sampled variables (drag and drop var Variable Vor New Delete Cop Edit selected variable Variable Variable Variable Category	tions Cases Cases can a case case case case case case case ca	Fortran Declarations to the grid below) Definition Destream=MIXED Compone Move Up Mole-Frac	Comments ent=CO	View Variables
Vary Define labulate Op Sampled variables (drag and drop var Variable Vor Variable Vor Mole-Frac Stree New Delete Copy Edit selected variable Variable Variable Variable All	tions Cases riables from form to eam=PRODUCT Sub y Paste Reference Type Stream:	Fortran Declarations b the grid below) Definition Definition Move Up Mole-Frac PRODUCT	Comments ent=CO	View Variables
Vary Define labulate Op Sampled variables (drag and drop var Variable VCOP Mole-Frac Stree New Delete Copy Edit selected variable Variable Variable Variable All Blocks	tions Cases c riables from form to eam=PRODUCT Sub Paste Reference Type Stream: Substream:	Fortran Declarations b the grid below) Definition Definition Move Up Move Up M Mole-Frac PRODUCT MIXED MOVE Up	Comments ent=CO love Down	View Variables
Vary Define labulate Op Sampled variables (drag and drop var Variable Vcop Mole-Frac Stree New Delete Cop Edit selected variable Variable Variable Variable Op All Blocks Streams	tions Cases riables from form to eam=PRODUCT Sub y Paste Reference Type Stream: Substream: Component:	Fortran Declarations b the grid below) Definition Definition Move Up Mole-Frac PRODUCT MIXED CO	comments ent=CO	View Variables
 Vary Define labulate Op Sampled variables (drag and drop var Variable VCOP Mole-Frac Stree New Delete Copy Edit selected variable Variable Variable VCOP Category All Blocks Streams 	tions Cases riables from form to eam=PRODUCT Sub y Paste Reference Type Stream: Substream: Component:	Fortran Declarations b the grid below) Definition Definition Definition Dostream=MIXED Component Move Up Mole-Frac PRODUCT MIXED CO	Comments ent=CO love Down	View Variables
 Vary Define Plabulate Op Sampled variables (drag and drop var Variable VCOP Mole-Frac Stree New Delete Copy Edit selected variable Variable Variable YCOP Category All Blocks Streams Model Utility 	tions Cases riables from form to eam=PRODUCT Sub y Paste Reference Type Stream: Substream: Component:	Fortran Declarations o the grid below) Definition Definition Move Up Mole-Frac PRODUCT MIXED CO	comments ent=CO	View Variables
 Vary Define Plabulate Op Sampled variables (drag and drop var Variable VCOP Mole-Frac Stree New Delete Copy Edit selected variable Variable Variable YCOP Category All Blocks Streams Model Utility Property Parameters 	tions Cases riables from form to eam=PRODUCT Sub y Paste Reference Type Stream: Substream: Component:	Fortran Declarations b the grid below) Definition Definition Definition Dotream=MIXED Component Move Up Mole-Frac PRODUCT MIXED CO	Comments ent=CO	View Variables

In "Fortran" tab window, we define the selectivity of methanol, "SCH3OH", as the mole fraction ratio of CH3OH to CO, as shown in Figure 7.24.

🕝 Vary	🕝 Define	🕜 Tabulate	Options	Cases	Fortran	Declarations	Comments
Enter executable Fortran statements							
LINCI CAC		an statements					
SCH3OH=YCH30HP/YCOP							

Reinitialize and run the show. Go to "Model Analysis Tools" | "Sensitivity" | "S-1" |"Results" | "Summary" tab window, then from Plot group found in "Home" ribbon, click on "Results Curve" button and "Results Curve" window will pop-up. Select *X*, *Y*, and the parametric variable, click on "OK" button at the bottom of the given window, and a plot will be generated as shown in Figure 7.26. For the given feed composition, it is found that

the maximum value of methanol selectivity occurs at $T=250\circ C$ and P=150 bar.

