

Part 6

Distillation Modelling in Aspen Plus

Part 1

In this tutorial, we will learn how to design a separation column using the various models and tools we have available in Aspen Plus. The basic strategy is:

1.Use a shortcut column to get an approximation for the optimal value of key parameters, such as reflux ratio and number of stages.

2.Use a rigorous column to get more accurate results using the suggested values.

3.Use optimization to narrow in on the best choice.

For this example, we will separate an equimolar mixture of acetone, isobutyraldehyde, ethyl acetate, and *n*-heptane, with normal boiling points shown below (note that it may differ from Aspen Plus's Databanks).

Acetone	56.1°C
Isobutyraldehyde	64.1–64.3°C (uncertainty)
Ethyl acetate	77.06–77.6°C (uncertainty)
<i>n</i> -Heptane	98.4°C

The mixture is at 30°C and 1 bar, at a rate of 200 kmol/hr. (I am not sure you'd ever find this mixture in the industry, but it makes for a good, contrived example with the precise properties I was looking

for.)

In this example, we will create a properties backup file. This means that all of your physical property settings are loaded in one file. You can then import that file over and over again into new

	09	Selection Petroleu	m Nonconventional Enterprise Database	Comments									
5	Select components												
		Component ID	Туре	Component name	Alias	CAS number							
	Þ	ACETO-01	Conventional	ACETONE	C3H6O-1	67-64-1							
		ISOBU-01	Conventional	ISOBUTYRALDEHYDE	C4H8O-2	78-84-2							
		ETHYL-01	Conventional	ETHYL-ACETATE	C4H8O2-3	141-78-6							
		N-HEP-01	Conventional	N-HEPTANE	C7H16-1	142-82-5							
	*												
		Find Elec Wi	zard SFE Assistant User Defined	Reorder									

simulations and flowsheets so that you can keep reusing the same physical properties package on all of them. Create a blank simulation and add the four above components. For the Methods type, choose UNIQ-RK. Verify that it worked by going to the Binary Interaction folder and looking at the UNIQ-1 parameters. Verify that the source is VLE-RK. If it is VLE-IG, it means you did something weird earlier, such as setting the wrong physical property package, and then when you switched to UNIQ-RK, these parameters did not change. If this is the case, change the source to VLE-RK and verify that the numbers changed. There should also be five pairs.

ſ	🥝 Global	Flowsheet	t Sections	Referenced	Comments				
	Property m Method filt	ethods & c ter	ALL	-	Method nan	ne •	Methods A	Assistant	
	Base metho Henry com	od ponents	UNIQ-RK	•	- Modify				
	Petroleun	n calculatio	on options -		Vapor EOS Data set	S E	SRK	1	
	Water sol	ubility	3	-	Liquid gan	nma 🤇	GMUQUAC	V	
	Electrolyt	e calculatio	on options		Data set Liquid mo	lar enthalpy	HLMX31	1 💓	
	Use tr	ue compon	ents	•	Liquid mo	lar volume 🛛 🛛 V f mixing	/LMX01	-	
					Poynting correctionUse liquid reference state enthalpy				

	🕑 İn	out 🔮 Databanks	Comments												0
Pa	aram T	eter UNIQ	H	lelp Data set	1	Swap	Enter Dechema I	Format 🔲 E	stimate using U	JNIFAC Vie	ew Regression Ir	nformation	Search	BIP Complete	eness
	Iem	Component i	nary parameters Component j 🏹	Source 🖷	Temp. Units 🏹	AU 🏹	AJI 🏹	BIJ 🏹	BJI 🏹	CU Tij	CII T,	DIJ 🏹	DJI 🏹	TLOWER 🏹	TUPPER 🏹
		ACETO-01	ISOBU-01	APV120 VLE-RK	с	0	0	132.588	-210.63	0	0	0	0	25	55
	•	ACETO-01	ETHYL-01	APV120 VLE-RK	c	0	0	38.8767	-71.9375	0	0	0	0	39.3	75.3
		ACETO-01	N-HEP-01	APV120 VLE-RK	c	0	0	42.921	-285.72	0	0	0	0	40	50
		ISOBU-01	N-HEP-01	APV120 VLE-RK	c	0	0	33.5477	-160.959	0	0	0	0	45	45
		ETHYL-01	N-HEP-01	APV120 VLE-RK	c	0	0	12.3345	-119.796	0	0	0	0	50	70

- (🕑 Input	🥑 Data	abanks	Comme	nts					
	C	Select dat	abanks a	and their	r search oi	rder —					
		Available	databan	iks		Selecte	d data	abanks			
		APV120	VLE-LIT	r		APV12	20 VL	E-RK			
		APV120	VLE-IG			APV12	20 LLI	E-LIT			
		APV120	VLE-HO			APV12	20 LLI	E-ASPEN			
		NISTV12		HOC							
		NISTV12	20 NIST	EOS							
		NISTV12		RK							
					>>						
					<				-		
					<<						
	-				Ĩ	-	ĩ				
g Setup	Pu	ire Comp	onent	T-Dep	endent	Se Bin	ary	UNIFAC	Group	Comm	ents
Estimation	n op	otions —									
🔘 Do not	est	imate an	y param	eters							
🖲 Estima	te a	II missing	parame	eters							
🔘 Estima	te c	only the se	elected p	paramet	ers						
Paramet	er t	ypes —									
🔽 Pure	cor	nponents	scalar pa	aramete	rs						
🔽 Pure	cor	nponent t	tempera	ture-de	pendent p	property	y corr	elation pa	rameter	S	
🔽 Binar	y ir	teraction	parame	eters							
U NIE	AC	group pa	rameters	S							

Notice that one of the pairs, Isobutyraldehyde–Ethyl Acetate, does not exist in the databank. When this happens, you can either find your own in the literature or you can try to use the UNIFAC method to estimate the vapor-liquid equilibria (VLE) parameters for you. The UNIFAC method is a group-contribution method that looks at the shape and structure of a molecule and then uses certain heuristics to try to predict how it will interact with other molecules. This is built into Aspen Plus, and so we're going to use it here to predict the missing UNIQUAC coefficients.

So, let's get the Properties feature to finish the job for us. Go to the Properties | Estimation | Binary tab. The Binary tab is disabled unless, on the Setup tab, you select Estimate all missing parameters (see Figure 5.1).

