

Part 5

Heat Exchangers in Aspen Plus

Problem Definition

In basic stage of an Ammonia project the process engineering department has decided that the saturator blow down should be cooled to 65 C before introducing the stream to treatment facility. In order to do so a water-cooled shell and tube heat exchanger is used to serve the purpose. The process conditions of the fluids are provided below.

2.The

Please using Aspen Plus calculate the followings:

1.The amount of cooling water needed. duty of the Heat exchanger.

3.Using HeatX, determine surface area,

	Operating Data	a (One Unit)		
Description	Shell	Side	Tube	Side	11-214-2
Description	Inlet	Outlet	Inlet	Outlet	Units
Fluids	Process c	ondensate	Coolin	g water	
Quantity: total	47:	200	166	009	kg/h
liquid	47200	47200	166009	166009	kg/h
gas					kg/h
Operating temperature	100	65	38	48	°C
Operating pressure	1,5		4,5		bar g
Liquid: molecular weight	18,02	18,02	18,02	18,02	kg/kmol
density	958	980	993	989	kg/m ³
viscosity	0,283	0,434	0,681	0,567	cP
specific heat capacity	4,213	4,184	4,175	4,177	kJ/kg/°C
thermal conductivity	0,6768	0,6505	0,6199	0,6323	W/m/°C
boiling temperature	1	06			°C
Gas: molecular weight					kg/kmol
density					kg/m ³
viscosity					cP
specific heat capacity					kJ/kg/°C
thermal conductivity					W/m/°C
dew point					°C
	Performa	ance			
Pressure drop, max. allowable/calculated	d	/ 0,1		/ 0,6	bar
Fouling resistance	0,00	0017	0,00	0030	m².°C/W

How to simulate

1.Open a new simulation

2. Select Water as the component

Ø S	election	Petroleur	n Nonconventional	Enterprise Database	Comments		
Selec	t compone	ents					
	Compon	ent ID	Туре		Component name	Alias	CAS number
	WATER		Conventional		WATER	H2O	7732-18-5
F	ind	Elec Wiz	zard SFE Assistant	User Defined	Reorder Review		

3. Select STEAMMNBS as the property package and click Next.

Methods - Sp	pecification	ns × 🕂					
Global	Flowsheet	t Sections	Referenced	Comments			
Property m	ethods & c	options		Method nan	ne		
Method filt	er	ALL	•	STEAMNB	s -	Methods	Assistant
Base metho Henry comp	o d ponents	STEAMNE	S ▼	Modify	/		
Petroleum	n calculatio	n options -]	EOS		ESSTEAM	-
Free-wate	er method	STEAM-TA	-	Data set			1 💌
Water sol	ubility	3	•	Liquid gar	nma		~
				Data set			
Electrolyte	e calculatio	on options -		Liquid mo	lar enthalpy	HLMX90	-
Chemistry	r ID		-	Liquid mo	lar volume	VLMX90	-
🔽 Use tru	ue compon	ents		Heat o	f mixing		
				🔲 Poyntir	ng correction		
				🔲 Use liq	uid reference	state enthalp	y

4. Create the flowsheet like below and add inputs for the stream and the block like below:

Ø Mixed	Cl Solid	NC Solid	Flash Opt	ions	EO Options	Costir	ng	Comments	
Specifi	ications								
Flash Type	e [Femperature	•	•	Com	nposition			
State va	riables —						Ma	ss-Frac 🔻	Ŧ
Tempera	ature		100	С	•			Component	Value
Pressure			1.5	barg	•		•	WATER	100
Vapor fr	action								
Total flo	w basis	Mass	•						
Total flo	w rate		47200	kg/h	r •				
Solvent					~				
Reference	e Tempera	ature							
Volume	flow refere	ence temperat	ture						
	С	-							
Component concentration reference temp					•				
	C								
								Total	100

Educational Institute for Equipment and Process Design

lash Type	Temperature	•
	Pressure	•
lemperature	65	c •
Temperature change		C ····
Degrees of superheating		C -
Degrees of subcooling		C -
Pressure	1.5	barg 🔹
Duty		cal/sec 🔻
/apor fraction		
Pressure drop correlation parameter		
Always calculate pressure drop co	rrelation parameter	

5.Run Aspen Plus and check the results.