Part3

SPECIFICATION WITH RYIELD

In the previous parts, you worked with kinetics-based models, which are pretty advanced. In order to use those models, you needed lots of information, such as rate law kinetics and size. In this part, you will briefly work with two models that are very simple and do not require kinetic information or sizing information at all. In this section, we will work with the reaction of lactic acid with ethanol to form ethyl lactate and water, as shown in Figure 7.8.

The RYield reactor model is incredibly simple. In fact, you literally tell it what the products of the reaction are, and it obliges by assigning the products to the output, even if your numbers do not make any sense. Let's do an example. Suppose we have 100 kmol/hr of lactic acid reacting with 100 kmol/hr of ethanol at 200°C and 1 atm. Suppose we desire that there will be 80% conversion of ethyl lactate in this reactor.11 All we have to do in RYield is enter the flash conditions of the reactor (let's say it is adiabatic with nopressure drop to keep it simple), and then in the Yield tab, specify the component yield, which is what you want to come out of the

reactor. The tricky part is that the way you define the yield is a little strange. Instead of defining the absolute yield (as in the moles or mass of each chemical of output), you define the yield basis. For example, the mole basis yield of a chemical is the number of moles of that chemical that leave in the outlet per total mass of the feed. Similarly, the mass basis yield is the mass of the chemical found in the outlet per total mass of feed. You can choose which basis you would like to use for each chemical based on whichever is more convenient for you (I almost always prefer to work in moles whenever possible). Let's do a simple example. For the ethyl lactate example, if I know that I have exactly 100 kmol/hr of each reagent, and I know the stoichiometry of the feed, then I can basically calculate what the outputs will be on paper if there is 80% conversion of ethyl lactate. Very simply, this means that 80 kmol/hr of both lactic acid and ethanol will be reacted away. We know from mass balances that there should be 80 kmol/hr of water and ethyl lactate each leaving the reactor, together with 20 kmol/hr of the two reagents each. So, now we want to use RYield to make this happen. Set up a simulation with the given feed conditions using UNIQ-RK. We need to figure out the mole basis yield to type into RYield. We can do this in many different ways. One way is to use the molecular weights of the chemicals to figure out the total mass of the feed, and then since we know the individual component molar flow rates we want from the outlet, simply divide those outlet flow rates by that total mass flow rate. For example, you can find the molecular weights in the Properties tab by clicking the Retrieve Parameters button in the Home ribbon and

looking at the MW row of the results. Or, you can be lazy about it and just type random garbage into the RYield model and run the simulation. Then look at the results for your feed stream to find the total mass.

Either way, I computed a basis yield of 0.00146899 kmol/kg for lactic acid. Type that into your RYield model as a mole basis yield.

Note that there is no indication of units, but it uses the default units for mole and mass in your selected units set, which for MET and SI are kmol and kg and for ENG are lbmol and lb. In all of these sets, you still get the same number either way. So now, type in the remaining numbers into the RYield and run.

One very important thing to remember is that RYield will only satisfy total mass balances. It does not actually satisfy the mass balance of each individual chemical, and as such it does not satisfy the first law of thermodynamics. This is because, by design, Ryield will do its best to do exactly what you tell it to, regardless of how bad your instructions are. So go back and do something really dumb and change one of the numbers for your yield, maybe even setting one of them to zero. Now you know that it is impossible, but run it and watch what happens.

First, you get a warning. A quick check of the warning in the control panel shows the following (noting yours may be a little different):

* WARNING SPECIFIED YIELDS HAVE BEEN NORMALIZED BY A FACTOR OF (0.867676) TO MAINTAIN AN OVERALL MATERIAL BALANCE. * WARNING THE FOLLOWING ELEMENTS ARE NOT IN ATOM BALANCE: C H O

Basically, RYield is doing two things. First, it is telling you that, hey, the molar basis that you entered doesn't make sense because if you calculate the outputs based on what you typed in, you get a mass yield that is less than the total input mass. So, the warning is telling you that it went ahead and scaled the molar bases that you gave down (or up in my case by dividing them all by 0.87 or so) such that the total outlet mass flow rate is still equal to the inlet mass flow rate (go ahead and check).