Click New to create a new parameter to estimate and choose UNIQ. For the method, choose UNIF-DMD (the UNIFAC method with the Dortmund modification—the most modern and accurate in the general case). Then below that, select the two missing binary pairs. To the right, you select the temperature range of validity. The UNIFAC method may generate different parameters that are better at different temperatures. So, you can choose to have it be optimized for one specific temperature, or sort of averaged out over a range of temperatures. Typically, it makes sense to choose the two normal boiling points (64.3°C and 77.6°C) as shown in Figure 5.2, because two-phase behavior will usually occur inside that range. However, you may want to try different temperatures if your application calls for higher pressures, if there is a low-boiling azeotrope, or if it will be apart of a VLE mixture with other chemicals at different temperatures.

	🥝 Setup	Pure Component	T-Dependent	🥝 Binary	UNIFAC Group	Comments		
P	arameter	< UNIQ		▼ >	New	Delete		
Ν	lethod	UNIF-DMD						
ſ	Compone	ents and estimation m	ethods					
		Component i	Compo	nent j	Temperature	e Tem	perature	Temperature
	→ ISO	BU-01	ETHYL-01		6	4.3	77.6	
	*							

Ok! Next, in order to use the UNIFAC method, we have to tell Aspen Plus what the molecular structure of the components is, since they are not kept in the databank. To do this, go to Properties |Components | Molecular Structure. Click on Isobutyraldehyde for now.

The idea is that you list the atoms and how they are bonded to their neighbors. You can make up any numbering system you want.

Note, there is a shortcut you can apply. Often the structure is already stored in the databank for many molecules, even though the table is empty. So you can do a trick to get the structure to be automatically loaded into the table for you, so you don't have to type it. We're going to do this for ethyl acetate. Go to the Structure tab of ethyl acetate and ensure that the picture of the molecule is there. If it looks right, click on Calculate Bonds to convert it to the same kind of table as before

	Gener	al Stru	icture and Func	tional Group	Sermi	ıla Comme	ents					
	Graphica	al Structu	ire O II	F	unctional (Method	Group			•			
		H₃C			Functiona Group	l Group Type	Add		-			
	Draw	/Import/	Edit									
	Calc	ulate Bor	nds									
	🥝 Ge	neral	Structure a	and Functio	nal Grou	ip 🛛 🥑 Fo	rmula	Comments				
	Define molecule by its connectivity											
		Atom	1 Number	Atom 1	Туре	Atom 2 N	umber	Atom 2 Type	Bond type			
	•		1	с			2	с	Single bond			
	•		1	с			3	с	Single bond			
	•		1	с			4	с	Single bond			
			2	с			5	0	Double bond			
	*											
	🅑 Genei	ral Stru	ucture and Fund	ctional Group	Ser Form	ula Comm	ents					
	Graphic	al Struct	ure		Functional	Group						
		0			Method				•			
					Group	ar Group Type			•			
	н₅с́	\wedge	\sim	сн₁	Group		Add					
	Draw	/Import/	/Edit									
	Calc	ulate Bo	nds									
	🎯 Ge	eneral	Structure a	and Functic	nal Grou	ip 🛛 🥝 Fo	rmula	Comments				
	Defir	ne mole	ecule by its	connectivit	у ———							
		Atom	1 Number	Atom 1	Туре	Atom 2 N	umber	Atom 2 Type	Bond type			
	•		1	c			2	c	Single bond			
	•		2	с			3	0	Single bond			
	> 2 C				4	0	Double bond					
			5	с			3	0	Single bond			
l			5	c			6	c	Single bond			

You can also draw a molecule graphically with the Draw/Import/Edit button (see Figure 5.5). This is really useful later in life for drawing molecules if you just want nice images to use, or if you are making a new molecule that isn't in the database. Although the Aspen Properties database is quite extensive, you may need to do this someday for specialty chemicals, pharmaceuticals, or just rare chemicals. When you are done looking at the molecule, make sure ethyl acetate has data in the General tab too.

Almost done! Next, we just need to check a box that tells Aspen Plus to put the results in a convenient place rather than burying them in a text file somewhere. Go to Setup | Report Options | General, and make sure the box "Generate a report file" is checked. Ok, now click Run (or hit F5). This will compute your estimate. You should see the result in the Methods | Parameters | Binary Interaction | UNIQ-1 form, with a new column added for Isobutyraldehyde–Ethyl Acetate. Double-check and make sure the TLOWER and TUPPER are in the temperature units you expected. Otherwise, you need to revise your Estimation | Input entry.

Now, save your result. Then go to File | Export | File, and export to an Aspen Properties Backup File (. aprbkp). This file can be used for all future Aspen Plus files (and even likely future versions of the program) so you don't have to do this again every time you want to make a new file.

Ok, let's start the distillation design process with a shortcut distillation column model. Although you could just go to the Simulation tab to get started, let's do it a different way so we can practice how to use the backup file. So, for example, in a team design project, someone might probably want to make a master properties backup file that everyone else uses for their own flowsheets. That way, everyone on your team has the exact same physical property models with the same chemicals named exactly the same way and in the same order. Create a new blank simulation. Once it opens, go to File | Import | File and import the. aprbkp file that you just made. To verify that it worked, check out the binary interaction pairs and the property methods.

Mport 🖉			×
\leftarrow \rightarrow \checkmark \uparrow \blacksquare « Tu	torial > Aspen Plus > Examples >	∽ C Search Ex	amples $ ho$
Organize New folder			≣ • □ ?
Instruction	Name	Date modified	Туре
Screenshots	PFRCOMPRESSOR_2	7/3/2023 2:53 PM	File folder
Examples	Polymer	6/23/2023 1:27 AM	File folder
Documents	Safety analysys	6/22/2023 7:28 AM	File folder
	Tray Sizing	7/4/2023 10:35 AM	File folder
> CneDrive	Tray Sizing_1	7/4/2023 1:16 PM	File folder
This PC	Mixture Seperation	7/4/2023 10:50 AM	Aspen Properties
> 🏪 Local Disk (C:)	鸐 Property check	6/17/2023 3:58 PM	Aspen Properties
> 📥 Local Disk (D:)			
File name: Mix	ture Seperation	✓ Aspen Pr	operties Backup Files (🗸
		Оре	n Cancel

DSTWU is a shortcut distillation model in which an estimate of the reflux ratio or the number of stages can be made given the desired separation result. In this case, you tell Aspen Plus what the recovery factors should be and it computes the rest. However, this assumes ideal behavior, which never happens in reality.