Summary	Balance	Phase Equili	brium	Utility U	sage	Status	
Outlet temp	erature			65	с		•
Outlet pressu	ure			2.51325	bar		•
Vapor fractio	on			0			
Heat duty			-	-1926.18	kW		•
Net duty				-1926.18	kW		•
1st liquid / T	otal liquid			1			
Pressure-dro	p correlatio	on parameter					
Pressure dro	р			0	bar		•

Mat	terial	Heat	Load	Vol.% Curves	Wt. %	Curves	Petroleum	Polymers	Solids	5
							Units	BD-IN	•	BD-OUT
	Т	Temperature				С			100	65
	Р	ressure				bar		2.5	51325	2.51325
	Ν	lolar Va	por Fract	ion					0	0
	Ν	lolar Liq	uid Frac	tion					1	1
	Ν	lolar So	lid Fracti	on					0	0
	Ν	lass Vap	or Fracti	on					0	0
•	Ν	lass Liqu	uid Fracti	on					1	1
	Ν	lass Soli	id Fractic	on					0	0
	Ν	Iolar Ent	thalpy			cal/mo		-66	957.6	-67589.7
	Ν	lass Entl	halpy			cal/gm		-37	16.71	-3751.8
•	Ν	Iolar Ent	tropy			cal/mo	-К	-34	.9235	-36.7022
	Ν	lass Entr	гору			cal/gm	-K	-1.9	93855	-2.03728
	Ν	lolar De	ensity			mol/cc		0.053	32027	0.054433
•	Ν	lass Der	nsity			gm/cc		0.95	58462	0.980625

6.Perform the same procedure for cooling water but this time the heat exchanger needs just one input since the Q is calculated in last step and is connected to this block.

Ø Mixed	CI Solid	NC Solid	Flash Opt	ions	EO Options	Costi	ng	Comments			
 Specific 	cations										
Flash Type	Flash Type Temperature Pressure							mposition —]
State var	iables —				N	lass-Flow	•	kg/hr	•		
Tempera	ture		38	C	•			Componen	t	Value	
Pressure			4.5	barg	•			WATER			100
Vapor fra	Vapor fraction										'
Total flow	w basis	Mass	•								
Total flow	w rate		100000	kg/h	r •						
Solvent					~						
Reference	e Temperatu	ire									
Volume f	low reference	e temperat	ure								
	С										
Compon	ent concentr	ence tempe	erature								
	С						_				
								Te	otal		100

Specifications	Flash Options U	Jtility	Comments		
Flash specifications	s				
Flash Type		Press	ure		•
		Inlet h	leat stream		-
_					
lemperature				С	*
Temperature chang	ge			С	-
Degrees of superhe	eating			С	-
Degrees of subcoo	oling			С	-
Pressure			4.5	barg	•
Duty				cal/sec	-
Vapor fraction					
Pressure drop corre	elation parameter				
Always calculat	e pressure drop co	rrelatio	n parameter		
Valid phases					
Vapor-Liquid		•			

7.Run Aspen Plus and check the results.

ſ	Summary	Balance	Phase Equilit	orium	Utility U	sage	Status	
	0.11.1.1				545064	C		
	Outlet tempe	erature			54.5864	C		<u> </u>
	Outlet pressu	ure			5.51325	bar		•
	Vapor fractio	on			0			
	Heat duty				1926.18	kW		•
	Net duty				0	cal/se	с	•
	1st liquid / T	otal liquid			1			
	Pressure-dro	p correlatio	on parameter					
L	Pressure dro	р			0	bar		•

		Units	CW-IN -	CW-OUT -
•	Phase		Liquid Phase	Liquid Phase
•	Temperature	С	38	54.5864
•	Pressure	bar	5.51325	5.51325
÷	Molar Vapor Fraction		0	0
•	Molar Liquid Fraction		1	1
•	Molar Solid Fraction		0	0
•	Mass Vapor Fraction		0	0
•	Mass Liquid Fraction		1	1
•	Mass Solid Fraction		0	0
•	Molar Enthalpy	cal/mol	-68074.4	-67776
•	Mass Enthalpy	cal/gm	-3778.7	-3762.14
•	Molar Entropy	cal/mol-K	-38.2001	-37.2658
•	Mass Entropy	cal/gm-K	-2.12043	-2.06857
•	Molar Density	mol/cc	0.0551287	0.0547361

8.To calculate the exact cooling water needed, we should create a Design Spec under Flowsheeting Option. Act like below:

New	Сору Ра	aste Ex	port	Edit Input	View Results Reco	ncile Reveal		
Name	Hide	Active		Stat	us	Descr	iption	Delete
DS-1		1	Results A	vailable				×
Create New ID		×						
Enter ID:		i						
DS-1								
	ОК	Cancel						
	· · ·	, T			Y	· · · · · · · · · · · · · · · · · · ·		
🥝 Define 🛛 🥝	Spec 🛛 🥝	Vary For	tran [[Declaration	s EO Options	Comments		
Active								
Sampled v	ariables (dra	a and drop	variable	as from for	n to the grid hel	OW()		
		ig and drop	Valiable					
Varia	able				Defin	ition		
СМТ		Stream-Var	Stream	=CW-OUT	Substream=MIXE	D Variable=TEMP	Units=C	-
New	Delete	Сору		Paste	Move Up	Move Down	View Variables	
Edit selecte	d variable							
Variable	⊘сwт		• F	Reference -				
Category ————————————————————————————————————			Ty	ype	Stream-Var	-		
ο ΔΙΙ			St	tream:	CW-OUT	-		
			S	ubstream:	MIXED	-		
O Blocks			V	ariable:	ТЕМР	- 🏔		
Streams			U	nits:	с	•		
O Model Utili	ty							
O Droporty Do	ramatara							
Property Pa	rameters							
Reactions								

	🔮 Define	🕑 Spec	🥑 Vary	Fortran	Declara	tions	EO Optior	ns C	Comments				
	- Design spe	cification e	voressions										
	Spec	CWT	WT										
	Target	48											
	Toloranco	0.001								$- \parallel$			
	TOTETATICE												
	🥑 Define	Spec	🥑 Vary	Fortran	Declara	ations	EO Optic	ons	Comments				
	Manipulate	d variable			Manipulated variable limits								
	Туре	Strea	m-Var		Lower	er 100000							
	Stream:	CW-I	N	-	Upper		200000						
	Substream:	MIXE	D	-	Step siz	ep size							
	Variable:	MASS	S-FLOW	- (#	Maximum step size								
	Units:	kg/hi	•	-									
					Report	ino 1	line 2	Line	a3 line	4			
						ine i	Line Z	LIIK	e 5 Line	-			
					EO inpu	it —							
					Open v	ariable]			
					Descrip	tion							
(
	Сору	Paste		Clear									

9.Check the results:

		ſ	Sum	nmary	Spec H	istory	Statu 🎯	IS			
			Desig	gn spec	DS-1			-			
				ltera	tion	Variab	le value	Error	Error Tolerar	/ nce	
					1		100000	6.58635	658	6.35	
					2		101000	6.42213	642	2.13	
					3		140106	1.8382	18	338.2	
					4		155633	0.657066	657	.066	
					5		167482	-0.0969654	-96.9	9654	
					6		165838	0.00118203	1.18	3203	
					7		165858	7.52732e-07	0.000752	2732	
Re	sults	02	Status								
		Vai	Variable		Initial v		مايرە	Final va	Final value		Units
		vai	riable In				alue	Fillal value			Units
►	MANI	PULA	ATED				100000	165858 KG/H			

So now we can see that we need 165858 kg/hr to be able to reduce the saturator blow down to 65C. Now we switch to HEATX type to calculate other charachteristics of the heat exchanger.

54.5864

48 C

CWT

🥑 Mixed	Cl Solid	NC Solid	Flash Opt	ions	EO Options	Costing	Comments					
Specifications												
Flash Type	• 1	Temperature	-	ب	Composition —							
State var	riables —						Mass-Frac	-				
Tempera	ature		38	С	•		Compone	nt	Value			
Pressure			4.5	barg	•		WATER		100			
Vapor fra	action											
Total flo	w basis	Mass	-									
Total flo	w rate		165858		kg/hr 🔻							
Solvent					*							
Reference	ce Tempera	ature										
Volume	flow refere	ence temperat	ure									
	С	-										
Compon	nent concer	ntration refere	nce tempe									
	С	-										
							-	Total	100			

	🕑 Mixed	CI Solid	NC Solid	Flash Opt	tions	EO Options	Costin	ig	Comments				
(Specifications												
	Flash Type	· T	emperature	•	•	Com	position ———						
	State var	riables —						Ma	ss-Frac 🔹	·			
	Tempera	iture		100	С	•			Component	Value			
	Pressure			1.5	barg	•		-	WATER	100			
	Vapor fra	action								1			
	Total flo	w basis	Mass	-									
	Total flo	w rate		47200	kg/h	r •							
	Solvent					~							
	Reference	e Tempera	ture										
	Volume f	flow refere	nce temperat	ture									
		С	-										
	Compon	ent concen	tration refere	ence tempe									
	C												
									Total	100			