The second warning is telling you, hey, the basis yields that you gave cause the atoms themselves to be imbalanced. For example, in my case, I would have more or less carbon, nitrogen, and oxygen atoms (which, in fact, are the only kinds of atoms I have in this

simulation) in the outputs than the inputs (even with the scale up). Remember, you did not actually type any stoichiometry or define a reaction, so Aspen is trying to tell you that, well, you probably made a mistake because what you typed in is physically impossible. In practice, you may get this error even when you've essentially done everything correctly, because of issues related to significant figures, differences in molecular weight values that occur in the 6th digit, etc., so this message can be hard to put a lid on.

So why would you use RYield at all? It may seem really strange at first because you are basically forced to do all of the calculations and logic by hand and type it in, so the only information you are really getting out of the simulation is the heat duty calculation to compute its relationship with temperature. One thing to note is you can create a Calculator block to automatically overwrite the basis yield parameters for you based on the inputs (see Tutorial 9). That way, the block can be

used in a situation in which the composition of the feed might vary from run to run (such as when inside a convergence

loop). But even that seems like a lot of work. Instead, there are two very convenient uses for this block. The first is when you have experimental data for a reaction that may be very complex. Consider if you have a reaction with many possible chemical outputs, which might be common especially for biological reactions. In many cases, you may be able to measure the contents of the reaction broth but have almost no idea what the reaction pathway was that obtained it. And, because experimental data is noisy and contains measurement error, it is unlikely that the atom balance holds exactly. Therefore, it is very convenient just to type in your reaction yield in a moles per kg of reaction product basis and just put that directly into RYield. Sure, you might get an atom balance warning, but as long as you are cognizant of what you are doing, you can keep this error in mind when analyzing the results of your simulation. By the way, you can turn up the control panel diagnostics by going to the Block Options | Diagnostics tab for the RYield block and cranking the On-Screen message level up to 5.12 Then you can see the details of the mole balance to see how far off it is.

The second convenient use is when you are connecting this model to a much more complex reactor model. Suppose you have made your own special reactor model, say, in a Calculator block (see Tutorial 9), or in an external Microsoft Excel flowsheet (which you will also learn in Tutorial 9). You can use an RYield in which the complex model computes the basis yields and simply overrides that information in the RYield block. In that way, the RYield acts as a stand-in for the more complex, external model.

Part 5

SPECIFICATION WITH Rstoic

The RStoic model is similar to RYield in that you simply specify the reaction conversion, except with this block you are required to provide the reaction stoichiometry. Go ahead and make an Rstoic block and feed the same lactic acid and ethanol mixture into it as in Part 4. Keep the feed and flash conditions the same (adiabatic and no pressure drop). In the Reactions tab, you have to specify the reaction, namely one mole of lactic acid and one mole of ethanol react to form one mole of ethyl lactate and one mole of water. You can do this by clicking on NEW in the Reactions tab and then entering the corresponding information for reactions and products.

The coefficient of a component is the number of moles you need of that chemical in the stoichiometry equation, and a negative sign means it is a reagent instead of a product. Go ahead and enter this information. You then have to specify the products being generated. In this case, you can choose either a fractional conversion (a number between 0 and 1) or the molar extent of the reaction (which is the number of moles reacted divided by its stoichiometric coefficient). Again, simulate an 80% conversion.

The convenience over RYield in this situation is obvious since you have to do less math personally, and mole balances are always held. Moreover, as long as you are using fractional conversion instead of extent of conversion, you will never have a problem with limiting reagents. Try it with 80% fractional conversion, and change one of your feed chemicals to have only 10 kmol/hr and leave the other at 100 kmol/hr and run it.

Finally, it is useful to note that Aspen Plus is assuming that it is actually physically possible to obtain the reaction conversion you typed in. For example, this is actually a reversible reaction, and so it is limited by equilibrium. Is it even possible to achieve 80% conversion at this temperature, or did you just violate the second law of thermodynamics? Again, Aspen Plus will dutifully do the math with what you have given it, so remember, garbage-in, garbage-out!