Therefore, it serves mostly as a great starting guess for something more rigorous down the road. Simulate the separation of a 200 kmol/hr of 30°C, 1 bar equimolar mixture of the four components shown in the table.

S4	D	STW	osting]¢>
Specifications		-	Composit	tion	
Flash Type Tem	perature 🔻	Pressure •	Mole-Fr	ac 🗸	*
State variables	20	<u> </u>			
Pressure	1	har T		omponent	Value
Vapor fraction	•	bui	ACE	TO-01	0.25
Total flow basis	Mole •		ISO	BU-01	0.25
Total flow rate	200	kmol/hr 🔻	EIH	YL-01	0.25
Solvent			N-H	IEP-01	0.25
Reference Temperature Volume flow reference C Component concentra	e temperature tion reference tempe	erature			
				Total	1

Use the DSTWU model. Assume the column is also at 1 bar throughout. Let's assume the goal is to obtain 96.5% recovery of isobutyraldehyde in the distillate. In addition, we want 96.5% recovery of ethyl acetate in the bottoms. This is summarized in Table 5.1.

Table 5.1 Desired Separation for a Mixture of Four Chemicalsfor This Example									
Chemical	B.P. (°C)	Specification							
Acetone	56.1	Very high recovery (>>96.5%) in the distillate							
Isobutyraldehyde	64.3	96.5% recovery in the distillate							
Ethyl acetate	77.6	96.5% recovery in the bottoms							
n-Heptane	98.4	Very high recovery (>>96.5%) in the bottoms							

DSTWU requires the desired output conditions to be specified in terms of the molar recoveries of the heavy and light keys. This can be a little confusing at times. Looking at Table 5.1, you can see that the chemicals are arranged from top to bottom in terms of increasing boiling points, meaning that acetone is the lightest and *n*-heptane is the heaviest. For this example, we desire that in the ideal case, we want all of the acetone and isobutyraldehyde to leave via the distillate and the ethyl acetate and *n*-heptane to leave through the bottoms. The *light key* characterizes what is leaving in the distillate: it is the *heaviest* (or least volatile) of all of the chemicals that we want to leave through the distillate, so in this case, it is isobutyraldehyde. Similarly, the heavy key characterizes the bottoms product: it is the *lightest* (or most volatile) of the chemicals leaving through the bottoms, so in this case, it is ethyl acetate. So, we enter into DSTWU that isobutyraldehyde is the light key, and we want 96.5% of it to leave through the distillate (we are being realistic that we can't get all of it). Note that molar recovery is not mole purity! We also must specify ethyl acetate to be the heavy key, but instead of saying that we want 96.5% of it to leave through the bottoms, we have to actually specify the opposite, that is, we want 3.5% recovery of ethyl acetate in the distillate. Tricky, but that's how it is. Then, the model already knows that acetone is more volatile than isobutyraldehyde, so it will also leave mostly through the distillate (with much higher recovery than isobutyraldehyde, in fact), and that *n*-heptane will leave through the bottoms since it is less volatile than ethyl acetate.

Speci	fications	🕜 Calcu	lation Optior	ns	Convergence	Comments	
Column Num Reflu	specificati ber of stag x ratio	ons —— Jes	22 🖁	< 5	Pressure Condenser Reboiler	1	bar - bar -
Key com Light ke Comp Recov Heavy k	nponent re y ISOBU-C ey	coveries - 01	• 0.965		Condenser sp Total cond Partial cond vapor dist Partial cond and liquic	pecifications – denser ndenser with a tillate ndenser with v d distillate	ll apor
Comp Recov	ETHYL-C	01	• 0.035		Distillate vap	oor fraction	0

The DSTWU model uses shortcut calculations developed over seven decades ago, and is limited in accuracy because it uses certain assumptions to greatly simplify the calculations to make it possible to design a distillation column "by hand." Despite this, it is still useful in the modern computer age because it can be used to make predictions about the trade-offs between reflux ratio and the number of stages required to achieve a certain purity in the products. In

general, the higher the number of stages, the lower the reflux ratio required, and vice versa.

Often, at the beginning stage of designing a distillation column, the designer has little information about what the number of stages and the reflux ratio should be or even a feasible range. DSTWU is useful to estimate these numbers. In general, you specify either the reflux ratio or the number of stages, and then it will estimate what the other value should be in order to achieve the separation objectives that you require.

Be careful though: it is possible to guess a number that is too low. There is a certain minimum number of stages and minimum reflux ratio that are necessary to achieve your desired separation. So if you guess too low, you'll get an error message. Since it's hard to know what that minimum is when you are first getting started, it makes sense to guess something extremely high, just so you avoid the error. Sure, you'd probably never want to design a column with that large a reflux ratio or number of stages, but we need something to work for our first run-through. So, let's guess an extremely high reflux ratio of 45. Run the simulation. Check the stream results to make sure they make sense, and then answer the following by looking at the Results tab of the DSTWU block.

Sur	mmary	Balance	Reflux Ratio Profil	e 🥑 Status		
	Minimu	ım reflux ra	tio	1.31484		
	Actual	reflux ratio		45		
	Minimu	ım number	of stages	12.5132		
	Numbe	r of actual :	stages	12.916		
	Feed st	age		6.68376		
	Numbe	r of actual :	stages above feed	5.68376		
	Reboile	er heating re	equired	9.71569e+06 cal/sec		
	Conder	nser cooling	required	9.62687e+06	cal/sec	
	Distillat	te temperat	ure	57.8848	с	
	Bottom	n temperatu	re	76.9801	с	
	Distillat	te to feed f	raction	0.519188		
►	HETP					

Ok, so since 45 is high, let's look at what happens if we change the reflux ratio. Fortunately, DSTWU will give us a nice plot. In the Block | Input, go to the Calculation Options tab, then check "Generate table of reflux ratio versus number of theoretical stages." Sounds good! But we need a range. The lowest number of stages is going to be your answer from Q3, as this signified operation at total reflux. We don't really know the highest number of stages yet. Let's try something large, like 50. We can see if this is a good guess later. Change the "increment size" to be 1. Basically, Aspen Plus will rerun the simulation for stage numbers from Q3 to 50 in steps of 1 and then compute a reflux ratio required for each. Rerun the simulation. Go back to the DSTWU Results form and then go to the Reflux Ratio Profile tab. Remember, you can use the Custom button in the Plot section of the Home ribbon, or the Ctrl+Alt+X, Ctrl+Alt+Y, Ctrl+Alt+P shortcuts to plot, hopefully getting something like Figure 5.6. The idea of the plot is to choose something that has a low reflux ratio, but before it gets "flat" (adding extra stages doesn't really help much). That's a good heuristic to use in the absence of cost data to have a reasonable trade-off between capital and operating costs. In general, increasing the number of distillation stages increases its capital cost and reduces its operating cost, while reducing the number of stages reduces its capital cost and increases its operating cost.