	Specifications	Streams I	LMTD	Pressure Drop	🕑 U Methods	Film	Coefficients	Utilities	Comments			
	Model fidelity		Hot f	luid	Shortcut flow direction							
	Shortcut		05	Shell	Ountercurrent							
	🔘 Detailed		© T	lube	Cocurrent							
	🔘 Shell & Tube				Multipass, calculate number of shells							
	🔘 Kettle Reboiler				🔘 Multi	pass, s	hells in series	1 🖁				
	Thermosyphon											
	🔘 Air Cooled											
	🔘 Plate											
	Calculation mode	Design		•								
	Exchanger specific	ation										
	Specification E	kchanger dut	y			-						
	Value			1926.18	kW	-						
	Exchanger area				sqm	-	Copy calcula	ited area to	input			
	Constant UA				cal/sec-K	-	Copy calcula	ited UA to i	nput			
	Minimum tempera	iture approac	h	1	С	-						
	Size Exchanger Specify Geometry Results											

Note:

For "Exchanger specification" option, there are different options to choose from. Remember that each specification gives a different calculation scenario for Aspen Plus to execute. They are as follows:

1. Hot stream outlet temperature: Specifies the outlet temperature of the hot stream, used for situations where there is no phase change on the hot stream side.

2. Hot stream outlet temperature decrease: Specifies the temperature decrease for the hot stream.

3. Hot outlet–cold inlet temperature difference: Specifies the temperature difference between the hot stream outlet temperature and the cold stream inlet temperature, used with the countercurrent flow.

4. Hot stream outlet degrees subcooling: Specifies the outlet temperature below the dew point for the hot stream, *used for boiling and condensation*.

5. Hot stream outlet vapor fraction: Specifies the outlet vapor fraction for the hot stream (1.0=sat. vapor and 0.0=sat. liquid), used for boiling and condensation.

6. Hot inlet–cold outlet temperature difference: Specifies the temperature difference between the hot stream inlet temperature and the cold stream outlet temperature, used with the countercurrent flow.

7. Cold stream outlet temperature: Specifies the outlet temperature of the cold stream, used for situations where there is no phase change on the cold stream side.

8. Cold stream outlet temperature increase: Specifies the temperature increase for the cold stream.

9. Cold stream outlet degrees superheat: Specifies the outlet temperature above the bubble point for the cold stream, used for boiling and condensation.

10. Cold stream outlet vapor fraction: Specifies the outlet vapor fraction for the cold stream (1.0=sat. vapor and 0.0=sat. liquid), used for boiling and condensation.

11. Exchanger duty: Specifies the amount of energy transferred from one stream to another.

12. Hot/cold outlet temperature approach: Specifies the temperature difference between the hot/cold stream outlet temperature and the cold/hot stream inlet temperature, *used with the countercurrent flow.*

10.Now run Aspen Plus and check the results.

By going to the thermal result, you can check the followings:

Summary	Balance	Exchanger Details	Pres Drop/Velociti	es Zones Ut	ility Usage 🛛 🥑 Status								
⊂ Heatx resu	C Heatx results												
Calculation	n Model	Shortcut											
		Ir	nlet	Outlet									
Hot stream	1:	BD-IN-2		BD-OUT-2									
Temperatu	re	100	с -	65	C 🔹								
Pressure		2.51325	bar 🗸	2.51325	bar 🔹								
Vapor fract	tion	0		0									
1st liquid /	Total liquid	1		1									
Cold stream	m	CW-IN-2		CW-OUT-2									
Temperatu	re	38	с -	48	C 🔹								
Pressure		5.51325	bar 🗸	5.51325	bar 🔹								
Vapor fract	tion	0		0									
1st liquid /	Total liquid	1		1									
Heat duty		1926.18	kW 👻										

11.Click TQ Curves and get the results.