Part 6

EQUILIBRIUM REACTIONS WITH Requil AND Rgibbs

The REquil block is used to model a reversible reaction system assuming that it achieves (or nearly achieves) chemical and phase equilibrium. The way it works is that the user enters the stoichiometric reaction equations, and using this, Aspen Plus will compute the equilibrium constants directly from the Gibbs free energy of reaction at the temperature of the reaction conditions. Using the equilibrium coefficient combined with mass balances, energy balances, and a flash calculation, Aspen Plus can then calculate the outputs of the reaction. The mathematical details are best left for another day. Let's try and see how the ethyl lactate system example works. Again, use the same 200 kmol/hr feed (containing 100 kmol/hr each of the two reagents) at 200°C and 1 atm; feed it to an REquil block where the flash conditions are again adiabatic and zero pressure drop. In the Reactions tab, define the reaction in much the same way as in RStoic. Note here that you can define an extent of reaction just like in RStoic, but you can also type an approach temperature instead. For now, leave the definition as having an approach temperature of zero. Now one quick catch: REquil requires you to have separate liquid and vapor outlet ports, so you need two outlet streams in this case. Note that the liquid stream should be completely empty because everything should be in the vapor phase in this system. This may seem strange, but it is just a model. As long as you know that an empty stream would never really be there, then there is no problem. The extent of conversion should actually be a lot lower than 80%. What does this mean? It means that my results of the RYield and RStoic examples above are basically complete garbage for the equimolar feed examples, and you never really knew that until now. Sure, Aspen Plus dutifully computed numbers for me, but now I know that the 80% conversion is thermodynamically impossible. Equilibrium is the absolute most I can ever achieve under these circumstances! So, this is an important lesson in the principles of garbage-in, garbage-out! Aspen Plus is not magic; it will only do what you tell it to (at best). Even worse, the conversion computed here is the absolute best conversion that is thermodynamically possible, which can rarely be achieved in practice, especially when a lot of catalyst is needed or very large reactors. Fortunately, you can use REquil to approximate sub-equilibrium conditions, meaning that they approach equilibrium conditions but never actually get there. The reaction would be slightly less than the true equilibrium, which is more realistic. To do this in practice, you can use an approach temperature. Essentially, what happens is that you intentionally use the equilibrium constant at the wrong temperature, one that is close to the actual temperature but off by about 10°C or so (this number is purely heuristic, you can choose other numbers). In this way, when you compute the yield at the actual temperature using the

intentionally wrong equilibrium coefficient, you get a little lower yield than you otherwise would. In this way, we can approximate a morerealistic situation which approaches equilibrium but never actually quite achieves it. In REquil, you can achieve this by typing an approach

temperature into the corresponding box on the reaction stoichiometry definition form. Aspen Plus defines the number you type as the number of degrees above the system temperature that you want to use for computing the new (intentionally slightly wrong) equilibrium coefficient. So in your case, since this is an endothermic reaction, we want to use a temperature that is a little bit lower than the actual temperature because conversion is generally lower at lower temperatures for endothermic reactions. In case you are confused about whether to type a positive or negative number for this system, just pick one and try it. If you get better conversion than the true equilibrium, this is thermodynamically impossible, and so you know

this was the wrong one to pick!

Lastly, there is one more equilibrium-based reactor model that is very convenient and interesting, RGibbs. This model can compute the chemical equilibrium conditions of the reaction without even being told the reaction equation at all! Without getting into the details very much, the second law of thermodynamics tells us that chemical equilibrium will eventually be achieved given an infinite amount of reaction time, and, that this chemical equilibrium will occur when the

product mixture reaches its lowest possible Gibbs free energy state (in the absence of outside influences). So what the RGibbs block does is solve an optimization problem that tries to find the exact reactor outlet mixture which has the lowest possible Gibbs free energy. It does this by a complex algorithm which essentially guesses the composition of the product mixture, computes its Gibbs free energy, and repeats this again and again until it decides that it has found the outlet mixture with the lowest possible Gibbs free energy. While it does this, however, it also ensures that the first law of thermodynamics always holds, so it makes sure that all of the atoms themselves balance (in other words, the total carbon in the reagents equals the total carbon in the products, etc.), the energy balances, and the flash conditions hold. It does not use any reaction equation information at all, which is really helpful because, in practice, the reaction equations could be incredibly complex and even unknown. Try it yourself using the same feed conditions again as the other test cases. The only things you have to tell it are the flash conditions (again, use adiabatic and zero pressure drop) and which chemicals to consider in the outputs. By default, RGibbs will consider all chemicals in your chemicals list to be chemicals that could exist in the output when guessing-and-checking. However, if you know that some chemicals simply will not be products or should otherwise not participate, you can define a subset of your products to consider.