Specifications	Calculation Option	ns Convergence	Comments							
Options Generate table of reflux ratio vs number of theoretical stages Calculate HETP										
Table of actual refl	ux ratio vs number of	theoretical stages –								
Initial number of st	tages	12								
Final number of sta	ages	50								
Increment size f	or number of stages	1								
🔘 Number of valu	es in table	11								
Significant digits d	isplayed in table	5 •								
- HETP calculation -										
Packed height		mete	r 👻							

Su	mmary	Balan	ce	Reflux Rati	o Profile	Status
	Theoretical stages		R	eflux ratio		
►	13			20.8153		
	14			8.04268		
	15			5.54625		
	16			3.6779		
	17			2.9832		
	18			2.66124		
	19			2.44504		
	20		2.27355			
	21			2.12164		
	22			1.97278		
	23			1.8174		
	24			1.69033		
	25			1.61756		
	26			1.57351		
	27			1.54312		
	28			1.5205		
	29			1.50273		
	30			1.48823		
	21			1 //7600		

Custom	_	×
X Axis: Theoretical stages		
Y Axis:		
Select all		
Reflux ratio		
	ОК	Cancel

For example, if I have a column with 14 stages, I would require a reflux ratio of around 8, but if I pay for just one more stage, I can bring the reflux ratio down to about 5.5, for roughly a 32% reduction in energy costs. So, it's worth it to go from 14 to 15. And I would argue it's worth it to go further to 16 stages. On the other hand, if I have a column that is 24 stages, I can only get a very small reduction in the reflux ratio if I add a 25th stage, so it might not be worth paying for the extra tray at that point.

Q5) What is the fewest number of stages in which the reflux ratio is below 2?

Choose your answer in Q5 as the final design condition. Now, let's predict the best possible location for the feed tray. Simply rerun the simulation again with your new choice. Verify that the actual reflux ratio calculated is the same as the plot from Q5.

🥝 Specifi	cations	Calculation Options	Convergence	Comments				
Column s Numb Reflux	specificati per of sta <u>c</u> cratio	ons ges 22 💭 45	Pressure Condenser Reboiler	1	bar • bar •			
Key com Light key	ponent re	coveries	Condenser s Total con	pecifications - denser				
Comp	ISOBU-	D1 -	Partial condenser with all vapor distillate					
Recov		0.965	Partial co and liquid	ndenser with v	apor			
Heavy ke	У		ana ngan					
Comp	ETHYL-0	01 -	Distillate va	por fraction	0			
Recov		0.035						

Su	mmary	Balance	Reflux Ratio Profil	e 🧭 Status	
►	Minimu	im reflux ra	tio	1.31484	
	Actual r	reflux ratio		1.97282	
	Minimu	m number	of stages	12.5132	
	Numbe	r of actual s	stages	22	
	Feed sta	age		10.6812	
	Numbe	r of actual s	stages above feed	9.6812	
	Reboile	er heating re	equired	709561	cal/sec
	Conden	ser cooling	required	620737	cal/sec
	Distillat	te temperat	ure	57.8848	С
	Bottom	temperatu	re	76.9801	С
	Distillat	te to feed fi	raction	0.519188	
	HETP				

ſ	Su	ımmary Balance	Reflux Ra	tio Profile 🛛 🥑 Status			
		Total		Units	In	Out	Relative difference
	►	Mole		kmol/hr	200	200	0
		Mass		kg/hr	15924.9	15924.9	0
L		Enthalpy		cal/sec	-3.96179e+06	-3.87296e+06	-0.0224202

Duplicate your feed by using Dupl block from the Manipulators section of the Model Palette. Dupl basically takes an input and makes copies of it (all the same flow rate and everything). It's there for convenience in modeling and is usually used for "what-if" scenarios, where each branch downstream of the Dupl is a different model or a different option to consider. It is not an actual piece of equipment. Have one stream leaving the Dupl route to the DSTWU block (so it should be the exact same thing as before). Have another stream leave the Dupl block and route into a new RadFrac block. Use your answers from above as the new settings in the RadFrac block.

Let's use Murphree vapor efficiencies to make our simulation somewhat less ideal. Go to Efficiencies of the RadFrac block. In the Vapor-Liquid tab, specify that the Murphree stage efficiencies from stages 1 to 10 will be 82% (0.82), and from 11 until the bottom of the column will be 73% (0.73). You need not type each stage in the box, and Aspen Plus will linearly interpolate between them. So, for example, if you enter just stage 1 as 0.82 and 10 as 0.82, then stages 2 through 9 will also be 82%. Note these are stage efficiencies, so even though stage 1 is the condenser/flash drum and the highest stage is the reboiler, they too have efficiencies.