0	TQ Curves Setup	TQ Profiles							
Curv	e ID INLET	•							
	Heat duty	Cold stream temperature	Hot stream temperature	Cold stream pressure	Hot stream pressure	Cold stream	Hot stream vapor fraction	Cold stream status	Hot stream
	MW -	с -	с -	bar 🔹	bar 🝷	vapor fraction			status
•	0	48	100	5.51325	2.51325	0	0	ОК	ОК
•	0.21402	46.8888	96.1264	5.51325	2.51325	0	0	ОК	OK
•	0.42804	45.7776	92.2482	5.51325	2.51325	0	0	ОК	OK
•	0.642059	44.6664	88.3657	5.51325	2.51325	0	0	ОК	OK
•	0.856079	43.5553	84.4791	5.51325	2.51325	0	0	ОК	ОК
•	1.0701	42.4442	80.589	5.51325	2.51325	0	0	ОК	OK
•	1.28412	41.3331	76.6955	5.51325	2.51325	0	0	ОК	OK
•	1.49814	40.222	72.7993	5.51325	2.51325	0	0	ОК	OK
•	1.71216	39.111	68.9006	5.51325	2.51325	0	0	ОК	OK
	1.92618	38	65	5.51325	2.51325	0	0	OK	ОК

Appendix

The description of each item is quoted from Aspen Plus built-in help.

1. "Heater": The basic heat exchanger model that performs simple energy balance calculations; it requires only one process stream. You can use "Heater" to represent heaters, coolers, valves, pumps (whenever work-related results are not needed), and compressors (whenever work-related results are not needed). You can also use "Heater" to set the thermodynamic condition of a stream. When the user specifies the outlet conditions, "Heater" will determine the thermal and phase conditions of a mixture with one or more inlet streams.

This block will be initially used in this running tutorial for calculating the heat duty, which will then be used to calculate heat-transfer area requirement.

2. "HeatX": The fundamental heat exchanger model that is used in a rigorous design; it will calculate energy balance, pressure drop, exchanger area, velocities, and so on and requires two process streams: hot and cold. "HeatX" can model a wide variety of shell and tube heat exchanger types and perform heat transfer related tasks, including

a) countercurrent and co-current exchangers

b) TEMA E, F, G, H, I/J, K, X shells (see Figure 10.19), and double pipe and multitube exchangers c) bare, low-finned, and longitudinal-finned tubes exchangers

d) single and double segmental baffles, rod baffles, and unbaffled exchangers

e) "HeatX" will perform the required calculations (all combinations of a

single-phase boiling or condensing heat transfer, with associated pressure drop calculations), returning key calculation results to be viewed within Aspen Plus.

f) perform mechanical vibration and Rhov2 (pv2) analysis

- g) estimate maximum fouling
- h) display setting plan and tube-sheet layout drawing.

"HeatX" can perform a full zone analysis with heat transfer coefficient and pressure drop estimation for single- and two-phase streams. For rigorous heat transfer and pressure drop calculations, you must supply the exchanger geometry. If exchanger geometry is unknown or unimportant, "HeatX" can perform simplified shortcut rating calculations. For example, you may want to perform only heat and material balance calculations. "HeatX" has correlations to estimate sensible heat, nucleate boiling, and condensation film coefficients. "HeatX" uses a rigorous heat exchanger program to perform these calculations. Available programs include "Shell&Tube", "AirCooled", and "Plate". Collectively, these programs are referred to as Aspen Exchanger Design and Rating (EDR).

This block will be used in this running tutorial for design calculations.

3. "MHeatX": As its name tells, a multi-heat-exchanger model can be used to represent heat transfer between multiple hot and cold streams, as in an LNG exchanger, for example. "MHeatX" can perform a detailed and rigorous internal zone analysis to determine the internal pinch points and heating and cooling curves for all streams in the heat exchanger. "MHeatX" can also calculate, UA, the multiplication of the overall heat transfer coefficient by the area, for the exchanger and model heat leak to or from an exchanger. "MHeatX" uses multiple heater blocks and heat streams to enhance flowsheet convergence. Aspen Plus automatically sequences block and stream convergence unless you specify a sequence or tear stream.

4. "HXFlux": A heat exchanger model that is used to perform heat transfer calculations between a heat sink and a heat source, using convective heat transfer and does not require any input or output material stream; nevertheless, you may add heat streams to substitute the heat exchange duty. The driving force for the convective heat transfer is calculated as a function of log-mean temperature difference (LMTD). The user has to specify all variables, except one, among inlet and outlet stream temperatures, duty, heat transfer coefficient, and heat transfer area. "HXFlux" calculates the unknown variable and determines the LMTD, using either the rigorous or the approximate method.

For the sake of calculating the heat duty that will be used to calculate the area requirement, let us use the first type, that is, "Heater".

Reference

- 1.Our team experience
- 2. Aspen Plus Chemical Engineering Application by KAMAL I.M. AL-MALAH
- 3.Aspen build-in help