Note that your output should be exactly the same as in the first REquil case, which is amazing considering we did not even tell it what reactions there were!

However, like all models, you must use this block with caution. First of all, remember that this will only consider chemicals that exist in your model. So if you are missing important chemicals from your list because you do not know much about the chemistry of the system, it will dutifully report an output mixture that might be totally meaningless. Second, be sure to ask yourself if true chemical equilibrium is really what you want to model. For example, consider a case in which you have one set of reactions that are very fast (perhaps with the benefit of a catalyst) and another set of reactions which are very slow. In practice, a real reactor might be designed such that it is only long enough such that the fast set of reactions approach equilibria, but the slow set of reactions do not because they are not catalyzed or simply very slow. In that case, RGibbs would be a terrible choice of a model, because RGibbs does not care about the speed of the reactionit considers equilibrium after an infinite amount of time. If you used RGibbs, it would report that the slow reaction has reached equilibrium, when that would be physically unlikely in practice. In this case, you could consider either using REquil and specifically only modeling the fast reaction set, or using RGibbs and removing any unique products that might be in the second reaction set to prevent them from being considered, depending on the situation. As an example, consider the reaction of methane with oxygen (using plenty of excess air) to produce carbon dioxide and water. In practice, this reaction does not even need a catalyst at a high temperature because methane will readily burn under these conditions, effectively achieving equilibrium very quickly. However, suppose you had an air-deprived environment such that you did not have enough oxygen to combust all of the methane according to stoichiometry in the flame. In practice, there would still be some combustion, but this would leave lots of methane remaining leaving the furnace. The carbon monoxide produced is higher, but it is still relatively small comparatively. However, were

you to model this with an RGibbs block, it would predict surprisingly large amounts of CO leaving the flame, which would be unrealistic. However, given infinite time, the CO would indeed form because the methane would eventually react with the steam, to form carbon monoxide and hydrogen gas (which is called the steam reforming reaction), and similarly, the carbon dioxide would also react with the hydrogen gas to form carbon monoxide and water (known as the reverse water gas shift reaction). These reactions are slow at normal furnace temperature without a catalyst, which is why they only proceed to a small degree in practice. But given infinite reaction time, sure, they would eventually react, which is why RGibbs would give that result.

Appendix

Problem Definition

The kinetic data of the following set of reactions were excerpted from Bussche and Froment[1]. Keep in mind, however, the following points:

• The kinetic data are rewritten here in a format that matches how they should be entered into Aspen Plus® reaction kinetic sheets (see next section).

• The rate constants and equilibrium constants, which were obtained via curve-fitting and were reported in table 2 of the same reference, are converted here to match the basis of Aspen Plus. For the reaction rate constant, the basis is $kmol/(kg cat s \cdot Pa)$ for an overall first-order reaction in terms of reacting species and will be, of course, $kmol/(kg cat s \cdot Pa2)$ for an overall second-order kinetics given that the basis for [*Ci*] is the partial pressure expressed in *Pa* not in bar, as indicated in Aspen Plus built-in help.

Consider the conversion of carbon dioxide and hydrogen into methanol according to the following set of reactions:

$$CO_2 + 3H_2 \leftrightarrow CH_3OH + H_2O$$
 (7.1)

$$r_{\rm CH_3OH}(\rm kmol/kg\,cat \cdot s) = \frac{1.07 \times 10^{-13} \times e^{(4,413.76/T)} \left(K_{f1} \times P_{\rm CO_2} \times P_{\rm H_2} - K_{b1} \times \frac{P_{\rm CH_3OH} \times P_{\rm H_2O}}{P_{\rm H}^2}\right)}{(1 + K_1 \times (P_{\rm H_2O}/P_{\rm H_2}) + K_2 P_{\rm H_2}^{0.5} + K_3 P_{\rm H_2O})^3}$$
(7.2)