Configuration Streams	🥑 Pressure	Condenser	Reboiler	3-Phase	Comments			
Setup options								
Calculation type		Equilibrium	•					
Number of stages	Ì		22 🚭	Stage W	/izard			
Condenser		Total			-			
Reboiler		Kettle			•			
Valid phases		Vapor-Liquid			•			
Convergence		Standard -						
Operating specifications								
Reflux ratio	-	Mole		~				
Distillate to feed ratio	•	Mole - 0.51						
Free water reflux ratio		0 Feed Basis						
Design and specify column intern								

0	Configuration	Streams 🎯	Pressure	Condenser	Reboiler	3-Phase	Comments			
Fee	ed streams —									
	Name	Stage		Convention						
►	S5		11 Above-S	tage						
Due										
PIO	Name	Stage	Phas	٥	Basis	Flow	Units	Flow Ratio	Feed Specs	
	C6	Juge	Liquid	Mole	Dusis	1101	kmol/hr	now nutlo	Food basis	
F	30		Liquid	MOIE			KIIIOI/III		reed basis	
	S7	22	Liquid	Mole			kmol/hr		Feed basis	
~ Pse	eudo streams —									
	Name	Pseudo Stre Type	am Stage	Internal Phase	e Reboiler Pha	ase Rebo Condi	oiler Pump itions	oaround Pumpa ID Condi	round Flow itions	Units

Configura	ation	Streams	Pressure	Condenser	Reboiler					
View Tee / Detters										
view	Top 7	вошот		•						
_ Top stage /	Conde	nser pressure -								
Stage 1 / Co	ondens	er pressure		1 bar	•					
Stage 2 pre	ssure (d	optional)								
Stage 2	oressur	e		bar 🔻						
Condens	er pres	sure drop		bar	-					
Pressure drop for rest of column (optional)										
Stage pr	essure	drop		bar	•					
Column	pressur	e drop		bar	-					

Material	Heat	Load	Vol.% Curves	Wt. %	Curves	Petroleum	oleum Polymers Solids						
					Units		S5	•	S6 •	S7 •			
•	Mass Enth	alpy			cal/gm		-89	5.607	-875.485	-876.143			
•	Molar Ent	ropy			cal/mol	-K	-11	5.139	-89.5156	-133.234			
•	Mass Entr	ору			cal/gm-	-К	-1.4	4603	-1.31279	-1.45566			
•	Molar De	nsity			mol/cc		0.0097	5824	0.0109545	0.00789806			
•	Mass Den	sity			gm/cc		0.776993		0.746954	0.722897			
•	Enthalpy l	Flow			cal/sec		-3.96179	e+06	-1.69141e+06	-2.183e+06			
•	Average N	WN					79.6243		68.1871	91.5284			
+	Mole Flow	NS			kmol/h	nr		200	102	98			
	Mole Fra	ctions											
•	ACETO	D-01						0.25	0.488304	0.0019689			
	ISOBU-01							0.25	0.390101	0.10418			
•	ETHYL-01							0.25	0.0402462	0.468315			
•	N-HE	P-01					0.25		0.0813483	0.425535			
+ +	Mass Flo	ws			kg/hr		159	24.9	6955.08	8969.78			

N	laterial	Heat	Load	Vol.% Curves	Wt. %	Curves	Petroleum	Polymers	Solid	S	
							Units	S5	•	S6 •	S7 •
Þ	Mass Enthalpy							-89	5.607	-873.292	-877.789
►	Ν	lolar En	tropy			cal/mol	-K	-11	5.139	-89.3228	-133.483
►	Ν	lass Enti	гору			cal/gm-	-K	-1.4	4603	-1.31271	-1.45601
	Ν	lolar De	nsity			mol/cc		0.0097	5824	0.0109734	0.00788587
►	N	lass Der	nsity			gm/cc		0.776993		0.746681	0.722952
►	E	nthalpy	Flow			cal/sec		-3.96179	e+06	-1.68364e+06	-2.19065e+06
►	A	verage	MW					79.	.6243	68.0445	91.6768
►	+ N	lole Flo	ws			kmol/hr		200		102	98
►	- N	lole Fra	ctions								
₽		ACET	O-01						0.25	0.489228	0.00100772
₽		ISOBU	J-01		0.25		0.396045	0.0979935			
	ETHYL-01						0.25	0.0350141	0.473761		
		N-HE	P-01						0.25	0.0797125	0.427238
	+ N	lass Flo	ws			kg/hr		159	924.9	6940.54	8984.33

Part 2

Design a distillation column that will separate a feed of 100 kmol/hr of 50 mol% water and 50 mol% methanol at 25°C and 1.4 bar, into 99 mol% methanol and 99% water. Use PSRK as the property method. The following procedure is recommended to design the column:

1.Use a DSTWU model to obtain a number of stages (N) versus RR profile for the separation and pick a suitable N.

2.Use DSTWU to estimate the RR, distillate-to-feed (D:F) ratio, and feed stage at that N.

3.Using the conditions obtained from DSTWU remodel the separation using the more rigorous RadFrac (equilibrium-based mode) model.

\square	🥝 Mixed	CI Solid	NC Sol	id Flash Op	tions	EO Options	Costir	ng	Comments	
(Specifi 	cations								
	Flash Type	e (Temperat	ture 👻	Pres	sure	•	Com	position	
	State var	riables —						Mo	ole-Frac 🔻	Ψ
	Tempera	ature		25	С	•			Component	Value
	Pressure			1.4	bar	•			METHA-01	50
	Vapor fra	action						•	WATER	50
	Total flo	w basis	Mol	e -						1
	Total flo	w rate		100 kmol/hr 🔹						
	Solvent					T				
	Reference	e Temper	ature							
	Volume	flow refer	ence temp	erature						
		С	Ŧ							
	Compon	ent conce	entration re	eference temp	erature	9				
		С	T							
									Total	100

🥝 Specifi	ications	Calculation Options	Convergence	Comments	
Column s Numb Reflux	specification oer of stage cration	ions ges 25 💽 45	Pressure Condenser Reboiler	1 1	bar ▼ bar ▼
Light kev	ponent re	coveries	Condenser s	denser	
Comp	METHA	-01 🔻	Partial co vapor dis	ndenser with a tillate	Ш
Recov		0.99	Partial co	ndenser with v	apor
Heavy ke	y		and liquid	d distillate	
Comp	WATER	•	Distillate va	por fraction	0
Recov		0.01			

Su	mmary	Balance	Reflux Ratio Profil	le	Status	
►	Minimu	im reflux rat	tio		0.536565	
	Actual r	reflux ratio			45	
	Minimu	im number	of stages		7.25409	
	Numbe	r of actual s	stages		7.44738	
	Feed st	age			5.75006	
	Numbe	r of actual s	stages above feed		4.75006	
	Reboile	er heating re	equired	5.6	67254e+06	cal/sec
	Conden	nser cooling	required		5.641e+06	cal/sec
	Distillat	te temperat	ure		64.3764	С
	Bottom	temperatu	re		97.8267	С
	Distillat	te to feed fi	raction		0.5	
	HETP					

Specifications	Calculation Opti	ons	Converg	ence	Comments	
Options						
Generate table	of reflux ratio vs nur	nber (of theoret	ical sta	iges	
Calculate HETP						
Table of actual refl	ux ratio vs number o	f theo	oretical sta	ages –		
Initial number of st	tages			8		
Final number of sta	ages			50		
Increment size f	for number of stages					
Number of value	es in table			11		
 Significant digits d	lisplayed in table	5		Ŧ		
- HETP calculation -						
Packed height				mete	r 👻	

Let's use a 25-stage column as an example (change the number of stages in your column). Remember, the trays are on stages 2–24 since stage 1 is the (total) condenser and stage 25 is the reboiler. To make sure we are on the same page, feed to stage 12 (abovestage).

Configuration	on 🥝 Streams	🕜 Pressure	Condenser	🕜 Reboiler	3-Phase	Comments	
Setup options							
Calculation typ	be		Equilibrium	-			
Number of sta	ges			25 🝣	Stage W	Vizard	
Condenser			Total			-	
Reboiler			Kettle			•	
Valid phases			Vapor-Liquid			•	
Convergence			Standard			•	
Operating spe	cifications						
Reflux ratio		•	Mole	•	0.59		-
Distillate to f	eed ratio	-	Mole	-	0.5		-
Free water refl	ux ratio		0		Feed Basi	s	
Design and sp	ecify column inte	rnals					

⊘C(onfiguration	Streams	🥝 Pressure	Condenser	🗌 🥑 Reboil	ler 3-Phase	Comments				
Feed	d streams ——										
	Name	Stage		Convention							
►	S6		Above-S	Stage							
Prod	luct streams —										
Prod	luct streams — Name	Stage	Phas	se	Basis	Flow	Units	Flow F	Ratio	Feed Specs	
Prod	duct streams — Name S7	Stage 1	Phas Liquid	se Mc	Basis	Flow	Units kmol/hr	Flow F	Ratio	Feed Specs Feed basis	
Prod	duct streams — Name S7 S8	Stage 1 25	Phas Liquid Liquid	se Ma	Basis Ile	Flow	Units kmol/hr kmol/hr	Flow F	Ratio	Feed Specs Feed basis Feed basis	
Prod	Juct streams – Name S7 S8	Stage 1 25	Phas Liquid Liquid	se Ma Ma	Basis Ile	Flow	Units kmol/hr kmol/hr	Flow F	Ratio	Feed Specs Feed basis Feed basis	
Prod	duct streams Name S7 S8 ido streams	Stage 1 25	Phas Liquid Liquid	se Ma	Basis Ile Ile	Flow	Units kmol/hr kmol/hr	Flow F	Ratio	Feed Specs Feed basis Feed basis	

Configura	ation	Streams	Pressure	00	Condenser	🕜 Rebo	iler
View	Top /	Bottom		•]		
Top stage /	Conde	nser pressure -					
Stage 1 / Co	ondens	er pressure		1 b	ar	-	
- Stage 2 pre	ssure (a	optional) —					
Stage 2 p	oressur	e		b	ar	-	
Condens	er pres	sure drop		b	ar	-	
Pressure dro	p for r	est of column	(optional) —				
Stage pr	essure	drop	0.0)2 b	ar	-	
Column	pressur	e drop		b	ar	-	

Materia	Heat Loa	ad Vol.% Curves	Wt. %	Curves	Petroleum	Polymers	Solid	5	
					Units	S6	T	S7 •	S8 •
	Molar Enthalp	у		cal/mo		-628	300.4	-57040.4	-66178.4
•	Mass Enthalpy	/		cal/gm		-250	09.13	-1829.89	-3504.1
	Molar Entropy	/		cal/mo	I-K	-47.	7508	-53.9816	-35.6371
•	Mass Entropy			cal/gm	-K	-1.9	0784	-1.73176	-1.88696
•	Molar Density	,		mol/cc		0.025	8959	0.0183276	0.0363905
•	Mass Density			gm/cc		0.64	8141	0.571298	0.687271
•	Enthalpy Flow	r		cal/sec		-1.74445	e+06	-792228	-919144
•	Average MW					25.	0287	31.1715	18.886
	Mole Flows			kmol/h	nr		100	50	50
•	METHA-0	1		kmol/h	r		50	46.8964	3.10365
•	WATER			kmol/h	r		50	3.10365	46.8964
	Mole Fraction	ns							
	METHA-0	1					0.5	0.937927	0.062073
•	WATER						0.5	0.062073	0.937927

In your RadFrac model, go to Column Internals and add a new internals folder (mine is called INT-1). If you get a message about the simulation missing hydraulic data, click Generate. If you click Cancel, that's ok. You will just need to run the simulation again later. In [internals folder] | Sections, select Based on Flows from the Auto Section drop-down button, as shown in Figure 8.5. This will automatically create column sections for you by grouping stages together based on similar internal flow rates.

	Add New Duplicate			
	Internals	Description	Design Basis	Delete
►	INT-1		٢	×

	Sections													
Sta	atus Inactin	ive	Column description	uto Section 💌 Dupli	cate Import T	emplate Exp	port Template	This column l	has gaps: 2-2 Summary	24.				
	2		Name	Based on Feed/Draw Lo Based on Flows	ocations	Tray/Packing Type	Tray I	Details		Packing Detai	ls	Tray Spaci Packed	ng/Section I Height	Diameter
]	Number of Passes	Number of Downcomers	Vendor	Material	Dimension			
			Oon't update press	ure drop										
			O Update pressure dr	op from top stage										
→	12	-	O Update pressure dr	op from bottom stage										
			Include static vapor	r head in pressure drop c	alculations									
			Calculate pressure	drop across sump										
			Sump											
			Diameter		meter -									
			O Liquid residence t	time 0.0166667	hr 👻									
			O Liquid level		meter 👻									