$$r_{\rm CH_3OH}(\rm kmol/kg\,cat \cdot s) = \frac{1.07 \times 10^{-13} \times e^{(4,413.76/T)} \left(P_{\rm CO_2} \times P_{\rm H_2} - 3.9084 \times 10^{20} \times e^{(-7,059.726/T)} \times \frac{P_{\rm CH_3OH} \times P_{\rm H_2O}}{P_{\rm H}^2} \right)}{(1+3,453.38 \times (P_{\rm H_2O}/P_{\rm H_2}) + 1.578 \times 10^{-3} \times e^{(2,068.44/T)} \times P_{\rm H_2}^{0.5} + 6.62 \times 10^{-16} \times e^{(14,928.915/T)} P_{\rm H_2O})^3}$$
(7.3a)

Alternatively,

$$r_{\rm CH_3OH}(\rm kmol/kg\,cat \cdot s) = \frac{\left(1.07 \times 10^{-13} \times e^{(4,413.76/T)} \times P_{\rm CO_2} \times P_{\rm H_2} - 4.182 \times 10^7 \times e^{(-2,645.966/T)} \times \frac{P_{\rm CH_3OH} \times P_{\rm H_2O}}{P_{\rm H}^2}\right)}{(1+3,453.38 \times (P_{\rm H_2O}/P_{\rm H_2}) + 1.578 \times 10^{-3} \times e^{(2,068.44/T)} \times P_{\rm H_2}^{0.5} + 6.62 \times 10^{-16} \times e^{(14,928.915/T)} P_{\rm H_2O})^3}$$
(7.3b)

Educational Institute for Equipment and Process Design

$$CO_2 + H_2 \leftrightarrow CO + H_2O$$
 (7.4)

$$r_{\rm CO}(\rm kmol/kg\,cat\cdot s) = \frac{122 \times e^{(-(11,398.244/T))} \left(K_{f2} \times P_{\rm CO_2} - K_{b2} \times \frac{P_{\rm CO} \times P_{\rm H_2O}}{P_{\rm H_2}}\right)}{(1 + K_1 \times (P_{\rm H_2O}/P_{\rm H_2}) + K_2 P_{\rm H_2}^{0.5} + K_3 P_{\rm H_2O})^1}$$
(7.5)

 $r_{\rm CO}(\rm kmol/kg\, cat \cdot s)$

$$=\frac{122 \times e^{(-(11,398.244/T))} \left(P_{\rm CO_2} - 0.009354 \times e^{(4773.259/T)} \times \frac{P_{\rm CO} \times P_{\rm H_2O}}{P_{\rm H_2}}\right)}{(1+3453.38 \times (P_{\rm H_2O}/P_{\rm H_2}) + 1.578 \times 10^{-3} \times e^{(2068.44/T)} \times P_{\rm H_2}^{0.5} + 6.62 \times 10^{-16} \times e^{(14,928.915/T)} P_{\rm H_2O})^{1}}$$
(7.6a)

Alternatively,

 $r_{\rm CO}(\rm kmol/kg\,cat\cdot s)$

$$=\frac{\left(122 \times e^{(-(11,398.24/T))} \times P_{\rm CO_2} - 1.1412 \times e^{(-(6624.98/T))} \times \frac{P_{\rm CO} \times P_{\rm H_2O}}{P_{\rm H_2}}\right)}{(1+3453.4 \times (P_{\rm H_2O}/P_{\rm H_2}) + 1.578 \times 10^{-3} \times e^{(2068.4/T)} \times P_{\rm H_2}^{0.5} + 6.62 \times 10^{-16} \times e^{(14,928.9/T)} P_{\rm H_2O})^{1}}$$
(7.6b)