Aspen Plus divides the column into sections and automatically calculates the diameter of these different sections. Although the numbers that Aspen Plus calculates are called the "diameter," it is really a *minimum* diameter that is required to ensure that flooding is avoided within a certain safety factor. Check that the tray spacing of the column sections is 2 ft. (0.6096 m). The only other common standard option used in industry is 1.5 ft. (0.4572 m), but often the 1.5 ft. option is too close together and may cause flooding. Anything else except those two are usually custom orders, and way more expensive than just buying off-the-shelf tray stacks with 2 ft. spacing. If you had clicked Generate in response to the warning message when adding the column internals, then you should see somenumbers in the Diameter column of the Column Internals table, indicating what the minimum diameter should be. If you had clicked Cancel, run the simulation again and the numbers should be generated and appear on this form. You are welcome to play with other criteria such as grouping by where feed and side draws are located, or defining your own sections. We can do more advanced stuff for our column design. For example, in Sections | CS-1 | Design Parameters there are several changes we can make to the Sizing criterion, Hydraulic plots/Limits, Design factors, and Calculation methods. The two key items are the % Jet flood for

design and the Jet flood calculation method, as shown in Figure 8.6. The Fair72 method is the most commonly used way of computing the flooding velocity. Basically, it is an equation that takes as input the tray diameter, the tray spacing, the liquid and vapor compositions, the liquid and vapor surface tensions, and the liquid and vapor flow rates, and computes what the flow rate of the liquid has to be for the tray to start flooding. So above this flow rate, the tray will flood (and fail), but below it, the tray will function. Bigger diameters mean the flooding velocity will also be bigger (i.e., they can handle a higher capacity because it takes more flow to flood the tray). So what we are asking Aspen Plus to do is to solve this equation backward to predict the diameter at which flooding will occur, and return a value for each column section. You would then want to make sure your actual diameter is bigger than this.

	🅑 Geo	metry	🕝 De	sign Parameters	Tray G	Seom	etry Surr	nmary				
N	ame	CS-1		Start stage		2	End sta	age		11	Status	Active
	-Sizing % let	g criteric	on —	ncomer choke flo	bod		80					
	Minin	num dov	wncome	er area / Total tra	y area		0.1					
	Dowr	ncomer (design I	basis		Equa	l flow p	ath lei	ngth 🔻			

_						
	🥑 Geometry	🥝 Design Parameter	s Tray (Geometry Sumr	mary	
	Maximum %	downcomer backup		100		
	Maximum %	liquid entrainment		10		
	Minimum we	ir loading		4.47098	cum/hr-meter	•
	Maximum we	eir loading		117.372	cum/hr-meter	•
	Warning state	us (% to limit)		10		
	Design factor	rs				
	System foam	ing factor		1		
	Aeration fact	or multiplier		1		
	Over design f	actor		1		
	Overall section	on efficiency		1		
	🔲 Override (downcomer froth dens	ity			
	Dry pressure	drop multiplier		1		
	Calculation m	nethods				
	Weep			Hsieh 👻		
	Jet flood			Fair72 💌		
	Maximum do	wncomer loading		Glitsch6		
				Kister		
10	del Palette			Fair72		
		Mixers/Splitters	Separat	User	ngers Columns	Reactors
<u>\</u>		winkers/ spritters	Schala	L	igers columns	Reactors

Well actually, the "80% Jet flood for design" is a slop factor. We don't want to pick the diameter to be such that we are right at the flooding velocity, but rather, we want to have a safety factor (we want to always be lower than 80% of the flooding velocity). So what Aspen Plus is going to do is find the diameter of my column which will have the liquid flow rates to be 20% lower than what would actually flood (as predicted by the model). We can make changes to this but the default 80% is a reasonable value to use. Select the Fair72 method as the jet flood calculation method in all your column sections, as shown in Figure 8.6. Reinitialize and rerun the simulation. In North America, trays and columns are often sold in standard diameters in 6 in. increments. Usually, the benefits of custom-sizing a diameter to a very particular size do not outweigh the high costs of custom manufacturing. So, usually diameters are rounded up to the nearest half foot. My results from Q2 and Q3 show that both flooding calculation methods agree: I should actually use a rounded-up column diameter of 2.5 ft.

Also, you may have noticed from your calculations that Aspen Plus computes different diameters for different column sections. This is because the flow profiles in different sections of the column can be quite different in different sections. However, in your case, although the minimum diameters are different, when you round up to the nearest 6 in. diameter, both sections should have the same diameter in the final design.

This is a common result, but it is not always the case. For example, consider a column that separates A (which is lighter and more volatile) from B (which is heavier and less volatile), but the feed stream contains, say 10 mol% A and 90 mol% B. This imbalance means that the tray liquid flow rates below the feed would be much larger than above it, since so much more B would be present in the bottom half of the column. In these cases, it may be worth it to design a dual-diameter column. If you would like, see what happens if your feed was 10% methanol and 90% water. In my case, I required a 1 ft. diameter for the section above the feed and a 1.5 ft. diameter below it. So the distillation column would look similar to Figure 8.7, as is nicely illustrated on the column internals form. Even so, it can sometimes be more cost-effective and easier to maintain if both sections have the same diameter, especially for high-pressure applications where minimizing joints and welds can be important. If this is the case, you might be able to just make the whole column 1.5 ft. in diameter.

ons																
Col	lumn descript	ion							Input Com	plete						
ļ	Add New	Auto	Sectior	Duplicate	Import	Template Ex	port Template	View Internals	Summary]						
	Name	Start Stage	End Stage	Mode	Internal Type	Tray/Packing Type	Tray [Details		Packing Deta	ils	Tray Spac Packed	ing/Section d Height	Dian	neter	Details
							Number of Passes	Number of Downcomers	Vendor	Material	Dimension					
•	CS-1	2	11	Interactive sizing	Trayed	SIEVE	1					2	ft	0.622614	meter	View
	CS-2	42		Internation states	Traved	SIEVE	1					2	ft	0.643337	meter	View

Now in order to answer the question of what tray spacing to use, rerun your simulation using a tray spacing of 1.5 ft. (0.4572 m) instead of 2 ft. (the only other option). In my case, my minimum diameter increased. So I could choose now between a shorter but wider column, or a taller but thinner column (both having the same number of trays). That tradeoff would be very case dependent. If your minimum diameter (when rounded up) stays the same, you should go with the smaller tray spacing in most cases.

Now that you have a working equilibrium-based model, we can go one step further in accuracy by doing rate-based simulations. This is a mass-transfer-based, kinetically-driven, complex model that does not assume phase equilibria. This is more accurate because sometimes trays don't have enough residence time to sufficiently approach phase equilibria. However, in order to use rate-based calculations, the model requires more detailed information about the trays themselves. First, switch your calculation type over to rate-based, as shown in Figure 8.8. This will remove the assumption of chemical equilibrium, and instead use rate-based mass-transfer kinetics, which is complicated, but kept under the hood. Next, go back to Column Internals | [internals folder], and in the Mode column of the Sections window, change all your column sections from Interactive sizing to Rating. This means that instead of asking Aspen Plus to determine a minimum tray diameter based on the equilibrium assumption, the problem is reversed: you are now telling it to compute what the results will be for a given tray diameter that you specified, based on the mass

transfer kinetics. Don't forget to change the tray spacing back to 2 ft. Next, go to the RadFrac Blockname | Rate-Based Modeling | Rate-based Setup | Sections tab and activate Rate-based calculation for all your column sections.

Configuration Streams Pressure	Condenser	🕜 Reboiler	3-Phase	Comments					
Setup options									
Calculation type	Equilibrium	-							
Number of stages	Equilibrium		Stage Wizard						
Condenser	Rate-Based		Mass tra	nsfer rate-base	ed (non-er	uilibrium)			
Reboiler	Kettle		calculations (Requires RateSep license). To						
Valid phases	lid phases Vapor-Liquid				enable rate-based calculations, you must also check the Rate-based calculations on Trav				
Convergence	Rating, Pack Rating sections or Rate-Based								
Operating specifications	Operating specifications								
Reflux ratio 👻	Mole	•	0.59		-				
Distillate to feed ratio -	Mole	-	0.5		-				
Free water reflux ratio	0	Feed Basis							
Design and specify column internals									

Sections																	
Active	Column description Input Complete																
	Add New Auto Section V Duplicate Import Template							te Export Template View Internals Summary									
2	Name Start End Stage Stage		Mode	Mode Internal Type	Tray/Packing Type	Tray Details		Packing Details		Tray Spacing/Section Packed Height		Diameter		Details			
								Number of Passes	Number of Downcomers	Vendor	Material	Dimension					
		CS-1	2	11	Rating	 Trayed 	SIEVE	1					2	ft	0.622614	meter	View
	Þ	CS-2	12	24	Interactive si	zir 💌 Trayed	SIEVE	1					2	ft	0.643337	meter	View
12	0	Don't update	pressure	e drop	Interactive s	zing											
12	Update pressure drop from top stage						Rating mode.										
	O Update pressure drop from bottom stage																
	Include static vapor head in pressure drop calculations																
	Calculate pressure drop across sump																
	S	ump															
	D	liameter			0.643337	meter –											
4	C	Liquid resid	ence tim	ie	0.0166667	hr 👻											

Now if you go to the column section folders of your column and look at the geometry form, you will notice that you have a lot of column section design options including Section type (Trayed or Packed), tray type, tray dimensions, etc. You can get very specific such as to the diameter of the holes and the number of holes on the tray, as shown in Figure 8.9. You can also modify details about the weir and downcomer dimensions, as shown in Figure 8.10. Just use the default values for this tutorial, but it is useful to know that you can change this for future applications.

Let's leave everything as they are. Don't mess with anything unless you know what you are doing. Now run the simulation! Did it work? If not, check the Tom's Tips for ideas to try to get it to work. Once it works, you get all sorts of useful results. For example, look in RadFrac Blockname | Column Internals | [internals folder] | Column Hydraulic Results and you can see, for example, the actual pressure drop for each section. So our 0.02 bar estimate was not that bad (conservative

really), whereas it is mostly about 0.005 bar on every stage. If it doesn't converge, check the control panel tosee what happened. One common problem is that RadFrac needed more iterations because the default of 25 is often not enough. There are two places to change these. The first is in the Blockname | Convergence | Convergence as we learned in previous tutorials.

Block:	B1	Model:	RADFRAC
Con	vergence	iterat:	ions:
	DL ML	IL	Err/Tol
	1 1	5	239.41

However, this only affects certain parts of the solution procedure. If this is the problem, you will see the problem crop up in this section of the control panel output:

There is a second set of algorithms that is specific to rate-based mode. If it runs out of iterations in that step, the "Convergence Iterations" would actually converge first, and then you would see something like:

RateSep convergence iterations: B1 Iter Err/Tol 0 800.39 (...) 50 757.27 ** ERROR RATESEP CALCULATIONS FAILED TO CONVERGE ITERATION LIMIT REACHED

Note that RATESEP is the old name for this model—you'll see the legacy name pop up from time to time. In this case, you can try increasing your rate-based convergence iterations in Blockname | Rate-Based Modeling | Rate Based Setup | Convergence, as shown in Figure 8.11.

Global Setup	Sections	Holdups	ØD	esign	Convergence	Structured Packing	
Convergence tol	erance		1e-05				
Maximum numb	er of iterations			÷			
Continuation/ho	motopy iteratio	ons		0	÷		
Continuation/ho	motopy param	eter				1	
Maximum tempe	erature change					15	
Normalize comp	ositions for pro	operty calcul	Yes		•		
Stabilization me	thod		Line-S	earch	•		
Number of stabi	lization iteratio	ns		25	~		
Liquid composit	ion transformat	ion	Stando	ard	•		
Vapor compositi	ion transformat	ion	Stando	ard	•		
Numerical Jacob	oian matrix calco	ulation	Jacob	ian	-		
Equilibrium solu	tion as initializa	ation	Yes		-		
Equilibrium read	tion formulatio	n	Stando	ard	•		
Use retention fo	r Chemistry calo	culations	Yes		-		
Function scaling	parameter			0	25		
Function error re	laxation param	eter			20		

Since the model has so many equations, you may find a need to increase your maximum convergence iterations or turn on numerical Jacobians in order to achieve convergence. Jacobians are essentially a way of computing how the model equations change with regard to the model variables at the current solution guess, which the solver uses to generate new and better guesses for each iteration. Calculating them numerically (instead of analytically, which is the default) can be useful when the equations are not behaving "nicely." But that was probably more than you needed to know.

Reference

- 1.Our team experience
- 2. Learn Aspen Plus in 24 hr. by Thomas A. Adams II