Both reactions are solid-catalyzed exothermic reactions; their kinetic forms, as given by Equations 7.2 and 7.5, obey what is called Langmuir–Hinshelwood–Hougen–Watson (LHHW) form. It is worth mentioning here that the first reaction (Eq. 7.1) describes the conversion of CO2 and H2 into methanol (desired product), in the presence of a solid catalyst, at the same time the water–gas shift reaction (Eq. 7.4) goes in parallel with the first reaction, which results in undesired products. This solid catalyst is usually silver or metal oxide. Moreover, both forms of each Equations 7.3 and 7.6 were tested using Aspen Plus simulator. It was found that using Equations 7.3a and 7.6a ended up with either simulation error or non-sense results for selecting a different basis for feed stream composition. On the

other hand, using Equations 7.3b and 7.6a ended up with reasonable results for selecting a different basis for feed stream composition. In my judgment, one may conclude that this has to deal with the fact that Aspen Plus expects from the user to express the kinetic factor with a positive activation energy. If we look at Equation 7.3a as it stands, we will notice that the activation energy has to be negative in order to have a positive exponential argument (the term outside the numerator bracket is called the kinetic factor). On the other hand, if the driving force expression (anything within the big two brackets of the numerator) does contain a positive exponential argument (e.g., the first term of the driving force expression in Eq. 7.3b), it can be then swallowed by Aspen Plus, because LHHW model tolerates having both negative and positive exponential

arguments within the driving force expression as well as within the adsorption term (the denominator in any previous equation). Hence, we will use Equations 7.3b and 7.6b, where the kinetic factor is merged into the driving force expression, ending up with a kinetic factor equal to unity.

NOTE #1: The bracketed term in the denominator of equations 7.3 and 7.6 is called the adsorption term that accounts for the key role of a catalyst in providing the platform for the negotiating parties (reacting species) so that they can sit together and interact (proximity effect), like each other (activation complex), go inside exclusive private

rooms (micro-pores and channels) and wait a while for having babies (products) as a result of the new relationships (chemical bonds), and finally the end of the love session where the new born babies (products) will leave the platform and play faraway in the yard. That explains why the kinetics is a bit cumbersome compared with the casual relationships (conventional kinetics) shown in Chapter 6. The additional terms appearing in the denominator account for competitive adsorption of species, other than CO2, such as H2O and H2 in this case, where such adsorbing species will retard the conversion of CO2 into CH3OH. This is simply because they will occupy vacant seats (sites) on the surface of the catalyst, which will otherwise be occupied by CO2 molecules. Notice that the bracketed term in the denominator of Equation 7.3 is raised to the power three (i.e., for methanol production), indicating that the competitive adsorption (or inhibition effect) is more pronounced on methanol production than on the water-gas shift reaction (Eq. 7.6). In social context, there are many lovers waiting on the list to be seated (adsorbed). They wait someone to leave (desorb) his/her seat. Notice that the overall reaction rate (i.e., speed) is not only governed by intrinsic kinetics of the reaction (i.e., motivation of reacting species) but also by mass transfer from and to catalyst sites. That is why we have to take into account the two-way journey both from and to hosting catalyst sites. This is the end of the love boat journey.

Addition Information – Required information for Aspen Plus:

First reaction additional information

Term 1					
CO2	1				
H2	1				
СНЗОН	0				
H2O	0				
А	-29.866				
В	4413.76				

Ter	m 2
CO2	0
H2	-2
СНЗОН	1
H2O	1
А	17.5489
В	-2645.97

Concentration exponent					
Component	Term 1	Term 2	Term 3	Term 4	
H2	0	-1	0.5	0	
H2O	0	1	0	1	

Adsorption constant					
Term number	1	2	3	4	
Coefficient A	0	8.14711	-6.4516	-34.9513	
Coefficient B	0	0	2068.44	14928.9	
Coefficient C	0	0	0	0	
Coefficient D	0	0	0	0	

Second Reaction

Term 1					
CO2	1				
H2	0				
H2O	0				
CO	0				
A	4.804				
В	-11398.2				

Term 2					
CO2	0				
H2	-1				
H2O	1				
CO	1				
А	0.13208				
В	-6624.98				

Concentration exponent						
Component	Term 1	Term 2	Term 3	Term 4		
H2	0	-1	0.5	0		
H2O	0	1	0	1		

Adsorption constant						
Term number	1	2	3	4		
Coefficient A	0	8.14711	-6.4516	-34.9513		
Coefficient B	0	0	2068.44	14928.9		
Coefficient C	0	0	0	0		
Coefficient D	0	0	0	0		